JPS62261110A - Permanent magnet manufacturing method - Google Patents
Permanent magnet manufacturing methodInfo
- Publication number
- JPS62261110A JPS62261110A JP10548686A JP10548686A JPS62261110A JP S62261110 A JPS62261110 A JP S62261110A JP 10548686 A JP10548686 A JP 10548686A JP 10548686 A JP10548686 A JP 10548686A JP S62261110 A JPS62261110 A JP S62261110A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- permanent magnet
- kneaded material
- die
- magnetic powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は永久磁石の製造方法に関する
〔従来の技術〕
希土類コバルト磁性粉と樹脂結合をして円筒形磁石?得
るり1遣方法は、磁性粉と熱硬化性樹脂バインダーとを
混練し、磁場中又は磁場をかけないで加圧成形、キュア
ー処理、着磁を行ない磁石を得た。得られた磁石の応用
分野として、モータ関係等があるが、例えばステップモ
ータでは、磁石の性能を十分引出すためには磁石の成形
時にラジアルの異方性を付け、軟磁性材料より成るバン
クヨークと組合わせ磁気回路を構成し、ていた。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a permanent magnet [Prior Art] A cylindrical magnet made by bonding rare earth cobalt magnetic powder with a resin? In the 1-1 method, magnetic powder and a thermosetting resin binder were kneaded, pressure molded in a magnetic field or without applying a magnetic field, cured, and magnetized to obtain a magnet. Application fields of the obtained magnets include motors. For example, in step motors, in order to bring out the full performance of the magnet, radial anisotropy is imparted to the magnet during molding, and a bank yoke made of soft magnetic material is used. A combination magnetic circuit was constructed.
円筒状の磁石と円筒状のバンクヨークは各々の別々に加
工を施し、バンクヨークK(d1石を組込み接着剤にて
固定し、着出を行ない8賛なロータ?得ていた。また磁
束を多く8幾とせずロータのイナー7ヤを小さくしたい
場合は、等方性の磁石とhLのように比重の小さな金属
材料と組合わせ前記バンクヨークと同様に接着剤にて固
定、着磁を行ないロータを得た。The cylindrical magnet and the cylindrical bank yoke were processed separately, and a bank yoke K (D1 stone was incorporated and fixed with adhesive, and a rotor with 8 points was obtained by loading and unloading. If you want to make the rotor's inner 7 size smaller, you can combine an isotropic magnet with a metal material of low specific gravity like hL, and fix it with adhesive and magnetize it in the same way as the bank yoke. Got rotor.
前述の従来技術では、磁石とロータもしくはバックヨー
クを別々に加工し組み合わせるということから、工程の
複雑化によるコストアップ磁石の偏心、偏心を防止する
ために磁石とロー声、バンクヨークとのはめあい?厳し
くすれば、わずかのズレによっても磁石が割れてしまう
ことや精度アンプによる加工コストの上昇、磁石とバン
クヨークとの空間による磁石性能の劣下が発生する。In the above-mentioned conventional technology, the magnets and rotor or back yoke are processed separately and combined, which increases the cost due to the complexity of the process.In order to prevent eccentricity and eccentricity of the magnet, it is necessary to fit the magnets, low pitch, and bank yoke together. If it is too strict, even a slight misalignment will cause the magnet to break, the precision amplifier will increase processing costs, and the space between the magnet and the bank yoke will cause deterioration in magnet performance.
前述の構成では、磁石を薄くすることが離しく厚さが1
fiまでが限度であり、厚いため多極着磁がしにくいと
いった問題点な有する。本発明はこのような問題点を解
決するものでその目的とするところは、高性能な磁石の
裏通方法を提供するものである。In the above configuration, it is difficult to make the magnet thin, and the thickness is 1
The problem is that the limit is up to fi, and the thickness makes multi-pole magnetization difficult. The present invention solves these problems, and its purpose is to provide a high-performance method for back-passing a magnet.
本発明の磁石の製造方法は、磁性粉な主成分とする混練
物を溶融し押出し成形固化する磁石の製造方法において
、下記製造工程を順次含むことを特徴とする磁石の製造
方法
(リ a、i性粉を主成分とする混練物を醪触する工程
と
b、ダイにセットされた中空のパイプの外周部に溶融し
た混練物な押出す工程と
C1混練物な成形固化しながら通過させる工程と
d、押出された成形体を適当な長さに切断し、2体構造
よ構成る磁石を得る工程からなることを特徴とする磁石
の製造方法
(2)前記混練物を中空パイプの内部に押出すことを特
徴とする特許請求範囲第1項記載の永久磁石の製造方法
〔実施例〕
以下実施例に従い本発明の詳細な説明する。The method for manufacturing a magnet of the present invention is a method for manufacturing a magnet in which a kneaded material whose main component is magnetic powder is melted and solidified by extrusion molding. A step of kneading a kneaded material mainly composed of I powder, b. A step of extruding the molten kneaded material on the outer periphery of a hollow pipe set in a die, and a step of passing the C1 kneaded material while forming and solidifying it. and (d) A method for producing a magnet, which comprises the steps of cutting the extruded molded product into appropriate lengths to obtain a magnet having a two-piece structure. (2) Putting the kneaded material inside a hollow pipe. Method for manufacturing a permanent magnet according to claim 1, characterized by extrusion [Examples] The present invention will be described in detail below with reference to Examples.
〔実施例−1〕
B m((61syl −CII…、 F@ 1lff
i 、Z r6JHI ) &lの組成から成る合金を
低周波溶解炉で溶解し、得られた合金インゴットQ11
70℃で4時間溶体化処理、800〜200℃ まで等
温時効と冷却時効を組み合わせ、次に合金インゴットを
粗粉砕、微粉砕を行ない10〜20μm程度の磁性粉を
得る。磁性粉をチタンネートカップリング剤で表面処理
をした後、体積化で磁性粉60%、ポリアミド樹脂(ナ
イロン12)40%の割合で220〜250℃の範囲で
混線を行ない、混練物を1〜211m1K粉砕しペレッ
ト化する。得られたベレットを、第1図に示す本発明の
押出し機により溶融後ダイにセットされた中空のパイプ
の外周部に押出し磁石を得る。[Example-1] B m((61syl -CII..., F@1lff
i, Zr6JHI) &l was melted in a low frequency melting furnace, resulting in an alloy ingot Q11.
Solution treatment is carried out at 70°C for 4 hours, isothermal aging and cooling aging are combined to 800-200°C, and then the alloy ingot is coarsely pulverized and finely pulverized to obtain magnetic powder of about 10-20 μm. After surface-treating the magnetic powder with a titanate coupling agent, the mixture is mixed in a volumetric ratio of 60% magnetic powder and 40% polyamide resin (nylon 12) in the range of 220 to 250°C, and the kneaded material is 211ml1K is crushed and pelletized. The obtained pellet is melted using the extruder of the present invention shown in FIG. 1, and then extruded onto the outer periphery of a hollow pipe set in a die to obtain a magnet.
砕細を以下に説明する。前述のベレットをシリンダー内
にヒータ2により、230〜250℃の範囲で溶融物3
を得る。溶融物5をスクリュー4の回転により、ダイ5
にセットされた中空のノくイブ6の外周部に押出し、中
空パイ/6な覆る。中空バイブロは、ラジアル異方性の
磁石にする場は、svyまたは5I5Cなどの軟磁性材
料とし、等方性の場合はkAなどの非磁性材料とする。The pulverization will be explained below. The above-mentioned pellet is placed in a cylinder using a heater 2 to heat the melt 3 at a temperature in the range of 230 to 250°C.
get. The melt 5 is passed through the die 5 by rotating the screw 4.
It is extruded onto the outer periphery of a hollow pipe 6 set in the pipe 6 and covered with a hollow pipe 6. For the hollow vibro, the field that makes the magnet radially anisotropic is a soft magnetic material such as svy or 5I5C, and the field that is isotropic is made of a non-magnetic material such as kA.
ラジアル異方性の磁石?成形する場合はダイ5は非磁性
材料よ構成シダイ5の先端部分と中空パイプ6と?結び
磁束が流れるようにヨーク7とai場を印加するコイル
8により構成しくHは磁束の流れを示す)、溶融物3を
ラジアル方向に異方化させる。Radial anisotropic magnet? When molding, the die 5 is composed of a non-magnetic material and the tip of the die 5 and the hollow pipe 6. It is composed of a yoke 7 and a coil 8 that applies an ai field so that magnetic flux flows (H indicates the flow of magnetic flux), and makes the melt 3 anisotropic in the radial direction.
等方性の場合は、前記異方性の場合と異なり、磁場をか
けずに単に溶融物を押出せばよい。In the case of isotropy, unlike the case of anisotropy, it is sufficient to simply extrude the melt without applying a magnetic field.
次に中空パイプ6を溶融物3の押出速度と同期してF方
向に押出し、冷却パイプ9によシ冷却された冷却ダイ1
0を通して溶融物5f2r−中空パイプ6に固化固着す
る。次に所定必☆寸度にて切断し、着磁を行ない第2図
に示す磁石11と中空バイブロから成る2体構造の磁石
を得る。尚異方性を付けた場合は、切断の前に脱g1ヲ
あらかじめ脱磁な行なっておく。Next, the hollow pipe 6 is extruded in the F direction in synchronization with the extrusion speed of the melt 3, and the cooling die 1 is cooled by the cooling pipe 9.
0 through which the melt 5f2r solidifies and adheres to the hollow pipe 6. Next, it is cut to a predetermined required size and magnetized to obtain a two-piece magnet consisting of a magnet 11 and a hollow vibro as shown in FIG. If anisotropy is added, demagnetize g1 in advance before cutting.
〔実施例−2〕
前述の実施例−1と同様な方法にて磁性粉から成るベレ
ットを得る。ベレットを第3図に示すシリンダー1内に
ヒータ2により、250〜250℃の範囲で浴威し溶融
物5を得る。溶融物5をスクリュー4の回転により、ダ
イ5の先端部にセントされた中空バイブロの内部に押し
出す。押出された溶融物5は冷却パイプ9によシ冷却さ
れた冷却ダイ10を通して、中空パイプ6に固化固着す
る。[Example 2] A pellet made of magnetic powder was obtained in the same manner as in Example 1 above. The pellet is placed in a cylinder 1 shown in FIG. 3 using a heater 2 at a temperature of 250 to 250 DEG C. to obtain a melt 5. By rotating the screw 4, the melt 5 is extruded into a hollow vibro inserted at the tip of the die 5. The extruded melt 5 passes through a cooling die 10 cooled by a cooling pipe 9, and solidifies and adheres to a hollow pipe 6.
次に所定寸度に切断し着磁を行ない、@4図に示す磁石
11と中空バイブロから成る2体構造の磁石を得る。こ
の場合中空パイプ6は、磁性材料であるSUY、5I5
0などや、または非磁性材料であるAt、5US303
などを用いる。Next, it is cut to a predetermined size and magnetized to obtain a magnet with a two-piece structure consisting of the magnet 11 and the hollow vibro shown in Fig. @4. In this case, the hollow pipe 6 is made of magnetic material SUY, 5I5.
0 etc. or non-magnetic material At, 5US303
etc.
以上述べたように杢発明によれば、中9パイプの外部ま
たは内部へ磁石を押出し形成することにより、薄肉磁石
となっても機械精度、磁気特性の高く、割れない磁石の
製造が可能となった。衆1に磁気特性の比較な示す。As described above, according to the Moto invention, by extruding and forming a magnet on the outside or inside of a medium-sized 9-pipe, it is possible to manufacture a magnet that has high mechanical precision, high magnetic properties, and does not break, even if it is a thin-walled magnet. Ta. A comparison of magnetic properties is shown below.
表−1
2体構造の研石になったことによシ、アッセンブル工程
が不要なことと、パンクヨークと磁石のギャップが無い
ことから安定した磁束がflられる。Table 1 The two-piece structure of the grinding stone eliminates the need for an assembly process, and since there is no gap between the puncture yoke and the magnet, a stable magnetic flux is produced.
磁石が薄肉化したことにより、100極程度の多極着磁
が可能となった。また薄肉化したことKよシ磁石の使用
諺が減シコストダウンとなった。By making the magnet thinner, it has become possible to magnetize it with as many as 100 poles. Also, the thinner walls have reduced the cost of using magnets.
@1図は本実施例の中空パイプ外部への押出成形を示す
図、第2図は、本実施例によシ得られた磁石を示す図、
第5図は本−実施例の中空パイプ内部への押出成形を示
す図、第4図は本実施例によシ得られた磁石を示す図で
ある。
1・・・・・・シリンダー
2−・・−・ヒータ
3・・・・・・溶融物
4・・・・・・スクリュー
5・・・・・・ダイ
6・・・・・・中をパイプ
ア・・・・・・ヨーク
8・・・・・・コイル
9・・・・・・冷却パイプ
10・・・・・・冷却ダイ
11・・・・・・磁石
F・・・・・・押出方向
H・・・・・・磁束の流れ・
以上
第1図
第2図@Figure 1 is a diagram showing extrusion molding to the outside of a hollow pipe in this example, Figure 2 is a diagram showing a magnet obtained in this example,
FIG. 5 is a diagram showing extrusion molding into the inside of a hollow pipe according to this embodiment, and FIG. 4 is a diagram showing a magnet obtained according to this embodiment. 1...Cylinder 2-...Heater 3...Melted material 4...Screw 5...Die 6...Pipe assembly inside ... Yoke 8 ... Coil 9 ... Cooling pipe 10 ... Cooling die 11 ... Magnet F ... Extrusion direction H...Flow of magnetic flux・ Above Figure 1 Figure 2
Claims (1)
する磁石の製造方法において、下記製造工程を順次含む
ことを特徴とする永久磁石の製造方法。 (1)a、磁性粉を主成分とする混練物を溶融する工程
と b、ダイにセットされた中空のパイプの外周部に溶融し
た混練物を押出す工程と c、混練物を成形固化しながら通過させる工程と d、押出された成形体を適当な長さに切断し、2体構造
より成る磁石を得る工程からなることを特徴とする永久
磁石の製造方法 (2)前記混練物を中空パイプの内部に押出すことを特
徴とする特許請求範囲第1項記載の永久磁石の製造方法
。[Scope of Claims] A method for producing a permanent magnet in which a kneaded material containing magnetic powder as a main component is melted and solidified by extrusion molding, the method comprising the following production steps in sequence. (1) a. A step of melting a kneaded material mainly composed of magnetic powder, b. A step of extruding the molten kneaded material onto the outer periphery of a hollow pipe set in a die, and c. A step of molding and solidifying the kneaded material. (2) A method for manufacturing a permanent magnet, comprising the steps of passing the kneaded product through a hollow tube, and (d) cutting the extruded compact into an appropriate length to obtain a magnet having a two-piece structure. A method for producing a permanent magnet according to claim 1, characterized in that the permanent magnet is extruded into the inside of a pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10548686A JPS62261110A (en) | 1986-05-08 | 1986-05-08 | Permanent magnet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10548686A JPS62261110A (en) | 1986-05-08 | 1986-05-08 | Permanent magnet manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62261110A true JPS62261110A (en) | 1987-11-13 |
Family
ID=14408919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10548686A Pending JPS62261110A (en) | 1986-05-08 | 1986-05-08 | Permanent magnet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62261110A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267316A (en) * | 1991-02-21 | 1992-09-22 | Kawasaki Steel Corp | Method for manufacturing cylindrical polar orientation anisotropic magnet with support shaft |
JPH0576159A (en) * | 1991-01-31 | 1993-03-26 | Kawasaki Steel Corp | Manufacturing method of cylindrical radial anisotropic magnet rotor |
-
1986
- 1986-05-08 JP JP10548686A patent/JPS62261110A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0576159A (en) * | 1991-01-31 | 1993-03-26 | Kawasaki Steel Corp | Manufacturing method of cylindrical radial anisotropic magnet rotor |
JPH04267316A (en) * | 1991-02-21 | 1992-09-22 | Kawasaki Steel Corp | Method for manufacturing cylindrical polar orientation anisotropic magnet with support shaft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3618648B2 (en) | Anisotropic magnet, method for manufacturing the same, and motor using the same | |
JPS62261110A (en) | Permanent magnet manufacturing method | |
JP2768356B2 (en) | Method for manufacturing resin-bonded magnet | |
JPH0611014B2 (en) | Manufacturing method of cylindrical magnet | |
JPH07111924B2 (en) | Magnetic roll and method for manufacturing cylindrical magnet for magnetic roll | |
JP3618647B2 (en) | Anisotropic magnet, method for manufacturing the same, and motor using the same | |
JPS62273708A (en) | Manufacturing method of magnet roll | |
JPH06236807A (en) | Resin-bonded magnet and method for manufacturing the same | |
JP2903603B2 (en) | Extrusion mold and method of manufacturing resin-bonded magnet | |
JPS60194503A (en) | Composite permanent magnet blank | |
JPH0469407B2 (en) | ||
JPH05101956A (en) | Manufacture of anisotropic magnet of cylindrical shape | |
JPS60223108A (en) | Manufacture of permanent magnet | |
JPH0517691B2 (en) | ||
JP2545602B2 (en) | Magnet roll | |
JP2001185412A (en) | Anisotropic bonded magnet | |
JPS60208817A (en) | Manufacture of anisotropic resin magnet | |
JPS6286809A (en) | Manufacturing method of cylindrical anisotropic magnet | |
JPH01169910A (en) | Manufacture of anisotropical nd-fe-b base magnet | |
JPH03274413A (en) | magnetic encoder | |
JPS62188207A (en) | Manufacture of magnetic core of rotary transformer in video tape recorder | |
JPH0754776B2 (en) | Extrusion mold | |
JP2004104143A (en) | Resin-bonded magnet and method of manufacturing the same | |
JPH02263405A (en) | Permanent magnet | |
JPH02191311A (en) | Cylindrical resin bonded magnet |