[go: up one dir, main page]

JPS62262672A - Oscillatory wave motor - Google Patents

Oscillatory wave motor

Info

Publication number
JPS62262672A
JPS62262672A JP61106003A JP10600386A JPS62262672A JP S62262672 A JPS62262672 A JP S62262672A JP 61106003 A JP61106003 A JP 61106003A JP 10600386 A JP10600386 A JP 10600386A JP S62262672 A JPS62262672 A JP S62262672A
Authority
JP
Japan
Prior art keywords
phase
electrostrictive element
wave
electrodes
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61106003A
Other languages
Japanese (ja)
Inventor
Ichiro Okumura
一郎 奥村
Takayuki Tsukimoto
貴之 月本
Takuo Okuno
奥野 卓夫
Kazuhiro Izukawa
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61106003A priority Critical patent/JPS62262672A/en
Publication of JPS62262672A publication Critical patent/JPS62262672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enhance the generation efficiency of a traveling wave by providing a regulating electrode for regulating a standing wave. CONSTITUTION:Insulated A-phase electrodes A1-A5 and B-phase electrodes B1-B5 are provided, and frequency voltages having phases displaced at 90 deg. are applied to the electrodes to generate a traveling vibration. When the node positions of first and second standing waves generated in the A and B phases are displaced due to irregular rigidity of an electrostrictive element 20 or reso nance frequencies are displaced, regulating electrodes C1-C5 are provided to generate suitable standing waves. The electrodes C1-C5 are selected as required to be opened or shortcircuited.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本願発明は複数の定在波の合成により進行性振動波を発
生させる撮動波モータに関し、特にその夫々の定在波の
調整に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a photographic wave motor that generates a progressive vibration wave by combining a plurality of standing waves, and particularly relates to the adjustment of each of the standing waves. be.

〈従来技術〉 振動波モータは例えば特開昭58−1118682号公
報にも開示されているように1歪素子に周波電圧を印加
したときに生ずる撮動運動を回転運動又は−次元運動に
変換するものである。従来のM &nモータに比べて巻
線を必要としないため構造が簡単で小型になり、低速回
転時にも高トルクが得られ、また慣性回転が少ないとい
う利点があるため最近注目されている。最近発明された
進行性振動波により駆動する振動波モータの動作原理は
次のようなものである。
<Prior art> A vibration wave motor converts the photographing motion that occurs when a frequency voltage is applied to one strain element into a rotational motion or a -dimensional motion, as disclosed in Japanese Patent Laid-Open No. 58-1118682, for example. It is something. Compared to conventional M&N motors, it has attracted attention recently because it does not require windings, has a simpler and more compact structure, can provide high torque even when rotating at low speeds, and has the advantage of having less inertial rotation. The operating principle of the recently invented vibration wave motor driven by progressive vibration waves is as follows.

第1図はこの振動波モータの構成を各要素別に分解して
示している。
FIG. 1 shows the configuration of this vibration wave motor broken down into individual elements.

ベースとなる固定体5の中心円筒部5aに振動吸収体4
・吸収体4側に電歪素子3を接着した金属の環状振動体
2・移動体lの順に嵌め込まれており、固定体5・吸収
体4・電歪素子3・振動体2は各々相互に回転しないよ
うに取付けられている。振動体2に対し移動体1は自重
又は図示しない付勢手段で圧接されモータの一体性を保
っている。
A vibration absorber 4 is attached to the central cylindrical portion 5a of the fixed body 5 that serves as the base.
- A metal annular vibrating body 2 with an electrostrictive element 3 bonded to the absorbing body 4 side and a moving body l are fitted in this order, and the fixed body 5, absorbing body 4, electrostrictive element 3, and vibrating body 2 are mutually connected to each other. It is installed so that it does not rotate. The movable body 1 is pressed against the vibrating body 2 by its own weight or a biasing means (not shown) to maintain the integrity of the motor.

複数の電歪素子3aは振動波の波長λの2分の1のピッ
チで配列され、複数の電歪素子3bも同じくλ/2のピ
ッチで配列されている。なJ5電歪素子3a(又は3b
)は複数並べずに単体の素子にし、それを前記ピッチに
分極処理しても良い。
The plurality of electrostrictive elements 3a are arranged at a pitch of 1/2 of the wavelength λ of the vibration wave, and the plurality of electrostrictive elements 3b are also arranged at a pitch of λ/2. J5 electrostrictive element 3a (or 3b
) may be made into a single element without arranging a plurality of them, and the element may be polarized to the above-mentioned pitch.

電歪素子3aと3bの相互ピッチは(n0+t/4)λ
(但しn。=0.1.2.3.、、)ずれた位相差的配
列がなされる。各電歪素子3aの吸収体4側にはリード
線11諷が接続され、各電歪素子3bにはリード線11
bが接続され、その各々は交流電源6aと90°位相器
6bに接続される(第2図参照)。また金属の振動体2
にはリード線11cが接続され交流電源6aと接続され
る。
The mutual pitch between electrostrictive elements 3a and 3b is (n0+t/4)λ
(However, n.=0.1.2.3., .) A shifted phase difference arrangement is made. A lead wire 11 is connected to the absorber 4 side of each electrostrictive element 3a, and a lead wire 11 is connected to each electrostrictive element 3b.
b are connected, and each of them is connected to an AC power source 6a and a 90° phase shifter 6b (see FIG. 2). Also, the metal vibrating body 2
A lead wire 11c is connected to the AC power source 6a.

振動体1の摩擦部1aは摩擦力を強くしかつ摩耗を少な
くするように硬質ゴム等で形成され振動体2に圧接され
る。
The friction portion 1a of the vibrating body 1 is made of hard rubber or the like and is pressed against the vibrating body 2 so as to increase the frictional force and reduce wear.

第2図は上記モータの振動波の発生状態を示すもので、
金属の振動体2に接着された電歪素子3a及び3bは、
説明の便宜上、隣接して現わされているが、上記λ/4
の位相ずれの条件を満足しているので第1図に示すモー
タの電歪素子3a及び3bの配置と実質的に等価なもの
である。各電歪素子3a及び3b中の■は交流電圧が正
側の周期にあるとき伸び、eは同じく正側の周期で縮む
ことを示している。
Figure 2 shows the generation of vibration waves in the motor.
The electrostrictive elements 3a and 3b bonded to the metal vibrating body 2 are
For convenience of explanation, they are shown adjacent to each other, but the above λ/4
Since it satisfies the phase shift condition, the arrangement is substantially equivalent to the arrangement of the electrostrictive elements 3a and 3b of the motor shown in FIG. In each of the electrostrictive elements 3a and 3b, ■ indicates that the AC voltage expands when the cycle is on the positive side, and e indicates that the electrostrictive element also contracts when the cycle is on the positive side.

金属振動体2を電歪素子’3 a ′ELび3bの一方
の電極にし、電歪素子3aには交流電源6aからV=V
、sinωtの交流電圧を印加し、電歪素子3bには交
流電源6aから90°位相器6bを通してλ/4位相の
ずれたV=V0 (ωt±π/2)の交流電圧を印加す
る。式中の十又は−は移動体1 (本図において省略)
を動かす方向によって位相器6bで切り換えられるもの
で、+側に切り換えると+90°位相がずれ正方向に動
き、−側に切り換えると一90°位相がずれ逆方向に動
く。いま−側に切り換えてあり電歪素子3bにはV=V
、 sin  (ωt−W/2)の電圧が印加されると
する。電歪素子3aだけが単独で電圧■=■。sinω
tにより振動した場合は同図(a)に示すような第1の
定在波による振動が起こり、電歪素子3bだけが単独で
電圧V=V、5in(ωt−π/2)により振動した4
′合は(b)に示すような第2の定在波による振動が起
こる・上記位相のずれた二つの交流を同時に各々の電歪
素子3aと3bに印加すると振動波は進行性になる。(
イ)は時間t=2nπ/ω、(ロ)はt=π/2ω+2
nπ/ω、(ハ)はt=π/ω+2nπ/ω、(ニ)は
t=2π/2ω+2nπ/ωの時のもので、このような
振動波の波面はX方向に進行する。
The metal vibrating body 2 is used as one electrode of the electrostrictive elements '3a'EL and 3b, and the electrostrictive element 3a is supplied with V=V from the AC power source 6a.
, sinωt are applied to the electrostrictive element 3b, and an AC voltage of V=V0 (ωt±π/2) with a phase shift of λ/4 is applied from the AC power source 6a through the 90° phase shifter 6b. 10 or - in the formula is moving object 1 (omitted in this figure)
The phase shifter 6b is used to switch the phase shifter 6b depending on the direction in which it is moved.When switched to the + side, the phase shifts by +90 degrees and moves in the positive direction, and when switched to the - side, the phase shifts by 190 degrees and moves in the opposite direction. It is now switched to the - side, and V=V in the electrostrictive element 3b.
, sin (ωt-W/2) are applied. Only the electrostrictive element 3a has voltage ■=■. sinω
When the electrostrictive element 3b vibrates due to t, vibration occurs due to the first standing wave as shown in FIG. 4
', vibrations due to the second standing wave as shown in (b) occur. When the above-mentioned two phase-shifted alternating currents are simultaneously applied to each electrostrictive element 3a and 3b, the vibration wave becomes progressive. (
A) is time t=2nπ/ω, (b) is t=π/2ω+2
nπ/ω, (c) is when t=π/ω+2nπ/ω, and (d) is when t=2π/2ω+2nπ/ω, and the wavefront of such a vibration wave advances in the X direction.

該進行波により移動体が摩擦駆動される。上記の振動波
モータでは単体の電歪素子を夫々振動体に接合したが、
エンドレス構造のリング状の電歪素子を分極処理しても
同様である。すなわち分極処理タイプの電歪素子では、
例えば、第3図のように(+)部と(−)部は夫々分極
の向きを示しており、1枚の電歪素子20の円周の長さ
は(+)部と(−)部の和によって定まる長さの自然倍
数で同図では6倍分の円周をもっている。
The moving body is frictionally driven by the traveling wave. In the above-mentioned vibration wave motor, single electrostrictive elements are connected to each vibrating body.
The same effect can be obtained even if a ring-shaped electrostrictive element having an endless structure is polarized. In other words, in a polarization type electrostrictive element,
For example, as shown in FIG. 3, the (+) part and (-) part indicate the direction of polarization, respectively, and the length of the circumference of one electrostrictive element 20 is the (+) part and (-) part. It is a natural multiple of the length determined by the sum of , and in the figure it has a circumference six times as large.

同図(b)では電歪素子20の土面(振動体側)のTL
極20cが共通の電位になる様全周に渡っており振動体
に接合され、同図(c)に於いては電歪素子20の下側
(振動吸収体側)の電極パターン20d、20e、20
f、20gを示している。20dは同図(a)の分極処
理部20aに、20eは同図(a)の分極処理部20b
に対応する位置に設けられる。20fは電歪素子の振動
を検知するための検出部電極で、図示はしなかったが同
様に電歪素子20は分8i処理されている。20gは2
0eと同電位で接地され、前記電歪素子の下側で不図示
のリード線に接続され、各々対応する分極処理部20a
、20bも進行波を発生させるために90’の位相差を
もった交流電圧が印加される。
In the same figure (b), the TL of the soil surface (vibrating body side) of the electrostrictive element 20 is
The poles 20c extend around the entire circumference so as to have a common potential and are connected to the vibrating body, and in FIG.
f, 20g is shown. 20d is the polarization processing section 20a in the same figure (a), and 20e is the polarization processing section 20b in the same figure (a).
provided at a position corresponding to Reference numeral 20f denotes a detection electrode for detecting vibrations of the electrostrictive element, and although not shown, the electrostrictive element 20 is similarly subjected to the 8i treatment. 20g is 2
0e and is connected to a lead wire (not shown) below the electrostrictive element, and is connected to the corresponding polarization processing section 20a.
, 20b are also applied with an AC voltage having a phase difference of 90' to generate traveling waves.

一般に、この種のモータの共振周波数は環境温度等によ
り変化するため、電歪素子の一部分を検出部として、振
動によって生ずる逆起電力を検知して、撮動波モータが
常に効率良く駆動する様制御a11されるものである。
Generally, the resonant frequency of this type of motor changes depending on the environmental temperature, etc., so a part of the electrostrictive element is used as a detection part to detect the back electromotive force generated by vibration, so that the imaging wave motor can be driven efficiently at all times. This is controlled by a11.

この逆起電力は非常にIトさいもので、これを正確に積
卸するには非常に大きな出力インピーダンスを用いるも
のである。このため検出部20fの電歪素子は事実上電
気的に開放状態となる。これに対して駆動分極処理部2
0a、20bの電歪素子は比較的小さな人力インピーダ
ンスで駆動されるもので、かかる状態の下、つまりは検
出部の電歪素子を開放状態にしておくと、振動により生
ずる逆起電力のため電極に電荷がチャージされたと等価
なものにより電歪素子20自身の振動を妨げる力が作用
し、等測的に検出部20fは機械的剛性が他の部分に比
べて増加することになる。
This back electromotive force is very small, and a very large output impedance is used to accurately load and unload it. For this reason, the electrostrictive element of the detection section 20f is virtually in an electrically open state. On the other hand, the driving polarization processing section 2
The electrostrictive elements 0a and 20b are driven by relatively small human impedance, and under such conditions, that is, if the electrostrictive elements of the detection part are left open, the electrodes will be damaged due to the back electromotive force generated by vibration. A force that is equivalent to being charged with electric charge acts on the electrostrictive element 20 to prevent its own vibration, and the mechanical rigidity of the detection part 20f is isometrically increased compared to other parts.

あるいは電歪素子の製造工程上や、諸条件により、電歪
素子全体に均一な剛性にすることが困難であり、分極処
理部20aと20bの剛性の差が生じ、次の問題点が生
ずる。
Alternatively, due to the manufacturing process or various conditions of the electrostrictive element, it is difficult to make the entire electrostrictive element uniform in rigidity, and a difference in rigidity occurs between the polarized parts 20a and 20b, resulting in the following problem.

つまり、定在波の節は剛性の高い箇所に出来やすい現象
があり、つまり電歪素子に剛性の差があると定在波の節
位置が剛性の高い箇所に移る傾向があると同時に、第1
の定在波と第2の定在波の共振周波数が一致しなくなる
といった問題があった。そこで第4図は駆動用分極処理
部20a。
In other words, there is a phenomenon in which nodes of standing waves tend to form at locations with high rigidity.In other words, if there is a difference in stiffness in the electrostrictive element, the node position of standing waves tends to shift to locations with high rigidity. 1
There was a problem in that the resonant frequencies of the first standing wave and the second standing wave did not match. Therefore, FIG. 4 shows a driving polarization processing section 20a.

20bの夫々の周波数に対するインピーダンス特性を示
しており、Aは分極処理部20aの周波数変化によるイ
ンピーダンス特性で、Bは分極処理部20bの周波数変
化によるインピーダンス特性である。夫々インピーダン
スの最も低い箇所が夫々の分極処理部20a、20bの
共振点で、分極処理部20aの共振周波数はfAであり
、分極処理部20bの共振周波数はf、である。つまり
電歪素子の剛性等の不均一により第1の定在波と第2の
定在波の共振周波数がずれ、第1と第2の定在波の合成
による進行波の発生効率が低下する欠点があった。
20b shows impedance characteristics with respect to each frequency, where A is an impedance characteristic due to a frequency change of the polarization processing section 20a, and B is an impedance characteristic due to a frequency change of the polarization processing section 20b. The lowest impedance points are the resonance points of the respective polarization processing sections 20a and 20b, and the resonance frequency of the polarization processing section 20a is fA, and the resonance frequency of the polarization processing section 20b is f. In other words, due to the non-uniformity of the stiffness of the electrostrictive element, the resonant frequencies of the first standing wave and the second standing wave deviate, and the efficiency of generating the traveling wave by combining the first and second standing waves decreases. There were drawbacks.

〈発明の目的〉 本発明は上記の欠点を除去することを目的とし、進行波
を発生させる第1と第2の定在波の夫々の共振周波数を
略一致すべく電歪素子に夫々の共振周波数を調整する調
整電極を設け、第1と第2の定在波を調整するものであ
る。
<Object of the Invention> The present invention aims to eliminate the above-mentioned drawbacks, and has the purpose of eliminating the above-mentioned drawbacks. An adjustment electrode for adjusting the frequency is provided to adjust the first and second standing waves.

〈実施例〉 第5図は本発明の振動波モータに適用される電気−機械
エネルギー変換素子の電極構成を示しており、電歪素子
、圧電素子、とエラ素子等でここでは電歪素子を使う。
<Example> Fig. 5 shows the electrode configuration of the electro-mechanical energy conversion element applied to the vibration wave motor of the present invention. use.

第1の定在波を発生させる電歪素子群A相と第2の定在
波を発生させる電歪素子群B相に90”位相のずれた周
波電圧を印加することにより進行性の振動波が発生する
ものである。ここでA、−A、およびB、−B、は夫々
絶縁されたA相電極、B相電極を示す。NAはA相によ
り発生される第1の定在波の節位置を示し、NBはB相
により発生される第2の定在波の節位置を示している。
A progressive vibration wave is generated by applying frequency voltages with a phase difference of 90" to the electrostrictive element group A phase that generates the first standing wave and the electrostrictive element group B phase that generates the second standing wave. is generated.Here, A, -A, and B, -B indicate the insulated A-phase electrode and B-phase electrode, respectively.NA is the first standing wave generated by the A-phase. NB indicates the node position of the second standing wave generated by the B phase.

該第1と第2の定在波の節位置が電歪素子20の剛性の
不均一によりずれたり共振周波数がずれた場合に、適切
な定在波をつくるための調整用7rj、極がC1〜C5
であり、夫々の電極箇所の電歪素子は分極処理され絶縁
されており、調整前及び調整不要時は開放状態にさせて
おき、A相、B相の定在波の節位置あるいは共振周波数
が異なる場合には、調整用電極C,−C5を必要に応じ
て選択し、開放あるいは短絡させる。
When the node positions of the first and second standing waves deviate due to non-uniform rigidity of the electrostrictive element 20 or the resonance frequency deviates, the adjustment 7rj, whose pole is C1, is used to create an appropriate standing wave. ~C5
The electrostrictive elements at each electrode location are polarized and insulated, and are left open before adjustment and when adjustment is not required, so that the node positions or resonance frequencies of the A-phase and B-phase standing waves If they are different, the adjustment electrodes C and -C5 are selected as necessary and opened or shorted.

つまり、振動により分極処理された、調整用電極付近に
生ずる逆起電力のためのチャージされた電荷を適宜に蓄
積あるいは放電させることで前述した様に、検出部20
fの電荷のチャージあるいは、製作工程で、電歪素子の
剛性の不均一を適宜に補正することが可能となるもので
、第5図の様な正規の位置に、夫々の定在波の節または
腹の位置がくる様、あるいは夫々の共振周波数を一致さ
せる様にして進行性振動波を効率よく発生することが出
来るものである。
In other words, as described above, the detection unit 2
It is possible to appropriately correct the non-uniformity of the stiffness of the electrostrictive element by charging the electric charge of f or during the manufacturing process. Alternatively, progressive vibration waves can be efficiently generated by aligning the antinode positions or by matching the respective resonance frequencies.

さらに詳しく説明すると、A相定在波の共振周波afA
と8相の定在波の共振周波数foとの差、つまりfA−
f、の差が犬のとき調整すべき電極はA相振動させたと
きの振動波の腹の部分N、である。即ち電極C5または
必要に応じて電極C3に近い電極を接地すれば、fAが
低下し、f、と略一致する様調整できる。また、fA−
第8の差が小さいとき調整すべき電極はA相振動により
1辰動波の節の部分即ち電極C1または必要に応じて電
Ji C+ に近い電極を接地すると第6が低下し、f
、と略一致することができる様になつた。この実施例に
於いては電歪素子を用いたが、他の61歪素子等でもと
同様である。また、ここで調整用電極の数、形状につい
ては限定するものではない。
To explain in more detail, the resonance frequency afA of the A-phase standing wave
and the resonant frequency fo of the 8-phase standing wave, that is, fA-
When the difference in f is small, the electrode to be adjusted is the antinode part N of the vibration wave when A-phase vibration is performed. That is, by grounding the electrode C5 or, if necessary, an electrode close to the electrode C3, fA can be lowered and adjusted to substantially match f. Also, fA-
When the 8th difference is small, the electrode to be adjusted is the part of the node of the 1st wave due to A-phase vibration, that is, the electrode C1, or if necessary, if the electrode close to the electric field Ji C+ is grounded, the 6th difference decreases, and f
, it became possible to almost match. Although an electrostrictive element was used in this embodiment, other 61 strain elements or the like may be used in the same manner. Further, the number and shape of the adjustment electrodes are not limited here.

〈効 果〉 以上説明したように電歪素子に調整電極を設は各電歪素
子群(実施例ではA相、B相)で共振周波数を与える周
波電圧の周波数に差が犬のとき、高い周波数の振動され
る定在波の腹の部分に相当する側の調整電極を接地する
ことによりまた逆に差か少ないとき節の部分に相当する
側の調整748iを接地することにより、高い方の周波
数を低下させ、低い方と略一致させることにより振動波
モータの駆動効率を簡単に向上できる。
<Effect> As explained above, when the adjustment electrodes are provided on the electrostrictive elements, when there is a large difference in the frequency of the frequency voltage that gives the resonant frequency in each electrostrictive element group (phase A and phase B in the example), the difference in frequency is high. By grounding the adjustment electrode on the side corresponding to the antinode part of the standing wave whose frequency is vibrated, and conversely, when the difference is small, by grounding the adjustment electrode 748i on the side corresponding to the node part, the higher The drive efficiency of the vibration wave motor can be easily improved by lowering the frequency and making it approximately equal to the lower frequency.

しかも、調整電極を接地するので確実に調整でき、振動
、耐久にも強く長寿命で信頼性の高い振動波を提供する
ことが可能となった。
Moreover, since the adjustment electrode is grounded, adjustment can be made reliably, and it is possible to provide vibration waves that are resistant to vibration and durability, have a long life, and are highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動波モータの構造の分解図。 第2図は振動波モータの動作原理図。 第3図は電気−機械エネルギー変換素子の分極あるいは
電極構造を示す図。 第4図は電気−機械エネルギー変換素子の周波数に対す
るインピーダンス特性を示す図。 第5図は本願発明の調整用電極を設けた電気−機械エネ
ルギー変換素子の電極構造を示す図。 特許出願人  キャノン株式会社 第40 Ofe fAFaA* f
Figure 1 is an exploded view of the structure of a vibration wave motor. Figure 2 is a diagram of the operating principle of a vibration wave motor. FIG. 3 is a diagram showing the polarization or electrode structure of the electro-mechanical energy conversion element. FIG. 4 is a diagram showing impedance characteristics with respect to frequency of an electro-mechanical energy conversion element. FIG. 5 is a diagram showing the electrode structure of an electro-mechanical energy conversion element provided with the adjustment electrode of the present invention. Patent applicant Canon Co., Ltd. No. 40 Ofe fAFaA* f

Claims (1)

【特許請求の範囲】[Claims]  複数の分極された電気−機械エネルギー変換素子に周
波電圧を印加し、複数の定在波を発生させ、該定在波の
合成により進行性振動波を発生させ、該進行性振動波に
より移動体を摩擦駆動させる振動波モータに於て、前記
定在波調整すべく、調整用電極を設けたことを特徴とす
る振動波モータ。
A frequency voltage is applied to a plurality of polarized electro-mechanical energy conversion elements to generate a plurality of standing waves, a progressive vibration wave is generated by combining the standing waves, and a moving object is generated by the progressive vibration wave. 1. A vibration wave motor for frictionally driving a vibration wave motor, characterized in that an adjustment electrode is provided to adjust the standing wave.
JP61106003A 1986-05-08 1986-05-08 Oscillatory wave motor Pending JPS62262672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106003A JPS62262672A (en) 1986-05-08 1986-05-08 Oscillatory wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106003A JPS62262672A (en) 1986-05-08 1986-05-08 Oscillatory wave motor

Publications (1)

Publication Number Publication Date
JPS62262672A true JPS62262672A (en) 1987-11-14

Family

ID=14422512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106003A Pending JPS62262672A (en) 1986-05-08 1986-05-08 Oscillatory wave motor

Country Status (1)

Country Link
JP (1) JPS62262672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369470A (en) * 1986-09-05 1988-03-29 Matsushita Electric Ind Co Ltd Ultrasonic wave motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369470A (en) * 1986-09-05 1988-03-29 Matsushita Electric Ind Co Ltd Ultrasonic wave motor

Similar Documents

Publication Publication Date Title
JPS59117473A (en) Vibration wave motor
JPH0477553B2 (en)
US4339682A (en) Rotative motor using a piezoelectric element
JPH05949B2 (en)
KR20090054728A (en) Toroidal Piezoelectric Ultrasonic Resonator and Piezoelectric Ultrasonic Rotating Motor
JPS62262675A (en) Oscillatory wave motor
US7382080B2 (en) Piezoelectric ultrasonic motor driver
JPH0474952B2 (en)
JPS62262672A (en) Oscillatory wave motor
JPS622869A (en) Supersonic motor drive device
JP2532425B2 (en) Ultrasonic motor
JP2507083B2 (en) Ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPS62262673A (en) Oscillatory wave motor
JPS62247771A (en) Oscillatory-wave motor
JP2723122B2 (en) Ultrasonic motor
JPH03135382A (en) Oscillatory wave motor
JPS63136983A (en) Vibration wave motor
JPS60207466A (en) Supersonic motor
JP2506859B2 (en) Ultrasonic motor
JPH09215352A (en) Speed controller of ultrasonic motor
JPS60170471A (en) Vibration wave motor