JPS60208817A - Manufacture of anisotropic resin magnet - Google Patents
Manufacture of anisotropic resin magnetInfo
- Publication number
- JPS60208817A JPS60208817A JP6626384A JP6626384A JPS60208817A JP S60208817 A JPS60208817 A JP S60208817A JP 6626384 A JP6626384 A JP 6626384A JP 6626384 A JP6626384 A JP 6626384A JP S60208817 A JPS60208817 A JP S60208817A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- space
- magnet
- coil
- kneaded mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、異方性樹脂磁石の製造方法の改良に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an improvement in a method for manufacturing an anisotropic resin magnet.
従来の異方性樹脂ボンド磁石は、その成形方法は、圧縮
成形法、射出成形法が重なるものである。Conventional anisotropic resin bonded magnets are molded using compression molding and injection molding.
圧縮成形法は、磁石粉末の充てん重金85 Volチ〜
90VO1%まで高められるので磁気特性を高性能化し
易い。しかしながら薄肉形状の製品ができない。生産性
が悪い、磁石F12次加工で磁石粉末全発生し栃いなど
の不具合が必る。また射出成形法は、磁石粉末の旬tま
(11−産性を考えると60 VOI%〜65 Vo1
%止″1vであり、磁気性能を高めることは無理である
。また金型コストが高いため、数量をかなり多く加工し
ないとコスト競争力がなくなる。前記した成形法はいず
れも非連続加工であり、樹脂ボンド異方性磁石の%に、
加工コスト低減をはかるためVCは不向きである。−力
1981゜5 tbR−CoWork−8r>op、
P 55 b 〜569 。The compression molding method uses heavy metal 85 Vol.
Since it can increase up to 90VO1%, it is easy to improve the magnetic properties. However, thin-walled products cannot be produced. Productivity is poor, and all magnet powder is generated during the magnet F1 secondary processing, leading to problems such as cracking. In addition, the injection molding method can produce up to 60 VOI% to 65 Vol.
It is impossible to improve the magnetic performance because the molding cost is high and the molding cost is high, so unless a large number of molds are processed, cost competitiveness is lost.The above-mentioned molding methods are all discontinuous processing. ,% of resin bonded anisotropic magnet,
VC is not suitable for reducing processing costs. -Power 1981゜5 tbR-CoWork-8r>op,
P55b~569.
rDevel、opments in the Pro
duction of boro]edrareear
th−cobalt magn’ets−Jによれば、
異方性樹脂ボンド磁石の生産性の良い方法が提案されて
いる。しかしながら本引例は、熱硬化性′4frl脂バ
インダーのエポキシ樹脂とS m COa粉末を混合し
、磁場中押出成形する方法である。加工速度約40園/
分で加工しながら、型内で磁場配向・加熱硬化させる。rDevel, options in the Pro
duction of boro]edrareear
According to th-cobalt magnets-J,
A highly productive method for producing anisotropic resin-bonded magnets has been proposed. However, this cited example involves a method in which an epoxy resin with a thermosetting '4frl fat binder and S m COa powder are mixed and extrusion molded in a magnetic field. Processing speed approx. 40/
While processing in minutes, it is magnetically oriented and heated to harden within the mold.
このような条件で成形されることから生産性すなわち量
産性に劣りどうしてもコストが高くなる欠点があった。Molding under such conditions has the drawback of poor productivity, ie, mass production, and inevitably resulting in high costs.
また、熱硬化性樹脂バインダーを使用するため型内で加
熱硬化しなけitばならない制約条件があった。Furthermore, since a thermosetting resin binder is used, there is a constraint that it must be heated and cured within the mold.
本発明は、このような欠点を除去するもので、その目的
とするところは、生産性=量産性全大巾に高め低コスト
異方性希土類樹脂磁石をつくることである。また他の目
的は、異方性樹脂ボンド磁石の製品形状を完全につくり
込んでしまうことにある。The present invention aims to eliminate these drawbacks, and its purpose is to produce an anisotropic rare earth resin magnet at a low cost by greatly increasing productivity (mass production). Another purpose is to completely formulate the product shape of the anisotropic resin bonded magnet.
本発明の異方性樹脂磁石の製造方法によれば、□任意形
状、異方性は一軸、ラジアルも可能であり大変自由度の
高い磁石を、工業的規模で供給できる。すなわち壕ず磁
石粉末は、Yおよびラントナイド系希土類金属と遷移金
属で構成される、希土類金属間化合物組成の合金を用い
る。次に合金粉末とし、この粒度は2μm〜300μm
で、製造条件によってその分布は異なるものである。According to the method of manufacturing an anisotropic resin magnet of the present invention, □ An arbitrary shape and anisotropy of uniaxial or radial are possible, and magnets with a very high degree of freedom can be supplied on an industrial scale. That is, as the trenchless magnet powder, an alloy having a rare earth intermetallic compound composition composed of Y, a lanternide rare earth metal, and a transition metal is used. Next, it is made into alloy powder, and this particle size is 2 μm to 300 μm.
The distribution differs depending on the manufacturing conditions.
磁石粉末は40〜+35 v01%、残部は熱可塑性樹
脂である。熱可塑性樹脂は、次のようなものがある。ナ
イロン6、ナイロン6−6、ナイロン12、ポリエチレ
ン、ポリプロピレン、pps(ポリフエニレノサルファ
イド)、 、 E V A (エチレンビニールアセテ
ートコホリマー)その他熱可塑性樹脂を用いることがで
きる。次に磁石粉末と樹脂の混合物は、スクリュ一式混
練磯、あるいはバンバリーミキサ−などによって、加熱
しながら混練し、コンパウンドとする。次rCコンパウ
ンドは、押出成形様に装入される。Magnet powder is 40~+35v01%, the remainder is thermoplastic resin. Thermoplastic resins include the following. Nylon 6, nylon 6-6, nylon 12, polyethylene, polypropylene, pps (polyphenylene sulfide), EVA (ethylene vinyl acetate copolymer), and other thermoplastic resins can be used. Next, the mixture of magnet powder and resin is heated and kneaded to form a compound using a kneading iron with a set of screws, a Banbury mixer, or the like. The rC compound is then charged in an extrusion fashion.
本発明の押出成形方法概念図全第1図に示す。A conceptual diagram of the extrusion molding method of the present invention is shown in FIG. 1.
1のスクリューにより、コンパウンド4は、バレル2の
巾を前方に押し出される。バレル2.混練物通過空間6
,10σ6のヒーターに通雷されることにより外周より
100℃〜350℃に加熱され、混線物のバインダーで
ある熱可塑性樹脂は、溶融、流動状態となる。ここで流
動しているコンパウンドは、10の空間部分に、電磁石
コイル8゜ヨーク5.9VCよって、磁場が印加される
。磁場コイルに流す電流は、約5OAで該10部には、
約10 Koe ark得た。ここで配向された混線物
は、11のコイルに通水して、15の冷却ダイスによっ
て、冷却固化された。The compound 4 is forced forward across the width of the barrel 2 by the screw 1. Barrel 2. Kneaded material passing space 6
, 10σ6 heater is heated from the outer periphery to 100° C. to 350° C., and the thermoplastic resin which is the binder of the hybrid material becomes melted and fluidized. A magnetic field is applied to the flowing compound in 10 spaces by an 8° yoke 5.9 VC electromagnetic coil. The current flowing through the magnetic field coil is approximately 5 OA, and the 10 parts include:
Got about 10 Koe ark. The oriented crosstalk was passed through 11 coils and cooled and solidified by 15 cooling dies.
次に異方性向11旨ポンド磁石14は、15のGCカッ
ターあるいは、ダイギモンドカッターにより切断加工さ
れ、所望の長さに決定される。なお外径あるいは中径、
肉厚等の寸法は、ダイス空間10、冷却ダイス13,7
の心金などによって精度は決まる。また押出条件(温度
、圧力、成形。Next, the anisotropically oriented 11-pound magnet 14 is cut to a desired length using a GC cutter or a Digimond cutter. In addition, the outer diameter or middle diameter,
Dimensions such as wall thickness, die space 10, cooling dies 13, 7
Accuracy is determined by the core metal etc. Also extrusion conditions (temperature, pressure, molding.
スピード、形状など諸々のことにより決まるが、基本的
には、押出成形加工条件の制御で決定し、2次加工は、
切断加工以外は、はとんど行わなくて良い利点を有する
。異方性樹脂ボンド磁石の寸法形状にもよるが、本発明
の加工速度は、大略1001m/分以上を達成出来るの
で、生育性は極めて良い。It is determined by various factors such as speed and shape, but basically it is determined by controlling the extrusion processing conditions, and secondary processing is
It has the advantage of not requiring much work other than cutting. Although it depends on the size and shape of the anisotropic resin bonded magnet, the processing speed of the present invention can achieve approximately 1001 m/min or more, so the growth is extremely good.
〔実施例−1〕
第2図は比較例の押出成形法を第6図は工程流れ図を示
す。コンパウンド22−aは、バレル17に装入され、
16のシリンダーによって前方に加圧押し出される。[Example-1] Fig. 2 shows an extrusion molding method of a comparative example, and Fig. 6 shows a process flow chart. The compound 22-a is charged into the barrel 17,
It is pressed forward by 16 cylinders.
コンパウンドtl’l、S m OOs磁粉粒朋(3−
6μ扉)を68 Vow%(容量比)残部エポキシ樹1
111iT (熱硬化性)の混合物を用い170バレル
中に入れた。Compound tl'l, S m OOs magnetic powder grains (3-
6μ door) to 68 Vow% (capacity ratio) remaining epoxy wood 1
A 111iT (thermosetting) mixture was used and placed in a 170 barrel.
なおこの時バレル内は加圧により加熱されるため18の
冷却コイルにて、冷やしながら行なった。At this time, since the inside of the barrel was heated by pressurization, it was cooled using 18 cooling coils.
次Vこコンパウンドは22−bで、磁場9 Koe印加
された型内金約60朋/分で通過させながら加熱、固化
させた。21のニクロムヒーターで約り50℃±5fJ
’CKコントロールしながら、同時に19のコイルにI
J/C雷流を加え20ポールピースを介して、22−b
に約9 Koeの磁場金加えた状態で成形した。Next, the compound was heated and solidified at 22-B while passing through the mold at a rate of about 60 m/min to which a 9 Koe magnetic field was applied. Approximately 50℃±5fJ with 21 nichrome heater
'While controlling CK, I input to 19 coils at the same time.
Add J/C lightning current through 20 pole piece, 22-b
It was molded in a state where about 9 Koe of gold was added to the magnetic field.
次に磁石試料は、空冷され緒特性比較試料に用いた。Next, the magnet sample was used as an air-cooled cable characteristic comparison sample.
本発明法における異方性#脂ボンド磁石は、第1図に示
す装置及び第4図に示す工程に従ってつくられた。試料
と製造条件はrC1表に示す。The anisotropic #resin bonded magnet according to the method of the present invention was manufactured according to the apparatus shown in FIG. 1 and the steps shown in FIG. 4. The samples and manufacturing conditions are shown in Table rC1.
第1表
本例は、バインダーにナイロン6を用い約260℃に加
熱された、型(ダイス)全通過させた。なお、本発明に
おける、押出装置tは、第1図のものを用いた。本発明
試料形状は巾18×巾12x、10ν2に切断した。な
お比較例は、第2り1に示す、押出装置を用いた。本発
明法は、加工速度が極めて速く生産性の高いことが立証
された。第2表は、祷られた、異方性樹脂ボンド磁石の
性能を示す。Table 1 In this example, nylon 6 was used as the binder, and the sample was passed through a die heated to about 260°C. In the present invention, the extrusion device t shown in FIG. 1 was used. The sample shape of the present invention was cut to a width of 18 x width of 12 x and a size of 10 ν2. In the comparative example, an extrusion device shown in Section 2-1 was used. It has been demonstrated that the method of the present invention has extremely high processing speed and high productivity. Table 2 shows the desired performance of the anisotropic resin bonded magnet.
磁気特性、機械的性・Iqについても、比較例に比し、
すぐ第1、た性能が得られた。Regarding magnetic properties, mechanical properties, and Iq, compared to comparative examples,
Immediately, the first performance was obtained.
〔実施例−2〕
磁石@金粉末組成は、Sm (Cobel Cu6引F
’e>22Zr(、、。2a )A−2なる、磁気硬化
処理のための熱処理を終えた合金を、アトライターミル
全相いて粉砕した。[Example-2] Magnet @gold powder composition is Sm (Cobel Cu6 F
'e>22Zr(,,.2a) A-2, an alloy that had been heat-treated for magnetic hardening treatment, was pulverized using an attritor mill.
粒度分布は3μrIL〜80μm、平均粒度は、フイツ
シャーサブシーブザイザーによれば、約32μmであっ
た。合金微粉末は、ナイロン12(財脂を加えて、PC
!M−45(池貝鉄工所製)スクリュータイプ混練機で
、約300℃に加熱しながら混線しコンパウンド全つく
った。このコンパウンドを第5図に示す押出成形装置に
より、約10Koeの磁場中で成形を行った。The particle size distribution was 3 μrIL to 80 μm, and the average particle size was about 32 μm according to the Fischer subsieve sizer. The alloy fine powder is nylon 12 (with the addition of fat, PC
! The entire compound was prepared by mixing with an M-45 (manufactured by Ikegai Iron Works) screw type kneader while heating to about 300°C. This compound was molded using an extrusion molding apparatus shown in FIG. 5 in a magnetic field of about 10 Koe.
第3表に製造条件と、結果を示す。Table 3 shows the manufacturing conditions and results.
ナイロン12は、融点178℃で、融点直上では押出成
形できないことがわかった。It was found that Nylon 12 has a melting point of 178° C. and cannot be extruded just above the melting point.
本実施例は、異方性磁場配向処理は、押出方向と同方向
(tll+方向)Ic行なった。試用に15°tの断面
積をもった形状である。なお押出圧力は、200〜50
0 Ko/ cnjであった。本実施例から、ナイロン
に樹口旨をバインダーとして、2−17系煽土炉金%%
Ifal化合物磁石粉末コンパウンドを用いて異方性
樹脂ボンド磁石を、工業的規模で製造出来る見aLが得
られた。In this example, the anisotropic magnetic field orientation treatment was performed in the same direction as the extrusion direction (tll+ direction) Ic. It has a cross-sectional area of 15°t for trial purposes. Note that the extrusion pressure is 200 to 50
It was 0 Ko/cnj. From this example, using nylon as a binder, 2-17 series fan earth gold%%
It was possible to produce anisotropic resin bonded magnets on an industrial scale using the Ifal compound magnet powder compound.
以上述べたよう!広本発明によれば、異方性樹脂ボンド
磁石の製造方法に於て、磁石粉末と熱可塑性俯脂からな
るコンパウンドを、加熱中磁場配向させた、ダイス巾を
前記混合物を流動通過させることによって、磁気性能は
l EHl rnax 8 MGoe f達成しながら
、低コスト化をはかれる効果を有する。As mentioned above! According to the present invention, in a method for manufacturing an anisotropic resin-bonded magnet, a compound consisting of magnet powder and thermoplastic resin is heated and oriented in a magnetic field, by flowing the mixture through the width of a die. , it has the effect of achieving low cost while achieving magnetic performance of l EHl rnax 8 MGoe f.
さらに伺言するならば磁石粉末は、希土類全日間化@物
で粉末粒度は、1μm〜600μmの範囲である。粒度
はこれ以上大きくなると、成形速度粉末の配向性を阻害
し、磁気性能を低くしてしまう。To be more specific, the magnet powder is made of rare earth materials and has a powder particle size in the range of 1 μm to 600 μm. If the particle size becomes larger than this, the compacting speed will inhibit the orientation of the powder, resulting in a decrease in magnetic performance.
次に本発明は、加熱によって混線物(コンパウンド)は
、流動状態として配向、成形し、冷却・固化する工程を
経ることによって、製品を連続住所加工を行なオ、るの
で、前症性にすぐれた、低コスト磁石を供給できる効果
がある。また今までC成形法では、薄肉円筒状、薄板あ
るいは、長尺味などの形態金有する異方性磁石はコスト
が高く工業的には量産化がむずかしかった。本発明によ
t]ば、いかなる断面形状でも、該空間を通過させるこ
とで容易に生産対応できる利点がある。このような異方
性樹脂ボンド磁石の用途とじ−〔は次のような吃のが考
えられる。薄肉円筒状研石は例えは外径boz以下でt
(厚)=1.5朋以下〜では、M型ステッピングモータ
用磁石、エンコーダーなど多極着磁して使用される分野
である。また、t;11III11以下のテープ状磁石
であれば、リニアモーター用、エンコーダー用、モータ
ーセンサーなどに用いられる。Next, in the present invention, the mixed substance (compound) is oriented and molded in a fluid state by heating, and the product undergoes continuous processing by cooling and solidifying, thereby preventing presymptomatic symptoms. It has the effect of supplying excellent, low-cost magnets. Furthermore, in the conventional C forming method, anisotropic magnets having shapes such as thin cylinders, thin plates, or elongated shapes are expensive and difficult to mass-produce on an industrial scale. According to the present invention, there is an advantage that any cross-sectional shape can be easily produced by passing through the space. Possible uses of such anisotropic resin bonded magnets are as follows. For example, a thin cylindrical grinding stone has an outer diameter of less than t
(Thickness) = 1.5 mm or less is used in fields where multi-pole magnetization is used, such as M-type stepping motor magnets and encoders. Further, tape-shaped magnets with t; 11III11 or less can be used for linear motors, encoders, motor sensors, etc.
第1図、第4図、第5図は本発明法の実施例を示す。第
2図、第6図は従来法。
1・・・スクリュー
2 ・・・ノく し ル
6・・・加熱ヒーター
4・・・混a!s<コンパウッド)
5・・・磁場コイル、ヨーク
6 ・・・
7・・・心金
8・・・コイル
9・・・磁場コイル、ヨーク
10・・・ダイス、空間部
11・・・冷却コイル
12 ・・・
15・・・冷却ダイス
14・・・押出された異方性樹脂磁石
15・・・ダイヤモンドンー
16 加圧シリング“−
17・・・ノ(レル
18・・・冷却コイル
19・・・コイル
20・・・ポールピース
21・・・加熱ヒーター
22−a・・・コンパウンド
22−b・・・磁石
以 −ト
出願人 株式会社諏訪精工舎
代理人 弁理士 最 、上 梓
!
第1図
りに つ M1, 4 and 5 show examples of the method of the invention. Figures 2 and 6 show the conventional method. 1... Screw 2... Nokushiru 6... Heating heater 4... Mix a! s<Compa wood) 5... Magnetic field coil, yoke 6... 7... Core metal 8... Coil 9... Magnetic field coil, yoke 10... Dice, space 11... Cooling coil 12...15...Cooling die 14...Extruded anisotropic resin magnet 15...Diamond-16 Pressure sill "- 17...No(Rel 18...Cooling coil 19...・Coil 20... Pole piece 21... Heating heater 22-a... Compound 22-b... Magnet Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Azusa Kami! First plan Nitsu M
Claims (1)
出成形後冷却固化する異方性樹脂磁石の製造方法におい
て、下記製造工程を含むことを特徴とする異方性IJ
IIW磁石の製造方法。 (1)押出時の混練物通過空IVlに磁場を発生させる
ための、磁場コイル、磁場回路(ヨーク)を形成する。 (2) 押出時の混練物通過空間を、温1号“1tlO
℃〜350℃に加熱する。 (3)永久磁石となる混線物を押出成形する際、磁場コ
イルに電流を流すことによって、混練物通過空間Vc6
K oe〜30 Koeの磁場を加える。 (4) 押出された成形体を冷却、固化する。 (5)成形体をカッティングする。[Claims] A method for producing an anisotropic resin magnet in which a mixture of magnet powder and #He binder is extruded in a full magnetic field and then cooled and solidified, the method comprising the following production steps:
Method for manufacturing IIW magnets. (1) A magnetic field coil and a magnetic field circuit (yoke) are formed to generate a magnetic field in the air IV1 through which the kneaded material passes during extrusion. (2) The space through which the kneaded material passes during extrusion is
Heat to 350°C. (3) When extruding a mixed material that will become a permanent magnet, by passing a current through the magnetic field coil, the mixed material passing space Vc6
A magnetic field of K oe to 30 Koe is applied. (4) Cool and solidify the extruded molded body. (5) Cutting the molded body.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6626384A JPS60208817A (en) | 1984-04-03 | 1984-04-03 | Manufacture of anisotropic resin magnet |
JP2003201A JPH02224207A (en) | 1984-04-03 | 1990-01-10 | Manufacturing method of anisotropic resin bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6626384A JPS60208817A (en) | 1984-04-03 | 1984-04-03 | Manufacture of anisotropic resin magnet |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003201A Division JPH02224207A (en) | 1984-04-03 | 1990-01-10 | Manufacturing method of anisotropic resin bonded magnet |
JP2003203A Division JPH02224203A (en) | 1990-01-10 | 1990-01-10 | Anisotropic resin bonded magnet and its manufacturing method |
JP2003202A Division JPH02297912A (en) | 1990-01-10 | 1990-01-10 | Manufacture of anisotropic resin bond magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60208817A true JPS60208817A (en) | 1985-10-21 |
Family
ID=13310788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6626384A Pending JPS60208817A (en) | 1984-04-03 | 1984-04-03 | Manufacture of anisotropic resin magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60208817A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02224207A (en) * | 1984-04-03 | 1990-09-06 | Seiko Epson Corp | Manufacturing method of anisotropic resin bonded magnet |
JPH02224203A (en) * | 1990-01-10 | 1990-09-06 | Seiko Epson Corp | Anisotropic resin bonded magnet and its manufacturing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49120196A (en) * | 1973-03-23 | 1974-11-16 | ||
JPS5214440A (en) * | 1975-06-13 | 1977-02-03 | Finike Italiana Marposs | Apparatus for measuring geometric dimensions and errors of machine parts |
JPS5326993A (en) * | 1976-08-24 | 1978-03-13 | Kanegafuchi Chemical Ind | Plastic magnet and method of manufactre thereof |
JPS5623711A (en) * | 1979-08-02 | 1981-03-06 | Seiko Epson Corp | Production of intermetallic compound magnet |
JPS56125814A (en) * | 1980-03-10 | 1981-10-02 | Hitachi Metals Ltd | Manufacture of cylindrical permanent magnet |
JPS58219705A (en) * | 1982-06-14 | 1983-12-21 | Maguetsukusu:Kk | Anisotropic ring polymer magnet and apparatus for manufacturing the same |
JPS59127823A (en) * | 1983-01-12 | 1984-07-23 | Matsushita Electric Ind Co Ltd | Resin magnet molding equipment |
-
1984
- 1984-04-03 JP JP6626384A patent/JPS60208817A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49120196A (en) * | 1973-03-23 | 1974-11-16 | ||
JPS5214440A (en) * | 1975-06-13 | 1977-02-03 | Finike Italiana Marposs | Apparatus for measuring geometric dimensions and errors of machine parts |
JPS5326993A (en) * | 1976-08-24 | 1978-03-13 | Kanegafuchi Chemical Ind | Plastic magnet and method of manufactre thereof |
JPS5623711A (en) * | 1979-08-02 | 1981-03-06 | Seiko Epson Corp | Production of intermetallic compound magnet |
JPS56125814A (en) * | 1980-03-10 | 1981-10-02 | Hitachi Metals Ltd | Manufacture of cylindrical permanent magnet |
JPS58219705A (en) * | 1982-06-14 | 1983-12-21 | Maguetsukusu:Kk | Anisotropic ring polymer magnet and apparatus for manufacturing the same |
JPS59127823A (en) * | 1983-01-12 | 1984-07-23 | Matsushita Electric Ind Co Ltd | Resin magnet molding equipment |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02224207A (en) * | 1984-04-03 | 1990-09-06 | Seiko Epson Corp | Manufacturing method of anisotropic resin bonded magnet |
JPH02224203A (en) * | 1990-01-10 | 1990-09-06 | Seiko Epson Corp | Anisotropic resin bonded magnet and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2530641B2 (en) | Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same | |
US5464670A (en) | Resin bound magnet and its production process | |
JPS63211706A (en) | Manufacture of magnetic powder for bond magnet | |
JPS60208817A (en) | Manufacture of anisotropic resin magnet | |
JPS5853491B2 (en) | Manufacturing method of anisotropic ring-shaped resin magnet | |
JPH0611014B2 (en) | Manufacturing method of cylindrical magnet | |
JPS60194503A (en) | Composite permanent magnet blank | |
JPH09148166A (en) | Method for manufacturing resin-bonded magnet | |
Ohmori | Bonded Rare Earth Permanent Magnets | |
JPH02251111A (en) | Manufacturing method of resin bonded rare earth magnet | |
JP2020053515A (en) | Manufacturing method of multipole bonded magnet composite | |
JPH02297912A (en) | Manufacture of anisotropic resin bond magnet | |
JPH0624176B2 (en) | Method for producing polar anisotropic long molded products | |
JPH02224207A (en) | Manufacturing method of anisotropic resin bonded magnet | |
JP2002057014A (en) | Anisotropic magnet, its manufacturing method, and motor using the same | |
JPH0626162B2 (en) | Method for manufacturing C-type anisotropic resin bonded magnet | |
JPH02222108A (en) | Magnet roll | |
JPH0517691B2 (en) | ||
JP2903603B2 (en) | Extrusion mold and method of manufacturing resin-bonded magnet | |
JPH02251103A (en) | Cylindrical resin bonded magnet and manufacturing method thereof | |
JPH0469407B2 (en) | ||
JPS63254712A (en) | Manufacturing method of cylindrical rare earth magnet | |
JPS5849011B2 (en) | Manufacturing method of anisotropic cylindrical polymer magnet | |
JPH056813A (en) | Circular magnet having characteristic distribution and manufacture thereof | |
JPH03274413A (en) | magnetic encoder |