JPS62265614A - Radiant scanning/detection system - Google Patents
Radiant scanning/detection systemInfo
- Publication number
- JPS62265614A JPS62265614A JP62059094A JP5909487A JPS62265614A JP S62265614 A JPS62265614 A JP S62265614A JP 62059094 A JP62059094 A JP 62059094A JP 5909487 A JP5909487 A JP 5909487A JP S62265614 A JPS62265614 A JP S62265614A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- real image
- radiation
- conjugate
- scanning device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims description 21
- 230000003287 optical effect Effects 0.000 claims description 43
- 230000005855 radiation Effects 0.000 claims description 42
- 210000001747 pupil Anatomy 0.000 claims description 30
- 238000003384 imaging method Methods 0.000 claims description 12
- 230000000007 visual effect Effects 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0852—Catadioptric systems having a field corrector only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0804—Catadioptric systems using two curved mirrors
- G02B17/0808—Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/108—Scanning systems having one or more prisms as scanning elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は赤外線のごとき輻射線の走査・検出システムに
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field 1] The present invention relates to scanning and detection systems for radiation such as infrared radiation.
[゛従来の技術とその問題点]
輻射線の走査並びに検出システムの多様な形態はすでに
周知であるがこれ等は遠地シーンからのコリメートされ
た光線を受光できるようデ1ダインされており、当該シ
ステムの小型化も限度に達していた。[Prior Art and its Problems] Various forms of radiation scanning and detection systems are already known, which are designed to receive collimated light from a distant scene, Miniaturization of the system had also reached its limit.
本発明の目的は新規で改良した小型の輻射線の走査・検
出システムを提供することにある。It is an object of the present invention to provide a new and improved compact radiation scanning and detection system.
[問題点を解決するための手段]
本発明は、以下の構成よりなるl@+線の走査・検出シ
ステムを提供するものである。すなわち、走査する輻射
線を受容する光学系であって、入射しやすい(acce
ssible)射出ひとみを備え、前記受止めた輻射線
の外部実像を結像させる光学系と:前記光学系が放出す
る輻射線を走査する走査系であって、前記射出ひとみの
光共役結像手段と、前記射出ひとみに位置する第1走査
装置と、前記共役ひとみに位置する第2走査装置とを備
え、前記第1、第2走査装置を互いに直交走査方向に配
置した走査系と;前記走査系が放出する輻射線を検出す
る検出系であって、前記実像の光共役結像手段並びに前
記共役実像に位置する輻射線検出器とを備える検出系と
からなり;しかも前記共役ひとみ結像手段は、検出器を
放射源とする場合に第2走査装置で結像する検出器実像
ローカスとほぼ同心上に位置する実質的に球形凹面鏡を
構成していることを特徴とする。[Means for Solving the Problems] The present invention provides an l@+ line scanning/detection system having the following configuration. In other words, it is an optical system that receives scanning radiation and is easy to enter.
ssible) an optical system comprising an exit pupil and forming an external real image of the received radiation; and a scanning system that scans the radiation emitted by the optical system, the optical conjugate imaging means of the exit pupil. a scanning system comprising: a first scanning device located in the exit pupil; and a second scanning device located in the conjugate pupil, the first and second scanning devices being arranged in mutually orthogonal scanning directions; a detection system for detecting radiation emitted by the system, the detection system comprising optical conjugate imaging means for the real image and a radiation detector located at the conjugate real image; is characterized in that it constitutes a substantially spherical concave mirror located substantially concentrically with the detector real image locus imaged by the second scanning device when the detector is used as a radiation source.
本発明によるシステムでは従来のシステムのように凹面
鏡の焦点表面に検出器実像ローカスを位置させる必要が
無いことから、凹面鏡の角度領域を実質的に省略しえた
小型となり、関連システムは極めて小型化される。これ
は輻射線受容光学系が焦点となり遠地シーンの入射しや
すい実像を結像するからである。Since the system according to the present invention does not require positioning the real image locus of the detector on the focal surface of the concave mirror as in conventional systems, the angular area of the concave mirror can be substantially omitted and the related system can be extremely miniaturized. Ru. This is because the radiation-receiving optical system becomes a focal point and forms a real image of a distant scene that is easily incident.
好ましくは、第1走査装置を平面フラップ鏡が比較的緩
かなスピードで揺動してフレーム走査する形態にし、−
力筒2走査装置を好ましくはロータが比較的高スピード
で回転してライン走査づる形態にし、前記ロータはロー
タの回転軸に対し通常ほぼ垂直であり、ロータ周囲に一
体化した平面反射ファセットを有している。Preferably, the first scanning device is configured such that a plane flap mirror scans the frame by swinging at a relatively slow speed;
The cylinder two scanning device is preferably configured in a line scanning manner with a rotor rotating at a relatively high speed, said rotor being generally substantially perpendicular to the axis of rotation of the rotor and having planar reflective facets integral with the circumference of the rotor. are doing.
共役実像結像手段を簡素なトランスファレンズで構成し
、この場合第2走査装置をレンズとこれにより結像する
検出実像との中間に設置する。さらに、共役実像結像手
段をトランスファレンズと、前記トランスファレンズで
結像する検出実像に実質的に設置する輻射線切替ロータ
と、便宜上凹面鏡形態にした実像中継装置で構成しても
よく、この場合第2走査装置を実像中継装置とここに結
像した中継実像との中間に設置す、る。このような共役
実像結像手段は本発明に先行技術として取入れたイギリ
ス特許第2,115,174号に記載されている。The conjugate real image imaging means is constituted by a simple transfer lens, in which case the second scanning device is placed intermediate the lens and the detected real image formed thereby. Furthermore, the conjugate real image imaging means may be composed of a transfer lens, a radiation switching rotor that is substantially installed on the detected real image formed by the transfer lens, and a real image relay device in the form of a concave mirror for convenience; in this case, A second scanning device is installed between the real image relay device and the relay real image formed thereon. Such conjugate real image imaging means are described in British Patent No. 2,115,174, which is incorporated as prior art to the present invention.
共役ひとみ形成手段により結像する検出ローカスの実像
は好ましくは射出ひとみを中心とする曲゛面を備える。The real image of the detection locus imaged by the conjugate pupil forming means preferably has a curved surface centered on the exit pupil.
この理由は第1走査%NHにより結像する走査ローカス
もまた射出ひとみを中心とするため軸対称光学系が、前
記射出ひとみを中心とする視野曲面を持つ外部実像を利
用しうるからである。上記ローカスが異なる曲面を有す
る場合、好ましくは光学系の外部実像は妥協値に見合っ
た視野曲面とする。The reason for this is that the scan locus imaged by the first scan %NH is also centered on the exit pupil, so that the axisymmetric optical system can utilize an external real image with a field curve centered on the exit pupil. If the loci have different curved surfaces, preferably the external real image of the optical system has a visual field curved surface commensurate with the compromise value.
本発明の実施態様を図面に基づき実施例として説明する
。Embodiments of the present invention will be described as examples based on the drawings.
[実施例]
第1図に示すように本発明のシステム10は光学系11
を含んでいる。この光学系11は対物空間12からの輻
射線(例えば赤外線)を受容し、受容された輻射線の入
射しやすい実像13を当該光学系の像空間中に結像する
ための屈折光学要素がらなり、この光学系11は到達実
像13より先に輻PAIDが通過する射出ひとみ14を
備える。また光学系11を共通光軸9上に配置されたレ
ンズエレメントA、B、C,Dで形成し、この光学系1
1を通過する輻射光線の軌跡を選ばれた放射光線束で表
す。[Example] As shown in FIG. 1, a system 10 of the present invention includes an optical system 11.
Contains. This optical system 11 receives radiation (for example, infrared rays) from an objective space 12, and is made up of refractive optical elements for forming a real image 13 into which the received radiation is likely to enter into the image space of the optical system. , this optical system 11 has an exit pupil 14 through which the radiation PAID passes before the arriving real image 13. Further, an optical system 11 is formed by lens elements A, B, C, and D arranged on a common optical axis 9, and this optical system 1
The locus of a radiation ray passing through 1 is expressed by a selected radiation ray bundle.
光学系11を横切る輻射線は輻射線走査系16で直交走
査されやすく、前記輻射線走査系は射出ひとみ14に位
置した揺動フラップ鏡形式の第1走査装置11と、射出
ひとみ14と共役するひとみ19に位置し走査系16の
一部となる実質的に球形の凹面鏡20で形成され、前述
した形態で位置する多面体ロータ形式の第2走査装置1
8とから成る。The radiation traversing the optical system 11 is subject to orthogonal scanning by a radiation scanning system 16, said radiation scanning system being conjugated with the exit pupil 14 and a first scanning device 11 in the form of a swinging flap mirror located in the exit pupil 14. a second scanning device 1 in the form of a polyhedral rotor, formed by a substantially spherical concave mirror 20 located in the pupil 19 and forming part of the scanning system 16, and located in the configuration described above;
It consists of 8.
走査系16の後にステーション24に実像13の光共役
を結像する装置23とステーション24に位置する輻射
線検出器25を含む検出系22で輻射線を収集する。検
出器25を放射源とする場合装置23で結像する検出実
像は走査装置18により通常の円形ローカスに移動され
、凹面1’120形式の共役ひとみが実像ローカスにほ
ぼ集中的に位置する。光学系11の焦点性により凹面鏡
20は実像ローカスに接近するか、もしくはここに位置
しえて鏡20の角度領域が省略され小型システム10と
成りつる。この実施例では検出ローカスと同様である実
像13は凹面鏡20の表面に位置する。実際に使用する
に当たってはシステム10を通過する放射線を屈折鏡2
8.29.30で屈折する。走査装置18はガス軸受を
備え輻射線を通過させる窓31を備えたそれ自体のハウ
ジング内に位置する。検出器25はそれ自身低温冷却し
たハウジング32内に位置する。After the scanning system 16, the radiation is collected in a detection system 22 which includes a device 23 for imaging the optical conjugate of the real image 13 at a station 24 and a radiation detector 25 located at the station 24. When the detector 25 is used as a radiation source, the detected real image formed by the device 23 is moved by the scanning device 18 to a conventional circular locus, and the conjugate pupil in the form of a concave surface 1' 120 is located almost centrally at the real image locus. Due to the focal nature of the optical system 11, the concave mirror 20 may be located close to or located at the real image locus, omitting the angular range of the mirror 20 and resulting in a compact system 10. A real image 13, which in this example is similar to the detection locus, is located on the surface of the concave mirror 20. In actual use, the radiation passing through the system 10 is reflected by the refracting mirror 2.
8. Refract at 29.30. The scanning device 18 is located in its own housing with gas bearings and a window 31 through which radiation passes. Detector 25 is itself located within a cryogenically cooled housing 32.
第2図の実施例はシステム10の軸距離を減少する光学
系40が第1図の光学系11と異なるのみである。光学
系40は対物レンズエレメント、#AG、前記エレメン
トFの一部に形成した鏡面H並びにレンズエレメントi
SJ、に、Lを構成する。The embodiment of FIG. 2 differs from optical system 11 of FIG. 1 only in optical system 40, which reduces the axial distance of system 10. The optical system 40 includes an objective lens element #AG, a mirror surface H formed on a part of the element F, and a lens element i.
Configure L in SJ.
第1.2図の各実施例において、実像13の光共役を結
像する装置23は簡素なトランスファレンズ形式であり
、第3図に表した配置では装置23はイギリス特許第2
.115.174に記載されたタイプの構成部品を備え
る。このように第3図ではトランスファレンズ44は多
面体輻射線切替ロータ46を回転して通過するところの
ステーション45に検出器25の実像を結像し、この実
施例ではロータ 46は走査装置18のロータと一体化
する。ステーション45の実像は明確にするため第4図
に分割して示すごとく、実質的に球形の凹面鏡47と部
品(ミラー)44.45.47の配置と方向により光学
系60の実像13と共役する。また装置18に関するロ
ータ46の方向は走査装置18のファセット(局面)に
ファセット探知モーションを起こす目的で前記イギリス
特許第2.115.174に説明されている。使用に当
たって再び第3図にもどって、システム10は光路屈折
用の鏡48.49.50.51を含む。第3図のシステ
ム10において、120の埃又はこの類による表面の傷
を検出器25に集中させないために光学系60で結像す
る実像13を凹面鏡20の表面に位置させない。In each of the embodiments of FIG. 1.2, the device 23 for imaging the optical conjugate of the real image 13 is in the form of a simple transfer lens; in the arrangement shown in FIG.
.. 115.174. Thus, in FIG. 3, transfer lens 44 forms a real image of detector 25 at station 45, which rotates past polyhedral radiation switching rotor 46, which in this embodiment is rotor 46 of scanning device 18. Become one with. The real image of the station 45 is conjugate with the real image 13 of the optical system 60 due to the arrangement and orientation of the substantially spherical concave mirror 47 and the components (mirrors) 44, 45, 47, as shown in sections in FIG. 4 for clarity. . The orientation of the rotor 46 with respect to the device 18 is also described in the aforementioned British Patent No. 2.115.174 for the purpose of creating a facet sensing motion on the facets of the scanning device 18. In use, returning again to FIG. 3, system 10 includes mirrors 48, 49, 50, 51 for redirecting optical paths. In the system 10 of FIG. 3, the real image 13 formed by the optical system 60 is not located on the surface of the concave mirror 20 in order to prevent dust 120 or the like from concentrating on the detector 25.
aT4図に関して述べると、光学系60はその先軸61
を直線形に示し、光学系60は射出ひとみ14と実@1
3とを明確にするため第3図に示ずシステム10の残影
とは別に示す。屈折型の光学系60をレンズエレメント
)11N、P、Q、Rで形成し、エレメントHは対物エ
レメントであり、その素材からレンズエレメントを屈折
表面の曲面半径と一致して形成し射出ひとみ14の各共
役屈折表面の空間はレンズエレメントH,81P、Q、
Hの集合体の外にあることからこの結果入射しやすく外
部実像13は射出ひとみ14に集中する曲面を保持する
。表Iは光学系60のパラメータと、各レンズエレメン
トに対し記号 1.2でレンズエレメントの屈析表面を
表し、各ケースにおいて例えばレンズエレメントNで示
した対物空間12に最も近い表面を記号1で示したリス
トである。Regarding the aT4 diagram, the optical system 60 has its front axis 61
is shown in a straight line, and the optical system 60 has an exit pupil 14 and a real @1
3 is not shown in FIG. 3 for clarity, and is shown separately from the residual image of the system 10. A refractive optical system 60 is formed of lens elements (11N, P, Q, and R), element H is an objective element, and a lens element is formed from the material to match the radius of the curved surface of the refractive surface, and the exit pupil 14 is The spaces of each conjugate refractive surface are lens elements H, 81P, Q,
As a result, since it is outside the aggregate of H, it is easy to enter the external real image 13, and the external real image 13 maintains a curved surface concentrating on the exit pupil 14. Table I shows the parameters of the optical system 60 and for each lens element the refractive surface of the lens element is designated by the symbol 1.2, and in each case the surface closest to the objective space 12, designated for example by the lens element N, is designated by the symbol 1. This is the list shown.
本発明によれば、凹面鏡20は走査装置17が引起こす
実像13の運a〇−カスと一致するわん曲表面を備える
。鏡20がローカスと一致すると光収差が全く導入され
ず、前述のごとく塵微粒子もしくは表面欠点が検出器2
5に鮮かに結像される。凹面!?120がこのローカス
と同心すると検出器実像の倍率は(放射源とした場合)
走査ローカスの位置から独立し、走査装@18を一定の
速度で回転し凹面鏡20による実像に沿って、検出器実
像も一定速度で運動するように備えられる。凹面120
を走査ローカスと走査装置18との間に設置するとシス
テム10は自ずと非常に小型になるが、光学系11のデ
ザインをかなり困難にする!1!20と走査装置11の
領域における放射ビームのF−数が比較的小さくなる。According to the invention, the concave mirror 20 has a curved surface that corresponds to the trajectory of the real image 13 caused by the scanning device 17. When the mirror 20 coincides with the locus, no optical aberration is introduced, and as mentioned above, dust particles or surface defects are detected by the detector 2.
5 is clearly imaged. Concave! ? When 120 is concentric with this locus, the magnification of the detector real image is (when used as a radiation source)
Independently of the position of the scanning locus, the scanning device @18 is rotated at a constant speed and the detector real image is also arranged to move at a constant speed along the real image by the concave mirror 20. Concave surface 120
Placing the system 10 between the scanning locus and the scanning device 18 naturally makes the system 10 very compact, but it also makes the design of the optical system 11 much more difficult! 1!20 and the F-number of the radiation beam in the area of the scanning device 11 is relatively small.
走査ローカスを凹面Wt20と走査装218の間に設置
すると鏡20のアーチ距離は増すが光学系11の光デザ
インの複雑性を減少する放射ビームのF−数が増加する
。凹面lA20の焦点距離を置くことにより走査ローカ
スを四面t?I20から分離した例は全くないことを明
記しておく。これはこの結果起こる放射線ビームを平行
にするためである。凹面鏡20が走査ローカスと正確に
同心せず(放射源と考えて)検出器25の倍率が走査ロ
ーカスに沿う位置で変化し、また走査速度が変化する場
合は一般に好ましくはないが走査ひとみが結像する倍率
は独自に選択しつることからある種の応用も可能であろ
う。Placing the scanning locus between concave surface Wt 20 and scanning arrangement 218 increases the F-number of the radiation beam, which increases the arch distance of mirror 20 but reduces the complexity of the optical design of optical system 11. By setting the focal length of the concave surface lA20, the scanning locus can be set on four planes t? It should be noted that there are no examples of isolation from I20. This is to collimate the resulting radiation beam. If the concave mirror 20 is not exactly concentric with the scan locus (considered as a radiation source) and the magnification of the detector 25 changes along the scan locus, and if the scan speed changes, the scan pupil will Since the magnification for imaging can be independently selected, certain applications may be possible.
表1と第4図にrjA遠して記載した光学系11に関し
ては、レンズエレメントに使用する素材はBS 1表示
のバール アンド ストラウド社製造販売のゲルマニウ
ム(Ge)もしくはカルコゲナイドガラスのいずれかの
赤外線伝達素材である。Regarding the optical system 11 shown in Table 1 and FIG. It is the material.
表I 備考二全ての寸法は1II C=凹 V=凸 本=非球面Table I Note 2: All dimensions are 1II C = concave V = convex Book = aspherical surface
第1図は本発明の輻射線の走査・検出システムの第1実
施例を示す側面図、第2図は第2実施例の側面図、第3
図は本発明の輻射線の検出システムの第3実施例の一部
を示す側面図、第4図は第3図のシステムの別の一部を
示すものであって、第3図並びに第4図は明確にするた
め対物レンズ系または走査・検出系を分離して示したも
のである。
10・・・輻射線の走査・検出システム11・・・光学
系 12・・・対物空間、 13・・・外部実像1
4・・・射出ひとみ、 16・・・走査系17・・・
第1の走査装置、18・・・第2の走査装置19・・・
共役ひとみ、 2o・・・凹面鏡23・・・共役ひと
み形成装置、 22・・・検出系24・・・共役像、
25・・・検出器28.29.30・・・鏡
バール アンド ストラウド リミテッド代理人 (7
134)弁理士 芦田直衛(7222)弁理士 朝倉正
幸
□
手 わ■ ネili 正 書 (方式)昭和62年6
月タ 日FIG. 1 is a side view showing a first embodiment of the radiation scanning/detection system of the present invention, FIG. 2 is a side view of the second embodiment, and FIG.
The figure is a side view showing a part of the third embodiment of the radiation detection system of the present invention, and FIG. 4 is a side view showing another part of the system shown in FIG. The figure shows the objective lens system or the scanning/detection system separated for clarity. 10... Radiation scanning/detection system 11... Optical system 12... Objective space, 13... External real image 1
4...Exit pupil, 16...Scanning system 17...
First scanning device, 18...Second scanning device 19...
Conjugate pupil, 2o... Concave mirror 23... Conjugate pupil forming device, 22... Detection system 24... Conjugate image,
25...Detector 28.29.30...Kagami Barr & Stroud Limited agent (7
134) Patent attorney Naoe Ashida (7222) Patent attorney Masayuki Asakura
month day
Claims (1)
やすい射出ひとみを備え、前記受止めた輻射線の外部実
像を形成させる光学系と、前記光学系が放出する輻射線
を走査する走 査系であつて、前記射出ひとみの光共役結像手段と、前
記射出ひとみに位置する第1走査装置と、さらに前記共
役ひとみに位置する第2走査装置とを備え、前記第1、
第2走査装置を互いに直交走査方向に配置した走査系と
、前記走査系が放出する輻射線を検出する検 出系であつて、前記実像の光共役結像手段と前記共役実
像に位置する輻射線検出器とを備える検出系とからなり
、 前記共役ひとみ結像手段は、検出器を放射 源とする場合に第2走査装置で結像する検出器実像ロー
カスとほぼ同心上に位置する実質的に球形の凹面鏡であ
ることを特徴とする輻射線走査・検出システム。 2、第1走査装置を平面フラップ鏡が比較的緩かなスピ
ードで揺動してフレーム走査する形態にし、一方第2走
査装置をロータが比較的高スピードで回転してライン走
査する形態にし、前記ロータは、ロータの回転軸に対し
通常ほぼ垂直でありロータ周囲に一体化した平面反射フ
ァセットを有している特許請求の範囲第1項記載のシス
テム。 3、共役実像結像手段を簡素なトランスファレンズで構
成し、レンズと前記共役実像結像手段により結像する検
出実像との中間に、第2走査装置を設置する特許請求の
範囲第1項または第2項に記載のシステム。 4、共役実像結像手段をトランスファレンズと、前記ト
ランスファレンズで結像する検出実像に実質的に設置す
る輻射線切替ロータと、凹面鏡形態にした実像中継装置
で構成し、第2走査装置を実像中継装置とここに結像す
る中継実像との中間に設置する特許請求の範囲第1項又
は第2項に記載のシステム。 5、共役ひとみ形成手段により結像する検出ローカスの
実像は射出ひとみを中心とする曲面を備え、第1走査装
置により結像する走査ローカスもまた射出ひとみを中心
とし、これにより軸対称光学系が、射出ひとみを中心と
する視野曲面を持つ外部実像を利用しうる特許請求の範
囲第1項ないし第4項のいずれかの項に記載のシステム
。 6、共役ひとみ形成手段により結像する検出実像ローカ
スと、第1走査装置により結像する走査ローカスと、光
学系の外部実像は前記各ローカスの妥協値に見合った視
野曲面を持つ特許請求の範囲第1項ないし第4項のいず
れかの項に記載のシステム。 7、光学系をレンズエレメントM、N、P、Q、Rで形
成し、エレメントMは対称エレメントであり、光学系の
パラメータを表 I に説明する特許請求の範囲第1項に
記載のシステム。[Scope of Claims] 1. An optical system that receives scanning radiation and is provided with an exit pupil that allows easy entry of the radiation and forms an external real image of the received radiation; a scanning system for scanning a radiation ray comprising: an optical conjugate imaging means of the exit pupil; a first scanning device located in the exit pupil; and a second scanning device located in the conjugate pupil; Said first,
a scanning system in which second scanning devices are arranged in scanning directions orthogonal to each other; and a detection system for detecting radiation emitted by the scanning system, the optical conjugate imaging means for the real image and the radiation located in the conjugate real image. a detection system comprising a detector, the conjugate pupil imaging means being substantially concentric with the detector real image locus imaged by the second scanning device when the detector is the radiation source; A radiation scanning and detection system characterized by a spherical concave mirror. 2. The first scanning device has a configuration in which a plane flap mirror swings at a relatively slow speed to perform frame scanning, while the second scanning device has a configuration in which a rotor rotates at a relatively high speed to perform line scanning; 2. The system of claim 1, wherein the rotor has planar reflective facets that are generally substantially perpendicular to the axis of rotation of the rotor and are integral with the circumference of the rotor. 3. The conjugate real image forming means is constituted by a simple transfer lens, and a second scanning device is installed between the lens and the detected real image formed by the conjugate real image forming means, or The system according to paragraph 2. 4. The conjugate real image imaging means is composed of a transfer lens, a radiation switching rotor that is installed substantially on the detection real image formed by the transfer lens, and a real image relay device in the form of a concave mirror, and the second scanning device is configured to form a real image. The system according to claim 1 or 2, which is installed between the relay device and the relay real image formed thereon. 5. The real image of the detection locus imaged by the conjugate pupil forming means has a curved surface centered on the exit pupil, and the scanning locus imaged by the first scanning device is also centered on the exit pupil, thereby creating an axisymmetric optical system. , a system according to any one of claims 1 to 4, which can utilize an external real image having a field curved surface centered on the exit pupil. 6. The detection real image locus imaged by the conjugate pupil forming means, the scanning locus imaged by the first scanning device, and the external real image of the optical system have a visual field curved surface commensurate with the compromise value of each locus. The system according to any one of paragraphs 1 to 4. 7. System according to claim 1, in which the optical system is formed by lens elements M, N, P, Q, R, element M is a symmetrical element, and the parameters of the optical system are set out in Table I.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8607151 | 1986-03-22 | ||
GB8607151 | 1986-03-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62265614A true JPS62265614A (en) | 1987-11-18 |
JPH0466486B2 JPH0466486B2 (en) | 1992-10-23 |
Family
ID=10595073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62059094A Granted JPS62265614A (en) | 1986-03-22 | 1987-03-16 | Radiant scanning/detection system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS62265614A (en) |
BR (1) | BR8701268A (en) |
ES (1) | ES2003009A6 (en) |
GB (1) | GB2195466B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244113A (en) * | 1989-03-17 | 1990-09-28 | Nec Corp | Optical scanner |
-
1987
- 1987-03-03 GB GB8704983A patent/GB2195466B/en not_active Expired
- 1987-03-16 JP JP62059094A patent/JPS62265614A/en active Granted
- 1987-03-20 BR BR8701268A patent/BR8701268A/en unknown
- 1987-03-20 ES ES8700783A patent/ES2003009A6/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244113A (en) * | 1989-03-17 | 1990-09-28 | Nec Corp | Optical scanner |
Also Published As
Publication number | Publication date |
---|---|
ES2003009A6 (en) | 1988-10-01 |
GB2195466B (en) | 1989-11-15 |
JPH0466486B2 (en) | 1992-10-23 |
GB2195466A (en) | 1988-04-07 |
BR8701268A (en) | 1987-12-29 |
GB8704983D0 (en) | 1987-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5078502A (en) | Compact afocal reimaging and image derotation device | |
US4733955A (en) | Reflective optical triplet having a real entrance pupil | |
US4624528A (en) | Scanning systems with polygon scanner having curved facets | |
JPH06273671A (en) | High-speed reflecting system, which has wide angle and returns large, clear image | |
JPH11331654A (en) | Omnidirectional viewing angle sensor | |
US20050117227A1 (en) | Panoramic imaging system with optical zoom capability | |
GB1569879A (en) | Radiation scanning system | |
JPH077151B2 (en) | Scanning device | |
US4210810A (en) | Radiation scanning system | |
US9291809B2 (en) | Scanning telescope | |
EP1145065B1 (en) | Ultra-wide field of view concentric scanning sensor system | |
US6178047B1 (en) | Two-path all-reflective de-rotation optical system | |
JPH0659126A (en) | Wide-angle optical system | |
US3765743A (en) | Optical energy detection system including image plane scanning system | |
US4912321A (en) | Radiation scanning system with pupil control | |
US5239404A (en) | Large angle reflective scanning system and method | |
US4504110A (en) | Converging beam linear optical scanner | |
JPS62265614A (en) | Radiant scanning/detection system | |
US6097554A (en) | Multiple dove prism assembly | |
US3934137A (en) | Optical scanning device | |
GB2179758A (en) | An optico-mechanical scanning device | |
JP2003163819A (en) | Wide angle imaging apparatus, and monitoring imaging apparatus and onboard imaging apparatus employing the same | |
EP0175835B1 (en) | Improved optical scanner | |
US5024493A (en) | Compact infrared lens arrangement including at least three reflections | |
GB1603033A (en) | Method of and means for scanning images |