[go: up one dir, main page]

JPS62247771A - Oscillatory-wave motor - Google Patents

Oscillatory-wave motor

Info

Publication number
JPS62247771A
JPS62247771A JP61089705A JP8970586A JPS62247771A JP S62247771 A JPS62247771 A JP S62247771A JP 61089705 A JP61089705 A JP 61089705A JP 8970586 A JP8970586 A JP 8970586A JP S62247771 A JPS62247771 A JP S62247771A
Authority
JP
Japan
Prior art keywords
phase
vibration
voltage
electrode
energy conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61089705A
Other languages
Japanese (ja)
Other versions
JPH0828986B2 (en
Inventor
Kazuhiro Izukawa
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61089705A priority Critical patent/JPH0828986B2/en
Publication of JPS62247771A publication Critical patent/JPS62247771A/en
Publication of JPH0828986B2 publication Critical patent/JPH0828986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve drive efficiency by providing oscillation-detecting electrodes so that each electrode lies between an antinode and a node of any of A and B phase standing waves and by driving the electrodes in such manner that there exists a required phase relation between them. CONSTITUTION:A stator is composed of a ring-shaped diaphragm 1 and a piezoe lectric element plate 2 consisting of piezoelectric ceramics and so on secured on one side of said diaphragm, which element plate is provided with electrodes Al-B2 relative to first group (A phase) and second group (B phase) piezoelectric elements respectively and with an electrode Sl relative to an oscillation-detecting piezoelectric element (S phase). Said A phase electrodes A1-A2 and B phase electrodes Bl-B2 are respectively arranged at a pitch of 1/2 wavelength and these A and B phase electrodes are formed so as to deviate from each other by 90 deg. (l/4 wavelength) in a positional phase. Also, an oscillation at the S phase center point is made to have + or -45 deg. or + or -135 deg. time phase difference from an oscillation at the center point of the A phase electrode A1 according to the direction of rotation of a motor. In this way, it is made possible to improve a phase detection sensitivity.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は進行性振動波により移動体を摩擦駆動する振動
波モータに係り、特に該振動波を安定な共振状態にて発
生させる九めの駆動回路の振動検出用の機械電気変換素
子の配置と大きさに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a vibration wave motor that frictionally drives a moving body using progressive vibration waves, and particularly relates to a vibration wave motor that generates vibration waves in a stable resonance state. This paper relates to the arrangement and size of a mechano-electrical transducer element for detecting vibration in a circuit.

〔発明の背景〕[Background of the invention]

進行性振動波を利用して移動体を摩擦駆動する撮動波モ
ータは最近実用化されつつあり、その原理的概要は下記
のようなものである。
Photographic wave motors that use progressive vibration waves to frictionally drive moving objects have recently been put into practical use, and the basic principle thereof is as follows.

全周長が成る長さλの整数倍であるような弾性材料製の
リング状の振動板の片面に、周方向に配列された二群の
複数個の圧電素子を固着したものをステータとする。こ
れら圧電素子は各群内ではのずれがあるように配置され
てい石。圧電素子の両群には夫々電極膜が施さノ1でい
る。いずれかの一群のみに交流電圧を印加すれば、上記
振動板にλ は、該群の各圧電素子の中央点およびそこからiおきの
点が腹の位置、また該層の位置間の中央点が節の位置で
あるような曲げ振動の定在波(波長λ)が該振動板の全
周に亘って発生する。他の一群のみに交流電圧を印加す
れば、同様に定在波が生ずるが、その腹および節の位置
は前記定在波に対して区ずれたものとなる。両群に、周
波数が同じて且つ時間的位相差が1の交流電圧を同時に
印加すると、両者の定在波の合成の結果、振動板には周
方向に進行する曲げ振動の進行波(波長λ)が発生し、
このとき、厚みを有する上記振動板の他面上の各点は一
種の楕円運動をする。よって、振動板の該他面にロータ
としてリング状移動体を加圧接触させておけば、該移動
体は振動板から周方向の摩擦力を受け、回転駆動される
。その回転方向は、両圧電素子群に印加する交流電圧の
位相差を正負に切換えることにより、反転できる。以上
がこの種の振動波モータの原理的概要である。
The stator is made by fixing two groups of piezoelectric elements arranged in the circumferential direction to one side of a ring-shaped diaphragm made of an elastic material whose total circumferential length is an integral multiple of the length λ. . These piezoelectric elements are arranged so that there is a shift within each group. Both groups of piezoelectric elements are each provided with an electrode film. If an AC voltage is applied to only one of the groups, λ on the diaphragm will be the center point of each piezoelectric element in the group and the antinode position at every i point from there, and the center point between the positions of the layers. A standing wave (wavelength λ) of bending vibration is generated around the entire circumference of the diaphragm, where is the position of the node. If an AC voltage is applied only to the other group, a standing wave will be generated in the same way, but the positions of its antinodes and nodes will be different from the standing wave. When an AC voltage with the same frequency and a temporal phase difference of 1 is simultaneously applied to both groups, as a result of the synthesis of both standing waves, the diaphragm has a progressive wave of bending vibration (wavelength λ) that advances in the circumferential direction. ) occurs,
At this time, each point on the other thick surface of the diaphragm moves in a kind of ellipse. Therefore, if a ring-shaped moving body as a rotor is brought into pressure contact with the other surface of the diaphragm, the moving body receives circumferential frictional force from the diaphragm and is rotationally driven. The direction of rotation can be reversed by switching the phase difference between the AC voltages applied to both piezoelectric element groups to positive or negative. The above is an overview of the principle of this type of vibration wave motor.

この種の振動波モータにおいて、上記二群の圧電素子(
これを駆動用圧電素子と呼ぶ)の他に、振動検出用圧電
素子を振動板に固着し、該検出用圧電素子の検出出力に
応じて駆動用圧電素子に印加する交流電圧の周波数を自
動的に共振周波数となして、振動波モータを最も効率良
く駆動させることができる駆動回路が本出願人により特
願昭59−276962号として提案されている。しか
しながら、この提案に於ては振動検出用圧電素子は、い
ずれか一群の駆動用圧電素子の位置と同じ空間的位相の
位置に固着されていた。すなわち、該−λ 群の駆動用圧電素子の一区画の中央点から1の整数倍だ
けずれた位置に振動検出用圧電素子の中央点が存するよ
うに固着されていた。しかし、このような位置に設けら
れた振動検出用圧電素子には他の振動駆動用周波電圧の
漏れ等による電圧が現れてし壕い、駆動用圧電素子への
印加交流電圧が所望の位相とはずれてしまうことがあっ
た。
In this type of vibration wave motor, the above two groups of piezoelectric elements (
In addition to this, a piezoelectric element for vibration detection is fixed to the diaphragm, and the frequency of the AC voltage applied to the piezoelectric drive element is automatically adjusted according to the detection output of the piezoelectric element for vibration detection. A drive circuit that can most efficiently drive a vibration wave motor by setting the resonant frequency to 0 is proposed by the present applicant in Japanese Patent Application No. 59-276962. However, in this proposal, the piezoelectric element for vibration detection is fixed at a position having the same spatial phase as the position of any one group of the driving piezoelectric elements. That is, the piezoelectric elements for vibration detection were fixed so that the center point of the piezoelectric element for vibration detection was located at a position shifted by an integral multiple of 1 from the center point of one section of the piezoelectric element for driving of the -λ group. However, voltages due to leakage of other frequency voltages for vibration driving appear in the piezoelectric element for vibration detection installed in such a position, and the AC voltage applied to the piezoelectric element for driving does not match the desired phase. Sometimes it would come off.

〔発明の目的〕[Purpose of the invention]

本発明は上述従来の欠点を除去すると同時に位相検出感
度の向上を図ることを目的とする。
It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and at the same time improve phase detection sensitivity.

〔発明の概要〕[Summary of the invention]

弾性材料製の振動板に二群の駆動用電気−機械λ エネルギー変換素子区画を、群内では等ピッチ7にて且
つ電圧印加時の伸縮の極性が交互に逆であλ るように、而して群間にはiの奇数倍のずれかあるよう
に、配列固着し、該駆動用電気−機械エネルギー変換素
子区画の二群に互に90°の時間的位相差を有する交流
電圧を夫々印加することによりて、該摂動板に上記夫々
の群によって発生された互に区だけずれた二つの定在波
(波長λ)の合成として波長λの進行性振動波を生ぜし
め、以て該振動板に加圧接触した移動体を摩擦駆動する
ようにした振動波モータにおいて、上記駆動用電気−機
械エネルギー変換素子区画群間にて上記振動板に振動検
出用電気−機械エネルギー変換素子区画を上記両定在波
の相隣る腹と節との中間点に設け、f ら ) 駆動用電気−機械変換素子区画群に印加する交流電圧が
、振動波モータの回転方向に応じて振動検出用電気−機
械エネルギー変換素子区画の検出電圧に対し±45°ま
たは±135°の位相差を持つようになし、且つ該振動
検出用電気−機械エネルギー徴とする振動波モータ。
Two groups of drive electro-mechanical λ energy conversion element sections are arranged on a diaphragm made of an elastic material, at equal pitches 7 within each group, and so that the polarity of expansion and contraction when voltage is applied is alternately reversed. The arrangement is fixed so that there is an odd multiple of i between the groups, and AC voltages having a temporal phase difference of 90° are applied to the two groups of the drive electro-mechanical energy conversion element sections, respectively. By applying this, a progressive oscillation wave of wavelength λ is generated as a composite of two standing waves (wavelength λ) generated by each of the above-mentioned groups that are shifted by a distance from each other, and thus a progressive vibration wave of wavelength λ is generated. In a vibration wave motor configured to frictionally drive a movable body that is in pressurized contact with a diaphragm, an electro-mechanical energy conversion element section for vibration detection is provided on the diaphragm between the group of electric-mechanical energy conversion element sections for driving. The alternating current voltage applied to the driving electromechanical transducer section group is provided at the midpoint between the adjacent antinodes and nodes of both of the standing waves, and the alternating current voltage applied to the drive electromechanical transducer section group is used for vibration detection according to the rotational direction of the vibration wave motor. A vibration wave motor having a phase difference of ±45° or ±135° with respect to a detection voltage of an electro-mechanical energy conversion element section, and having an electro-mechanical energy signature for vibration detection.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を以下に説明する。第1図(亀)はステ
ータの一部分を示す側面図、第1図(b)はステータの
上記一部分を示す平面図である。
Examples of the present invention will be described below. FIG. 1 (turtle) is a side view showing a portion of the stator, and FIG. 1(b) is a plan view showing the portion of the stator.

第1図において、1はリング状の振動板、2は振動板1
の片面に固着された圧電性セラミックス等よりなる圧電
素子板である。A1.A2およびB1゜B2は夫々第1
群(これをA相という)圧電素子および第2群(B相)
圧電素子に対する電極であり、Sは振動検出用圧電素子
(これをS相圧電素子という)に対する電極である。圧
電素子板2は、これら電極に対応する各部が予め分極処
理されていることによって、区画された圧電素子群を形
成しく6) ■ ている。A相電極A15A2it7波長のピッチで配列
され、それに対応する圧電素子8画の分極処理の向きは
互に逆であり、B相1に極81 * B2も1波長のピ
ッチで配列され、それに対応する圧電素子区画の分極処
理の向きは互に逆であり、そしてA相圧電素子群とB相
圧電素子群とは位置的位相がおよびその電極Sの周方向
長さは1波畏より小さくしである。人相電極に交流電圧
を印加することにより励起される定在波振動をA相定在
波と呼び、S相電極に同じ周波数の交流電圧全印加する
ことにより励起される定在波振動をB相定在波と呼ぶ。
In Figure 1, 1 is a ring-shaped diaphragm, 2 is a diaphragm 1
This is a piezoelectric element plate made of piezoelectric ceramics or the like that is fixed to one side of the piezoelectric element plate. A1. A2 and B1°B2 are the first
Group (referred to as A phase) piezoelectric elements and second group (B phase)
This is an electrode for the piezoelectric element, and S is an electrode for the vibration detection piezoelectric element (this is referred to as an S-phase piezoelectric element). Each part of the piezoelectric element plate 2 corresponding to these electrodes is polarized in advance to form a group of divided piezoelectric elements 6). The A-phase electrodes A15A2it are arranged at a pitch of 7 wavelengths, and the polarization directions of the corresponding 8 piezoelectric elements are opposite to each other, and the B-phase 1 poles 81*B2 are also arranged at a pitch of 1 wavelength, and the corresponding polarization directions are opposite to each other. The polarization directions of the piezoelectric element sections are opposite to each other, the A-phase piezoelectric element group and the B-phase piezoelectric element group have a positional phase, and the circumferential length of the electrode S is smaller than one wave. be. The standing wave vibration excited by applying an AC voltage to the human-phase electrode is called an A-phase standing wave, and the standing wave vibration excited by applying a full AC voltage of the same frequency to the S-phase electrode is called a B-phase standing wave. It is called a phase standing wave.

同振幅のA相定在波とB相定在波を同時に発生させ、そ
の時間的位相差も90°とすることにより両定在波の合
成結果として進行性糸動波が励起される。
By simultaneously generating an A-phase standing wave and a B-phase standing wave of the same amplitude and setting their temporal phase difference to 90°, a progressive filament wave is excited as a result of the synthesis of both standing waves.

電極A1の中央位@a−a’はA相定在波の腹であり且
つB相定在波の節である。また電極B1の中央位置b 
−b’ (これは位置a −a’から1波長ずれ念位置
である)はB相定在波の腹であり汀つ人相定在波の節で
ある。検出用電極(S相電極)Sの中央位置e −e’
は位置a −a’およびb −b’より1波長ずれた位
置にあるものとする。従って該位置e ” e’はA相
、B相いずれの定在波の節でも腹でもない。
The center position @aa' of the electrode A1 is the antinode of the A-phase standing wave and the node of the B-phase standing wave. Also, the center position b of the electrode B1
-b' (this is an imaginary position shifted by one wavelength from the position a-a') is the antinode of the B-phase standing wave and a node of the standing wave of the human phase. Center position e - e' of detection electrode (S phase electrode) S
is located at a position shifted by one wavelength from positions a-a' and b-b'. Therefore, the position e''e' is neither a node nor an antinode of either the A-phase or B-phase standing wave.

位置a −a’から1波長だけ位置e −e’の方に寄
った位置d −d’(これはA相定在波の節で月つB相
定在波の腹である)を周方向の位置座標Xの原点にとれ
ば、A相定在波による力をIrA、B相定在波による力
をtmとすると、 となる。ただしλは波長、TVi周期、tは任意の時刻
であり、複号士は振動波モータの回転方向に対応する。
Position d - d', which is one wavelength closer to position e - e' from position a - a' (this is a node of the A-phase standing wave and an antinode of the B-phase standing wave), in the circumferential direction If the origin of the position coordinate X is taken as the origin, the force due to the A-phase standing wave is IrA, and the force due to the B-phase standing wave is tm, then the following is obtained. Here, λ is the wavelength, TVi period, t is an arbitrary time, and double number corresponds to the rotation direction of the vibration wave motor.

振動検出用電極(S相電極)Sの中央位置C−C′、す
なわち の位置においては F、のとき、位tc−e’での振動は位Jd−d’での
振動に対し±45°の時間的位相差を持つ。位置d−d
′での振動は人相電極A1の中央位置a−a’に対して
±90°の時間的位相差を持つから、結局位置C−c′
での振動は位置& −11’での撮動に対し、モータ回
転方向に応じて±1356の時間的位相差を持つ。
When the center position C-C' of the vibration detection electrode (S-phase electrode) S is F, the vibration at position tc-e' is ±45° with respect to the vibration at position Jd-d'. It has a temporal phase difference of position d-d
Since the vibration at ' has a temporal phase difference of ±90° with respect to the center position a-a' of the human-phase electrode A1, it ends up at the position C-c'
The vibration at position has a temporal phase difference of ±1356, depending on the motor rotation direction, with respect to the imaging at position &-11'.

上記はS相中失点が第1図に示した位置にある場合であ
るが、一般にS相中失点がA相定在波およびB相定在波
の相隣る腹と節との中間位置にある場合には、両定在波
の振幅が等しいときには、S相中失点での振動はA相電
極A1の中央点での振動に対して、モータ回転方向に応
じ、±45°の、または±135°の時間的位相差を持
つ。この時間的位相差が456であるか135°である
かは、S相中失点が、どの相隣る暉と節との中間にある
かに依る。
The above is a case where the S-phase lost point is at the position shown in Figure 1, but generally the S-phase lost point is at the midpoint between the adjacent antinodes and nodes of the A-phase standing wave and the B-phase standing wave. In some cases, when the amplitudes of both standing waves are equal, the vibration at the point lost in the S phase is ±45° or ±45° with respect to the vibration at the center point of the A phase electrode A1, depending on the motor rotation direction. It has a temporal phase difference of 135°. Whether this temporal phase difference is 456 degrees or 135 degrees depends on which point in the S phase the lost point is located between which adjacent angle and node.

なお、圧電性セラミックスに於いけ共振点に於て駆動用
の交流電圧と変位速度は同位相になり、検出される交流
電圧の位相は変位速度に対し90’(百)位相が進む。
In piezoelectric ceramics, the driving AC voltage and the displacement speed are in the same phase at the resonance point, and the phase of the detected AC voltage is 90' (100) phase ahead of the displacement speed.

この点も考慮してもその時間的位相差は±45°又は±
1356である。
Even considering this point, the temporal phase difference is ±45° or ±
It is 1356.

逆に、このようなS相位置の場合、S相検出電圧と人相
駆動電圧との間に、モータ回転方向に応じ、上記の時間
的位相差を持たせるように位相ロックされた駆動を行え
ば、A、B両相の定在波の振巾を等しくすることができ
る。勿論、正転・逆転に応じてA相駆動電圧とB相駆動
電圧との間に正又は負の906の時間的位相差を持たせ
るものとすることは云う1でもない。
Conversely, in the case of such an S-phase position, phase-locked driving is performed to provide the above-mentioned temporal phase difference between the S-phase detection voltage and the human-phase drive voltage, depending on the motor rotation direction. For example, the amplitudes of the standing waves of both the A and B phases can be made equal. Of course, it is not a problem to provide a positive or negative temporal phase difference of 906 between the A-phase drive voltage and the B-phase drive voltage depending on forward rotation or reverse rotation.

S相検出電圧と人相駆動電圧との間に、モータ回転方向
に応じ正負の45°の時間的位相差があるように位相ロ
ックを行なう駆動回路f第2図に示す。6,18.24
はコンパレータ、7,12゜19は位相比較器(pc)
、8,13.20は抵抗、9.14.21はコンデンサ
、10,15.22は電圧制御発振器(V、C,O)、
11.23は増幅器、16はn分周回路、17はn段シ
フトレジスタ、17a〜dは5段シフトレジスタ17の
出力端子、25は正転逆転切換用二連スイッチである。
A drive circuit f is shown in FIG. 2, which performs phase locking so that there is a temporal phase difference of 45°, positive or negative, depending on the motor rotation direction, between the S-phase detection voltage and the human-phase drive voltage. 6,18.24
is a comparator, 7,12゜19 is a phase comparator (pc)
, 8, 13.20 are resistors, 9.14.21 are capacitors, 10, 15.22 are voltage controlled oscillators (V, C, O),
11.23 is an amplifier, 16 is an n-frequency divider circuit, 17 is an n-stage shift register, 17a to d are output terminals of the 5-stage shift register 17, and 25 is a double switch for switching forward/reverse rotation.

振動検出用電極5からのS相信号をコンパレータ6によ
り論理レベルに変換し、エツジトリガ型位相比較器7に
入力すると共に、エツジトリが型位相比較器7にはn段
シフトレジスタの出力172L又け17bを正転逆転切
換用二連スイッチ25により入力する。エツジトリが型
位相比較器7へのこれら二つの入力は同位相、同周波数
である。
The S-phase signal from the vibration detection electrode 5 is converted to a logic level by the comparator 6 and input to the edge trigger type phase comparator 7. is input using the dual switch 25 for forward/reverse switching. These two inputs to the digital phase comparator 7 are in phase and at the same frequency.

エツジ) IJガ型位相比較器12、積分用抵抗13、
積分用コンデンサ14、−電圧制御型発振器15、n分
周回路を図示の如く接続することにより人相駆動周波数
のn倍の周波数の信号を作ることができ、こねを5段シ
フトレジスタ17のクロック信号として入力する。また
5段シフトレジスタ17へのデータはA相駆動用電圧を
コンパレータ18により入力する。B相駆動用電圧は前
記切換用二連スイッチ25を介してシフトレジスタ17
の出力17e又は17dから図示の回路構成によって与
えられる。
edge) IJ type phase comparator 12, integrating resistor 13,
By connecting the integrating capacitor 14, the voltage-controlled oscillator 15, and the n-frequency divider circuit as shown in the figure, a signal with a frequency n times the human phase drive frequency can be generated, and the clock of the five-stage shift register 17 can be generated. Input as a signal. Further, as data to the five-stage shift register 17, the A-phase driving voltage is inputted by the comparator 18. The B-phase drive voltage is applied to the shift register 17 via the dual switch 25.
The output 17e or 17d is given by the illustrated circuit configuration.

この様な回路構成により人相駆動用電圧は、検出用電極
5からのS相信号とn段シフトレジスタの出力端子17
a又は17bからの信号とが同位相になるため、シフト
レジスタ17により移相した分だけ位相が検出用電極5
からのS相信号に対してずれる。n=8,16,24.
32.・・・の様に(360°745°=8)、nを8
の倍数にとれば、シフトレジスタ17の出力は人相駆動
用電圧に対して45°刻みの位相ずれを発生させること
ができる。
With such a circuit configuration, the human phase drive voltage is generated by combining the S phase signal from the detection electrode 5 and the output terminal 17 of the n-stage shift register.
Since the signal from a or 17b has the same phase, the phase is shifted by the shift register 17 and the detection electrode 5
deviates from the S-phase signal from. n=8, 16, 24.
32. (360°745°=8), n is 8
By taking a multiple of , the output of the shift register 17 can generate a phase shift of 45 degrees with respect to the human phase driving voltage.

よって、シフトレジスタ17の出力17 m * 17
b−17e、17dをA相駆動電圧に対して夫々−45
°。
Therefore, the output of the shift register 17 is 17 m * 17
-45 for b-17e and 17d, respectively, with respect to the A-phase drive voltage.
°.

−315°、−90°、−270@の位相ずれを持つも
のとすることによって、正転・逆転に応じて前述の如き
A相駆動電圧、B相駆動電圧、S相検出電圧間の時間的
位相ロックを行うことができる。
By having phase shifts of -315°, -90°, and -270@, the time difference between the A-phase drive voltage, B-phase drive voltage, and S-phase detection voltage as described above can be adjusted according to forward and reverse rotations. Phase lock can be achieved.

S相信号と人相駆動電圧との間に135°の位相ロック
を行う駆動回路も第2図と同様にして容易に実現し得る
ことは明らかであろう。
It is clear that a drive circuit that achieves 135° phase lock between the S-phase signal and the human-phase drive voltage can be easily realized in the same manner as shown in FIG.

第3図は本実施例の電極配置を示した図である。FIG. 3 is a diagram showing the electrode arrangement of this embodiment.

A1〜A5は人相駆動用電極、B1−B5はB相駆動用
電極、81又は82は振動検出用電極、Cは裏面と導通
をとっである電極すなわち接地電極である。
A1 to A5 are human phase drive electrodes, B1 to B5 are B phase drive electrodes, 81 or 82 are vibration detection electrodes, and C is an electrode electrically connected to the back surface, that is, a ground electrode.

人相駆動用電極A1〜A5、B相駆動用電極B1〜B5
の面積は、振動を励起する効率の点から、なるべく広く
とることが望まれる。この様な配置において前述の実施
例では、振動検出用電極(S相電極)として第3図の配
置関係にある電極S1又は電極S2を採用する。
Human phase drive electrodes A1 to A5, B phase drive electrodes B1 to B5
It is desirable to make the area as large as possible from the point of view of the efficiency of exciting vibrations. In such an arrangement, in the above embodiment, the electrode S1 or the electrode S2 having the arrangement relationship shown in FIG. 3 is employed as the vibration detection electrode (S-phase electrode).

第4図は第3図の摂動検出用電極Sl付近の拡大図であ
る。電極S1の周方向長さをt、半径方λ 内申をωとする。tは0<1<−2とし、且つ位相感度
を上げるために本発明においてはtをなるべく短くする
。但し、出力電圧の点からはtが短かずぎると出力が小
さくなってし1うので、tは出力が小さすぎないように
コンパレータ6の入力抵抗との関係からある程度の大き
さの範囲内でなるべく短くする。tが短いときには振動
波モータが有する駆動周波数よりも高い共振周波数の信
号を検出用電極S1が得てしまうことがある。このため
電圧制御発振器10,15.22に制限をかげて、高次
の共振周波数で発振しない様にすることが望ましい。
FIG. 4 is an enlarged view of the vicinity of the perturbation detection electrode Sl in FIG. 3. The circumferential length of the electrode S1 is t, and the radial length λ is ω. t is set to satisfy 0<1<-2, and in order to increase the phase sensitivity, t is made as short as possible in the present invention. However, from the point of view of the output voltage, if t is too short, the output will become small, so t should be kept within a certain range of magnitude in relation to the input resistance of the comparator 6 so that the output is not too small. shorten. When t is short, the detection electrode S1 may obtain a signal with a resonance frequency higher than the drive frequency of the vibration wave motor. For this reason, it is desirable to limit the voltage controlled oscillators 10, 15, and 22 so that they do not oscillate at high-order resonance frequencies.

第5図(、)は振動検出用電極S1を示している。FIG. 5(,) shows the vibration detection electrode S1.

この電気的等価回路は同図(b)に示される。■は電流
源、 Cdは制動容量である。■から流出する電流をl
とすると振動検出用電極S1に現れる電圧v8は ただしi = i o65″′’ ωは駆動時の角周波数。
This electrical equivalent circuit is shown in the same figure (b). ■ is the current source, and Cd is the braking capacity. ■ The current flowing from l
Then, the voltage v8 appearing on the vibration detection electrode S1 is where i = i o65'''' ω is the angular frequency during driving.

電極S1に並列にコンデンサC(振動検出用圧電素子の
出力電圧が高いときに位相を変えずに減圧するためのも
の)を接続すると1[C圧υ8′はよってvs’/ M
 IBは となりコンデンサCにより減圧されるが、制動容191
cdが大きいとコンデンサCの容量を大きなものにしな
ければならない。しかし、電極S1の面積が小さいと減
圧用コンデンサCの大きさを小さくすることができる。
When a capacitor C (to reduce the pressure without changing the phase when the output voltage of the piezoelectric element for vibration detection is high) is connected in parallel to the electrode S1, 1[C pressure υ8' is therefore vs'/M
IB is reduced in pressure by capacitor C, but the braking capacity is 191
If cd is large, the capacitance of capacitor C must be made large. However, if the area of the electrode S1 is small, the size of the pressure reducing capacitor C can be made small.

がお、以上の実施例では圧電素子を用いたが、他の電気
−機械エネルギー変換素子、例えば電歪素子、を用いる
こともできる。
Although piezoelectric elements were used in the above embodiments, other electro-mechanical energy conversion elements, such as electrostrictive elements, may also be used.

〔発明の効果〕 本発明においては、撮動検出用1に極をA相およびB相
いずれの定在波からみても、その腹と節との中間位置に
あるように設け、1つ振動検出用電極の周方向長さを短
くとることにより該検出用電標からの信号に基づき人相
・B相駆動用圧電素子を所要の位相関係で駆動すること
ができ、且つ位相検出感度を向上させることができる。
[Effects of the Invention] In the present invention, a pole is provided in the imaging detection device 1 so as to be located at an intermediate position between the antinode and the node when viewed from either the A-phase or B-phase standing waves, and one pole is provided for vibration detection. By shortening the length of the detection electrode in the circumferential direction, it is possible to drive the human phase/B phase driving piezoelectric element with the required phase relationship based on the signal from the detection electric sign, and the phase detection sensitivity is improved. be able to.

又、人相駆動用電極およびB相駆動用電極を限界まで広
くとることができ、駆動効率が向上する。また振動検出
用電極を狭くすることにより、減圧用コンデンサの容−
i i減らすことができる。
Further, the human phase driving electrode and the B phase driving electrode can be made as wide as possible, and driving efficiency is improved. In addition, by narrowing the vibration detection electrode, the capacitance of the decompression capacitor can be reduced.
ii can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は夫々本発明の実施例に係る
振動波モータのステータの一部を示す側面図および平面
図、第2図は位相ロックを行う駆動回路を示す図、第3
図は電極配置を示す平面図、第4図は第3図の振動検出
用電極S1付近の拡大平面図、第5図(a) + (b
) e (c)は夫々振動検出用圧電菓子、その等何回
路、それに減圧用コンデンサを接続したときの回路を示
す図である。 A1〜A5・・・A相電極、 B1−B5・・・S相電
極、Sl、S2・・・撮動検出用電極(S相電極)、6
.11(,24・・・コンノやレータ、7.12.19
・・・位相比較器、 10.15.22・・・電圧制御発振器、11.23・
・・増幅器、16・・・n分周器、17・・・n段シフ
トレジスタ、 25・・・正転逆転切換スイッチ。
1(a) and 1(b) are a side view and a plan view, respectively, showing a part of the stator of a vibration wave motor according to an embodiment of the present invention, and FIG. 2 is a diagram showing a drive circuit that performs phase locking, and FIG. 3
The figure is a plan view showing the electrode arrangement, FIG. 4 is an enlarged plan view near the vibration detection electrode S1 in FIG. 3, and FIG. 5 (a) + (b)
) e (c) is a diagram showing a piezoelectric confectionery for vibration detection, several circuits thereof, and a circuit when a decompression capacitor is connected to the piezoelectric confectionery. A1-A5...A-phase electrode, B1-B5...S-phase electrode, Sl, S2...imaging detection electrode (S-phase electrode), 6
.. 11(,24...Konoyareta, 7.12.19
... Phase comparator, 10.15.22 ... Voltage controlled oscillator, 11.23.
...Amplifier, 16...n frequency divider, 17...n stage shift register, 25...forward/reverse selector switch.

Claims (1)

【特許請求の範囲】[Claims]  弾性材料製の振動板に二群の駆動用電気−機械エネル
ギー変換素子区画を、群内では等ピッチλ/2にて且つ
電圧印加時の伸縮の極性が交互に逆であるように、而し
て群間にはλ/4の奇数倍のずれがあるように、配列固
着し、該駆動用電気−機械エネルギー変換素子区画の二
群に互に90°の時間的位相差を有する交流電圧を夫々
印加することによって、該振動板に上記夫々の群によっ
て発生された互にλ/4だけずれた二つの定在波(波長
λ)の合成として波長λの進行性振動波を生ぜしめ、以
て該振動板に加圧接触した移動体を摩擦駆動するように
した振動波モータにおいて、上記駆動用電気−機械エネ
ルギー変換素子区画群間にて上記振動板に振動検出用電
気−機械エネルギー変換素子区画を上記両定在波の相隣
る腹と節との中間点に設け、駆動用電気−機械変換素子
区画群に印加する交流電圧が振動波モータの回転方向に
応じて振励検出用電気−機械エネルギー変換索子区画の
検出電圧に対し±45°または±135°の位相差を持
つようになし、且つ該振動検出用電気−機械エネルギー
変換素子区画の長さをλ/4より小さくしたことを特徴
とする振動波モータ。
Two groups of drive electric-mechanical energy conversion element sections are arranged on a diaphragm made of an elastic material, with equal pitch λ/2 within each group, and so that the polarity of expansion and contraction when voltage is applied is alternately opposite. The arrangement is fixed so that there is a shift of an odd multiple of λ/4 between the groups, and an AC voltage having a temporal phase difference of 90° is applied to the two groups of the drive electro-mechanical energy conversion element sections. By applying these to each group, a progressive vibration wave of wavelength λ is generated as a composite of two standing waves (wavelength λ) generated by each of the groups and shifted by λ/4 from each other, and as follows. In a vibration wave motor that frictionally drives a movable body that is in pressure contact with the diaphragm, an electro-mechanical energy conversion element for vibration detection is provided on the diaphragm between the group of sections of the electro-mechanical energy conversion element for driving. The division is provided at the midpoint between the adjacent antinodes and nodes of both of the standing waves, and the AC voltage applied to the drive electromechanical transducer division group changes to the vibration excitation detection electricity according to the rotational direction of the vibration wave motor. - A phase difference of ±45° or ±135° is established with respect to the detection voltage of the mechanical energy conversion cord section, and the length of the vibration detection electro-mechanical energy conversion element section is made smaller than λ/4. A vibration wave motor characterized by:
JP61089705A 1986-04-18 1986-04-18 Vibration wave motor Expired - Fee Related JPH0828986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089705A JPH0828986B2 (en) 1986-04-18 1986-04-18 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089705A JPH0828986B2 (en) 1986-04-18 1986-04-18 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS62247771A true JPS62247771A (en) 1987-10-28
JPH0828986B2 JPH0828986B2 (en) 1996-03-21

Family

ID=13978193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089705A Expired - Fee Related JPH0828986B2 (en) 1986-04-18 1986-04-18 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH0828986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027878A (en) * 1988-06-27 1990-01-11 Matsushita Electric Ind Co Ltd Ultrasonic motor
JPH0241679A (en) * 1988-07-28 1990-02-09 Matsushita Electric Ind Co Ltd Driving gear of ultrasonic actuator
JPH02174572A (en) * 1988-12-23 1990-07-05 Matsushita Electric Ind Co Ltd Ultrasonic motor and driving gear thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251490A (en) * 1985-04-26 1986-11-08 Nippon Kogaku Kk <Nikon> Drive circuit of surface wave motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251490A (en) * 1985-04-26 1986-11-08 Nippon Kogaku Kk <Nikon> Drive circuit of surface wave motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027878A (en) * 1988-06-27 1990-01-11 Matsushita Electric Ind Co Ltd Ultrasonic motor
JPH0241679A (en) * 1988-07-28 1990-02-09 Matsushita Electric Ind Co Ltd Driving gear of ultrasonic actuator
JPH02174572A (en) * 1988-12-23 1990-07-05 Matsushita Electric Ind Co Ltd Ultrasonic motor and driving gear thereof

Also Published As

Publication number Publication date
JPH0828986B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
JP2589698B2 (en) Vibration type actuator device
EP0258449B1 (en) Ultrasonic motor
JPH08182357A (en) Ultrasonic motor driving circuit
US5920144A (en) Vibrating actuator device
US4853578A (en) Driving apparatus for ultrasonic motor
US7382080B2 (en) Piezoelectric ultrasonic motor driver
JPS62247771A (en) Oscillatory-wave motor
JPS622869A (en) Supersonic motor drive device
JP2879220B2 (en) Ultrasonic motor drive circuit
JP2532425B2 (en) Ultrasonic motor
JPS63181676A (en) Ultrasonic rotary vibrator
JPH065991B2 (en) Self-excited elastic wave motor
JPS62247773A (en) Drive system for oscillatory-wave motor
JP2601268B2 (en) Ultrasonic motor
JPH04236177A (en) Disposition of vibrating segment of piezoelectric element and shape of driving part
JPS62196084A (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JP2752105B2 (en) Vibration wave device
JPS62262672A (en) Oscillatory wave motor
JPH09215352A (en) Speed controller of ultrasonic motor
JP2551412B2 (en) Ultrasonic motor driving method
JPH0365079A (en) Drive controller of ultrasonic motor
JPH01238476A (en) Vibration wave motor
JPH0583962A (en) Oscillatory wave motor device
JPS60207468A (en) Supersonic motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees