JPH0466486B2 - - Google Patents
Info
- Publication number
- JPH0466486B2 JPH0466486B2 JP62059094A JP5909487A JPH0466486B2 JP H0466486 B2 JPH0466486 B2 JP H0466486B2 JP 62059094 A JP62059094 A JP 62059094A JP 5909487 A JP5909487 A JP 5909487A JP H0466486 B2 JPH0466486 B2 JP H0466486B2
- Authority
- JP
- Japan
- Prior art keywords
- real image
- scanning
- conjugate
- radiation
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 47
- 230000005855 radiation Effects 0.000 claims description 42
- 210000001747 pupil Anatomy 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 22
- 238000003384 imaging method Methods 0.000 claims description 11
- 230000000007 visual effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0852—Catadioptric systems having a field corrector only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0804—Catadioptric systems using two curved mirrors
- G02B17/0808—Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/108—Scanning systems having one or more prisms as scanning elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
- Lenses (AREA)
- Mechanical Optical Scanning Systems (AREA)
Description
[産業上の利用分野]
本発明は赤外線のごとき輻射線の走査・検出シ
ステムに関する。
[従来の技術とその問題点]
輻射線の走査並びに検出システムの多様な形態
はすでに周知であるがこれ等は遠地シーンからの
コリメートされた光線を受光できるようデザイン
されており、当該システムの小型化も限度に達し
ていた。
本発明の目的は新規で改良した小型の輻射線の
走査・検出システムを提供することにある。
[問題点を解決するための手段]
本発明は、以下の構成よりなる輻射線の走査・
検出システムを提供するものである。すなわち、
走査する輻射線を受容する光学系であつて、入
射しやすい(accessible)射出ひとみを備え、前
記受止めた輻射線の外部実像を結像させる光学系
と;前記光学系が放出する輻射線を走査する走査
系であつて、前記射出ひとみの光共役結像手段
と、前記射出ひとみに位置する第1走査装置と、
前記共役ひとみに位置する第2走査装置とを備
え、前記第1、第2走査装置を互いに直交走査方
向に配置した走査系と;前記走査系が放出する輻
射線を検出する検出系であつて、前記実像の光共
役結像手段並びに前記共役実像に位置する輻射線
検出器とを備える検出系とからなり;しかも前記
共役ひとみ結像手段は、検出器を放射源とする場
合に第2走査装置で結像する検出器実像ローカス
とほぼ同心上に位置する実質的に球形凹面鏡を構
成していることを特徴とする。
本発明によるシステムでは従来のシステムのよ
うに凹面鏡の焦点表面に検出器実像ローカスを位
置させる必要が無いことから、凹面鏡の角度領域
を実質的に省略しえた小型となり、関連システム
は極めて小型化される。これは輻射線受容光学系
が焦点となり遠地シーンの入射しやすい実像を結
像するからである。
好ましくは、第1走査装置を平面フラツプ鏡が
比較的緩かなスピードで揺動してフレーム走査す
る形態にし、一方第2走査装置を好ましくはロー
タが比較的高スピードで回転してライン走査する
形態にし、前記ロータはロータの回転軸に対し通
常ほぼ垂直であり、ロータ周囲に一体化した平面
反射フアセツトを有している。
共役実像結像手段を簡素なトランスフアレンズ
で構成し、この場合第2走査装置をレンズとこれ
により結像する検出実像との中間に設置する。さ
らに、共役実像結像手段をトランスフアレンズ
と、前記トランスフアレンズで結像する検出実像
に実質的に設置する輻射線切替ロータと、便宜上
凹面鏡形態にした実像中継装置で構成してもよ
く、この場合第2走査装置を実像中継装置とここ
に結像した中継実像との中間に設置する。このよ
うな共役実像結像手段は本発明に先行技術として
取入れたイギリス特許第2115174号に記載されて
いる。
共役ひとみ形成手段により結像する検出ローカ
スの実像は好ましくは射出ひとみを中心とする曲
面を備える。この理由は第1走査装置により結像
する走査ローカスもまた射出ひとみを中心とする
ため軸対称光学系が、前記射出ひとみを中心とす
る視野曲面を持つ外部実像を利用しうるからであ
る。上記ローカスが異なる曲面を有する場合、好
ましくは光学系の外部実像は妥協値に見合つた視
野曲面とする。
本発明の実施態様を図面に基づき実施例として
説明する。
[実施例]
第1図に示すように本発明のシステム10は光
学系11を含んでいる。この光学系11は対物空
間12からの輻射線(例えば赤外線)を受容し、
受容された輻射線の入射しやすい実像13を当該
光学系の像空間中に結像するための屈折光学要素
からなり、この光学系11は到達実像13より先
に輻射線が通過する射出ひとみ14を備える。ま
た光学系11を共通光軸9上に配置されたレンズ
エレメントA,B,C,Dで形成し、この光学系
11を通過する輻射光線の軌跡を選ばれた放射光
線束で表す。
光学系11を横切る輻射線は輻射線走査系16
で直交走査されやすく、前記輻射線走査系は射出
ひとみ14に位置した揺動フラツプ鏡形式の第1
走査装置17と、射出ひとみ14と共役するひと
み19に位置し走査系16の一部となる実質的に
球形の凹面鏡20で形成され、前述した形態で位
置する多面体ロータ形式の第2走査装置18とか
ら成る。
走査系16の後にステーシヨン24に実像13
の光共役を結像する装置23とステーシヨン24
に位置する輻射線検出器25を含む検出系22で
輻射線を収集する。検出器25を放射源とする場
合装置23で結像する検出実像は走査装置18に
より通常の円形ローカスに移動され、凹面鏡20
形式の共役ひとみが実像ローカスにほぼ集中的に
位置する。光学系11の焦点性により凹面鏡20
は実像ローカスに接近するか、もしくはここに位
置しえて鏡20の角度領域が省略され小型システ
ム10と成りうる。この実施例では検出ローカス
と同様である実像13は凹面鏡20の表面に位置
する。実際に使用するに当たつてはシステム10
を通過する放射線を屈折鏡28,29,30で屈
折する。走査装置18はガス軸受を備え輻射線を
通過させる窓31を備えたそれ自体のハウジング
内に位置する。検出器25はそれ自身低温冷却し
たハウジング32内に位置する。
第2図の実施例はシステム10の軸距離を減少
する光学系40が第1図の光学系11と異なるの
みである。光学系40は対物レンズエレメント、
鏡G、前記エレメントFの一部に形成した鏡面H
並びにレンズエレメントi,J,K,Lを構成す
る。
第1,2図の各実施例において、実像13の光
共役を結像する装置23は簡素なトランスフアレ
ンズ形式であり、第3図に表した配置では装置2
3はイギリス特許第2115174に記載されたタイプ
の構成部品を備える。このように第3図ではトラ
ンスフアレンズ44は多面体輻射線切替ロータ4
6を回転して通過するところのステーシヨン45
に検出器25の実像を結像し、この実施例ではロ
ータ46は走査装置18のロータと一体化する。
ステーシヨン45の実像は明確にするため第4図
に分割して示すごとく、実質的に球形の凹面鏡4
7と部品(ミラー)44,45,47の配置と方
向により光学系60の実像13と共役する。また
装置18に関するロータ46の方向は走査装置1
8のフアセツト(局面)にフアセツト探知モーシ
ヨンを起こす目的で前記イギリス特許第2115174
に説明されている。使用に当たつて再び第3図に
もどつて、システム10は光路屈折用の鏡48,
49,50,51を含む。第3図のシステム10
において、鏡20の埃又はこの類による表面の傷
を検出器25に集中させないために光学系60で
結像する実像13を凹面鏡20の表面に位置させ
ない。
第4図に関して述べると、光学系60はその光
軸61を直線形に示し、光学系60は射出ひとみ
14と実像13とを明確にするため第3図に示す
システム10の残影とは別に示す。屈折型の光学
系60をレンズエレメントM,N,P,Q,Rで
形成し、エレメントMは対物エレメントであり、
その素材からレンズエレメントを屈折表面の曲面
半径と一致して形成し射出ひとみ14の各共役屈
折表面の空間はレンズエレメントM,N,P,
Q,Rの集合体の外にあることからこの結果入射
しやすく外部実像13は射出ひとみ14に集中す
る曲面を保持する。表は光学系60のパラメー
タと、各レンズエレメントに対し記号1,2でレ
ンズエレメントの屈折表面を表し、各ケースにお
いて例えばレンズエレメントNで示した対物空間
12に最も近い表面を記号1で示したリストであ
る。
本発明によれば、凹面鏡20は走査装置17が
引起こす実像13の運動ローカスと一致するわん
曲表面を備える。鏡20がローカスと一致すると
光収差が全く導入されず、前述のごとく塵微粒子
もしくは表面欠点が検出器25に鮮かに結像され
る。凹面鏡20がこのローカスと同心すると検出
器実像の倍率は(放射源とした場合)走査ローカ
スの位置から独立し、走査装置18を一定の速度
で回転し凹面鏡20による実像に沿つて、検出器
実像も一定速度で運動するように備えられる。凹
面鏡20を走査ローカスと走査装置18との間に
設置するとシステム10は自ずと非常に小型にな
るが、光学系11のデザインをかなり困難にする
鏡20と走査装置17の領域における放射ビーム
のF−数が比較的小さくなる。走査ローカスを凹
面鏡20と走査装置18の間に設置すると鏡20
のアーチ距離は増すが光学系11の光デザインの
複雑性を減少する放射ビームのF−数が増加す
る。凹面鏡20の焦点距離を置くことにより走査
ローカスを凹面鏡20から分離した例は全くない
ことを明記しておく。これはこの結果起こる放射
線ビームを平行にするためである。凹面鏡20が
走査ローカスと正確に同心せず(放射源と考え
て)検出器25の倍率が走査ローカスに沿う位置
で変化し、また走査速度が変化する場合は一般に
好ましくはないが走査ひとみが結像する倍率は独
自に選択しうることからある種の応用も可能であ
ろう。
表と第4図に関連して記載した光学系11に
関しては、レンズエレメントに使用する素材は
BS1表示のバール アンド ストラウド社製造販
売のゲルマニウム(Ge)もしくはカルコゲナイ
ドガラスのいずれかの赤外線伝達素材である。
FIELD OF INDUSTRIAL APPLICATION This invention relates to scanning and detection systems for radiation, such as infrared radiation. [Prior Art and its Problems] Various forms of radiation scanning and detection systems are already well known, but they are designed to receive collimated light from far-field scenes, and the compactness of the systems had also reached its limit. It is an object of the present invention to provide a new and improved compact radiation scanning and detection system. [Means for solving the problems] The present invention provides a radiation scanning system having the following configuration.
A detection system is provided. That is, an optical system that receives scanning radiation, has an accessible exit pupil, and forms an external real image of the received radiation; and radiation emitted by the optical system. a scanning system for scanning a line, comprising: an optical conjugate imaging means of the exit pupil; a first scanning device located in the exit pupil;
a second scanning device located in the conjugate pupil, and the first and second scanning devices are arranged in mutually orthogonal scanning directions; a detection system for detecting radiation emitted by the scanning system; , a detection system comprising optical conjugate imaging means for the real image and a radiation detector located at the conjugate real image; It is characterized in that it constitutes a substantially spherical concave mirror located approximately concentrically with the detector real image locus that is imaged by the device. Since the system according to the present invention does not require positioning the real image locus of the detector on the focal surface of the concave mirror as in conventional systems, the angular area of the concave mirror can be substantially omitted and the related system can be extremely miniaturized. Ru. This is because the radiation-receiving optical system becomes a focal point and forms a real image of a distant scene that is easily incident. Preferably, the first scanning device is configured such that a plane flap mirror oscillates at a relatively slow speed for frame scanning, while the second scanning device is preferably configured such that a rotor rotates at a relatively high speed for line scanning. The rotor is generally substantially perpendicular to the rotor's axis of rotation and has a planar reflective facet integrated around the rotor. The conjugate real image imaging means is constituted by a simple transfer lens, in which case the second scanning device is placed intermediate the lens and the detected real image formed thereby. Furthermore, the conjugate real image imaging means may be constituted by a transfer lens, a radiation switching rotor substantially installed on the detection real image formed by the transfer lens, and a real image relay device in the form of a concave mirror for convenience; in this case, A second scanning device is installed between the real image relay device and the relay real image formed thereon. Such conjugate real image imaging means are described in British Patent No. 2115174, which is incorporated as prior art to the present invention. The real image of the detection locus imaged by the conjugate pupil forming means preferably has a curved surface centered on the exit pupil. The reason for this is that the scanning locus imaged by the first scanning device is also centered on the exit pupil, so that the axisymmetric optical system can utilize an external real image with a field curve centered on said exit pupil. If the loci have different curved surfaces, preferably the external real image of the optical system has a visual field curved surface that meets the compromise value. Embodiments of the present invention will be described as examples based on the drawings. [Example] As shown in FIG. 1, a system 10 of the present invention includes an optical system 11. This optical system 11 receives radiation (for example, infrared radiation) from an objective space 12,
The optical system 11 consists of a refractive optical element for forming a real image 13 into which the received radiation is likely to enter into the image space of the optical system, and this optical system 11 has an exit pupil 14 through which the radiation passes before the arriving real image 13. Equipped with. Further, the optical system 11 is formed of lens elements A, B, C, and D arranged on a common optical axis 9, and the locus of the radiation ray passing through this optical system 11 is represented by a selected radiation ray bundle. The radiation that crosses the optical system 11 is transmitted through the radiation scanning system 16.
The radiation scanning system includes a first oscillating flap mirror located in the exit pupil 14.
a scanning device 17 and a second scanning device 18 in the form of a polyhedral rotor, formed by a substantially spherical concave mirror 20 located in the pupil 19 conjugate to the exit pupil 14 and forming part of the scanning system 16, and located in the configuration described above. It consists of After the scanning system 16, the real image 13 is placed on the station 24.
A device 23 and a station 24 for imaging the optical conjugate of
Radiation is collected by a detection system 22 including a radiation detector 25 located at. When the detector 25 is used as a radiation source, the detected real image formed by the device 23 is moved to a normal circular locus by the scanning device 18, and the concave mirror 20
The conjugate pupil of the form is located almost centrally at the real image locus. Due to the focal nature of the optical system 11, the concave mirror 20
can be located close to or at the real image locus, and the angular region of mirror 20 can be omitted, resulting in a compact system 10. A real image 13, which in this example is similar to the detection locus, is located on the surface of the concave mirror 20. System 10 for actual use
The radiation passing through is refracted by refracting mirrors 28, 29, and 30. The scanning device 18 is located in its own housing with gas bearings and a window 31 through which radiation passes. The detector 25 is itself located within a cryogenically cooled housing 32. The embodiment of FIG. 2 differs from optical system 11 of FIG. 1 only in optical system 40, which reduces the axial distance of system 10. The optical system 40 includes an objective lens element,
Mirror G, a mirror surface H formed on a part of the element F
and lens elements i, J, K, and L. In each of the embodiments shown in FIGS. 1 and 2, the device 23 for imaging the optical conjugate of the real image 13 is of the form of a simple transfer lens, and in the arrangement shown in FIG.
3 comprises components of the type described in British Patent No. 2115174. In this way, in FIG. 3, the transfer lens 44 is the polyhedral radiation switching rotor 4.
Station 45 where you pass by rotating 6
A real image of the detector 25 is formed at , and in this embodiment the rotor 46 is integrated with the rotor of the scanning device 18 .
The real image of the station 45 is shown in FIG.
7 and the arrangement and direction of components (mirrors) 44, 45, and 47, it becomes conjugate with the real image 13 of the optical system 60. Also, the orientation of the rotor 46 with respect to the device 18 is
The said British Patent No. 2115174 for the purpose of causing a facet detection motion on the facets of 8.
is explained in. In use, returning again to FIG. 3, the system 10 includes a mirror 48 for refracting the optical path;
Including 49, 50, 51. System 10 in Figure 3
In this case, the real image 13 formed by the optical system 60 is not positioned on the surface of the concave mirror 20 in order to prevent dust on the mirror 20 or scratches on the surface of the mirror 20 from concentrating on the detector 25. Referring to FIG. 4, the optical system 60 has its optical axis 61 shown in a straight line, and the optical system 60 is separated from the residual shadow of the system 10 shown in FIG. show. A refractive optical system 60 is formed by lens elements M, N, P, Q, and R, and element M is an objective element.
A lens element is formed from the material to match the radius of the curved surface of the refractive surface, and the space of each conjugate refractive surface of the exit pupil 14 is formed by lens elements M, N, P,
Since it is outside the aggregate of Q and R, it is easy to enter the external real image 13, and the external real image 13 maintains a curved surface concentrating on the exit pupil 14. The table shows the parameters of the optical system 60 and, for each lens element, the symbols 1, 2 designate the refractive surfaces of the lens elements, and in each case the surface closest to the objective space 12, designated for example by lens element N, is designated by the symbol 1. It is a list. According to the invention, the concave mirror 20 has a curved surface that coincides with the locus of motion of the real image 13 caused by the scanning device 17. When the mirror 20 coincides with the locus, no optical aberrations are introduced and, as mentioned above, dust particles or surface defects are clearly imaged on the detector 25. When the concave mirror 20 is concentric with this locus, the magnification of the real detector image is independent of the position of the scanning locus (in the case of a radiation source), and by rotating the scanning device 18 at a constant speed, the real image of the detector is is also arranged to move at a constant speed. Placing a concave mirror 20 between the scanning locus and the scanning device 18 naturally makes the system 10 very compact, but the F- of the radiation beam in the region of the mirror 20 and the scanning device 17 makes the design of the optical system 11 quite difficult. The number is relatively small. When the scanning locus is placed between the concave mirror 20 and the scanning device 18, the mirror 20
The F-number of the radiation beam increases, which increases the arch distance of the optical system 11 but reduces the complexity of the optical design of the optical system 11. It should be noted that there is no example of separating the scanning locus from the concave mirror 20 by setting the focal length of the concave mirror 20. This is to collimate the resulting radiation beam. If the concave mirror 20 is not exactly concentric with the scan locus (considered as a radiation source) and the magnification of the detector 25 changes along the scan locus, and if the scan speed changes, the scan pupil will Since the imaging magnification can be independently selected, certain applications may be possible. Regarding the optical system 11 described in connection with the table and FIG. 4, the material used for the lens element is
It is an infrared transmitting material, either germanium (Ge) or chalcogenide glass, manufactured and sold by Barr & Stroud and labeled BS1.
【表】【table】
第1図は本発明の輻射線の走査・検出システム
の第1実施例を示す側面図、第2図は第2実施例
の側面図、第3図は本発明の輻射線の検出システ
ムの第3実施例の一部を示す側面図、第4図は第
3図のシステムの別の一部を示すものであつて、
第3図並びに第4図は明確にするため対物レンズ
系または走査・検出系を分離して示したものであ
る。
10……輻射線の走査・検出システム、11…
…光学系、12……対物空間、13……外部実
像、14……射出ひとみ、16……走査系、17
……第1の走査装置、18……第2の走査装置、
19……共役ひとみ、20……凹面鏡、23……
共役ひとみ形成装置、22……検出系、24……
共役像、25……検出器、28,29,30……
鏡。
FIG. 1 is a side view showing a first embodiment of the radiation scanning/detection system of the present invention, FIG. 2 is a side view of the second embodiment, and FIG. 3 is a side view of the radiation detection system of the present invention. FIG. 4 is a side view showing a part of the third embodiment, and FIG. 4 is a side view showing another part of the system shown in FIG.
3 and 4 show the objective lens system or the scanning/detection system separately for clarity. 10... Radiation scanning/detection system, 11...
...Optical system, 12...Objective space, 13...External real image, 14...Exit pupil, 16...Scanning system, 17
...first scanning device, 18...second scanning device,
19...Conjugate pupil, 20...Concave mirror, 23...
Conjugate pupil forming device, 22...detection system, 24...
Conjugate image, 25...Detector, 28, 29, 30...
mirror.
Claims (1)
入射しやすい射出ひとみを備え、前記受止めた輻
射線の外部実像を形成させる光学系と、 前記光学系が放出する輻射線を走査する走査系
であつて、前記射出ひとみの光共役結像手段と、
前記射出ひとみに位置する第1走査装置と、さら
に前記共役ひとみに位置する第2走査装置とを備
え、前記第1、第2走査装置を互いに直交走査方
向に配置した走査系と、 前記走査系が放出する輻射線を検出する検出系
であつて、前記実像の光共役結像手段と前記共役
実像に位置する輻射線検出器とを備える検出系と
からなり、 前記共役ひとみ結像手段は、検出器を放射源と
する場合に第2走査装置で結像する検出器実像ロ
ーカスとほぼ同心上に位置する実質的に球形の凹
面鏡であることを特徴とする輻射線走査・検出シ
ステム。 2 第1走査装置を平面フラツプ鏡が比較的緩か
なスピードで揺動してフレーム走査する形態に
し、一方第2走査装置をロータが比較的高スピー
ドで回転してライン走査する形態にし、前記ロー
タは、ロータの回転軸に対し通常ほぼ垂直であり
ロータ周囲に一体化した平面反射フアセツトを有
している特許請求の範囲第1項記載のシステム。 3 共役実像結像手段を簡素なトランスフアレン
ズで構成し、レンズと前記共役実像結像手段によ
り結像する検出実像との中間に、第2走査装置を
設置する特許請求の範囲第1項または第2項に記
載のシステム。 4 共役実像結像手段をトランスフアレンズと、
前記トランスフアレンズで結像する検出実像に実
質的に設置する輻射線切替ロータと、凹面鏡形態
にした実像中継装置で構成し、第2走査装置を実
像中継装置とここに結像する中継実像との中間に
設置する特許請求の範囲第1項又は第2項に記載
のシステム。 5 共役ひとみ形成手段により結像する検出ロー
カスの実像は射出ひとみを中心とする曲面を備
え、第1走査装置により結像する走査ローカスも
また射出ひとみを中心とし、これにより軸対称光
学系が、射出ひとみを中心とする視野曲面を持つ
外部実像を利用しうる特許請求の範囲第1項ない
し第4項のいずれかの項に記載のシステム。 6 共役ひとみ形成手段により結像する検出実像
ローカスと、第1走査装置により結像する走査ロ
ーカスと、光学系の外部実像は前記各ローカスの
妥協値に見合つた視野曲面を持つ特許請求の範囲
第1項ないし第4項のいずれかの項に記載のシス
テム。 7 光学系をレンズエレメントM,N,P,Q,
Rで形成し、エレメントMは対称エレメントであ
り、光学系のパラメータを表に説明する特許請
求の範囲第1項に記載のシステム。[Claims] 1. An optical system that receives scanning radiation,
an optical system that is provided with an exit pupil that is easy to enter and forms an external real image of the received radiation; and a scanning system that scans the radiation emitted by the optical system, and an optical conjugate imaging means for the exit pupil. and,
a scanning system comprising a first scanning device located in the exit pupil and a second scanning device further located in the conjugate pupil, the first and second scanning devices being arranged in mutually orthogonal scanning directions; a detection system for detecting radiation emitted by a detector, the detection system comprising an optical conjugate imaging means for the real image and a radiation detector located at the conjugate real image, the conjugate pupil imaging means comprising: A radiation scanning and detection system characterized in that it is a substantially spherical concave mirror located substantially concentrically with a detector real image locus imaged by a second scanning device when the detector is used as a radiation source. 2. The first scanning device is configured such that a plane flap mirror swings at a relatively slow speed to perform frame scanning, while the second scanning device is configured such that a rotor rotates at a relatively high speed to perform line scanning, and the rotor rotates at a relatively high speed to perform line scanning. 2. The system of claim 1, wherein the rotor has a planar reflective facet generally perpendicular to the axis of rotation of the rotor and integral with the circumference of the rotor. 3. The conjugate real image forming means is constituted by a simple transfer lens, and a second scanning device is installed between the lens and the detected real image formed by the conjugate real image forming means. The system described in Section 2. 4. The conjugate real image forming means is a transfer lens,
A radiation switching rotor substantially installed on the detection real image formed by the transfer lens, and a real image relay device in the form of a concave mirror, and the second scanning device is configured to connect the real image relay device and the relay real image formed here. The system according to claim 1 or 2, which is installed intermediately. 5. The real image of the detection locus imaged by the conjugate pupil forming means has a curved surface centered on the exit pupil, and the scanning locus imaged by the first scanning device is also centered on the exit pupil, whereby the axisymmetric optical system 5. The system according to any one of claims 1 to 4, which can utilize an external real image having a field curved surface centered on the exit pupil. 6. The detection real image locus imaged by the conjugate pupil forming means, the scanning locus imaged by the first scanning device, and the external real image of the optical system have a visual field curved surface commensurate with the compromise value of each locus. The system according to any one of Items 1 to 4. 7 Optical system with lens elements M, N, P, Q,
2. System according to claim 1, in which the element M is a symmetrical element and the parameters of the optical system are described in a table.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8607151 | 1986-03-22 | ||
GB8607151 | 1986-03-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62265614A JPS62265614A (en) | 1987-11-18 |
JPH0466486B2 true JPH0466486B2 (en) | 1992-10-23 |
Family
ID=10595073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62059094A Granted JPS62265614A (en) | 1986-03-22 | 1987-03-16 | Radiant scanning/detection system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS62265614A (en) |
BR (1) | BR8701268A (en) |
ES (1) | ES2003009A6 (en) |
GB (1) | GB2195466B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244113A (en) * | 1989-03-17 | 1990-09-28 | Nec Corp | Optical scanner |
-
1987
- 1987-03-03 GB GB8704983A patent/GB2195466B/en not_active Expired
- 1987-03-16 JP JP62059094A patent/JPS62265614A/en active Granted
- 1987-03-20 BR BR8701268A patent/BR8701268A/en unknown
- 1987-03-20 ES ES8700783A patent/ES2003009A6/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
ES2003009A6 (en) | 1988-10-01 |
JPS62265614A (en) | 1987-11-18 |
GB2195466B (en) | 1989-11-15 |
GB8704983D0 (en) | 1987-04-08 |
GB2195466A (en) | 1988-04-07 |
BR8701268A (en) | 1987-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4240707A (en) | All-reflective three element objective | |
US5168386A (en) | Flat field telecentric scanner | |
JPH06273671A (en) | High-speed reflecting system, which has wide angle and returns large, clear image | |
JPS61196222A (en) | Polyhedron scanner | |
WO2009024969A1 (en) | Optical device for projection of optical beams | |
US6455830B1 (en) | Scanning sensor system with multiple rotating telescope subassemblies | |
US4210810A (en) | Radiation scanning system | |
JPH03148044A (en) | Spectroscopic measuring apparatus using microscope method | |
JPS61251809A (en) | Automatic focus adjusting device | |
US3765743A (en) | Optical energy detection system including image plane scanning system | |
EP1145065B1 (en) | Ultra-wide field of view concentric scanning sensor system | |
US4912321A (en) | Radiation scanning system with pupil control | |
US4082416A (en) | Radiation scanning system with two scanners rotating about parallel axes | |
US4636044A (en) | Optical system for viewing a scene | |
JPH0519195A (en) | Optical device | |
JPH0466486B2 (en) | ||
US4674826A (en) | Optico-mechanical scanning device | |
US5239404A (en) | Large angle reflective scanning system and method | |
US4275949A (en) | Method of and means for scanning images | |
US3934137A (en) | Optical scanning device | |
JPH05228673A (en) | Laser beam machine | |
US4156142A (en) | Optical-mechanical scanner mirror for an infrared viewing system | |
JPH09218101A (en) | Thermal imager reference system | |
Taylor | Characteristics of a New Compact Video Rate Optical Scanner (CVROS) | |
JPH1020235A (en) | Optical scanning device |