JPS62232910A - Manufacture of multi-polar anisotropic resinous magnet - Google Patents
Manufacture of multi-polar anisotropic resinous magnetInfo
- Publication number
- JPS62232910A JPS62232910A JP7546286A JP7546286A JPS62232910A JP S62232910 A JPS62232910 A JP S62232910A JP 7546286 A JP7546286 A JP 7546286A JP 7546286 A JP7546286 A JP 7546286A JP S62232910 A JPS62232910 A JP S62232910A
- Authority
- JP
- Japan
- Prior art keywords
- anisotropic
- orientation
- magnetic
- magnetic field
- radial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000006247 magnetic powder Substances 0.000 claims abstract description 32
- 239000011347 resin Substances 0.000 claims description 29
- 229920005989 resin Polymers 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 2
- 230000008023 solidification Effects 0.000 abstract 1
- 238000007711 solidification Methods 0.000 abstract 1
- 230000005415 magnetization Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000005347 demagnetization Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012761 high-performance material Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- -1 samarium cobalt Chemical class 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は異方性樹脂磁石の製造方法に関し、特に異方性
樹脂磁石の深部まで、多極異方性配向が容易に行える異
方性樹脂磁石の製造方法に関す。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing an anisotropic resin magnet, and in particular to an anisotropic resin magnet that allows easy multipolar anisotropic orientation deep into the anisotropic resin magnet. Concerning a method for manufacturing resin magnets.
従来、多極異方性配向された樹脂磁石は、磁性粉と高分
子材料を混練し磁性粉を配向させることなく成形した等
方性の樹脂成形品に多極着磁する方法や、成形時にN、
S2極の磁場により磁性粉をラジアル異方性又はアキシ
ャル異方性に配向させた異方性樹脂成形品に多極着磁す
る方法により作成されたものがほとんどであった。着磁
の容易性を考慮すると、後者のようにあらかじめ樹脂成
形品にラジアル又はアキシャル異方性配向させている方
が好ましい。Conventionally, multipolar anisotropically oriented resin magnets have been produced by a method of multipolar magnetizing an isotropic resin molded product made by kneading magnetic powder and polymeric material and molding without orienting the magnetic powder, or by a method of multipolar magnetization during molding. N,
Most of them were created by a method of multipolar magnetization of an anisotropic resin molded product in which magnetic powder was oriented radially or axially anisotropically by the magnetic field of the S2 pole. In consideration of ease of magnetization, it is preferable that the resin molded product be radially or axially anisotropically oriented in advance as in the latter case.
上記のラジアル又はアキシャル異方性樹脂成形品を得る
には、第2−1図に断面図を示すように、N、SZM+
を対向させた空間(キャビティー)において樹脂を成形
すればよい。この方法は、成形品のキャビティーに充分
な配向磁場をかけることが可能な為、配向度は95%以
上のものが得られるという利点があり、さらに、磁気特
性を良くするために磁性粉含有量を多くし流動配向性が
悪くなフたものにも内部深くまで成形配向させることが
可能である。In order to obtain the above radial or axial anisotropic resin molded product, N, SZM+
The resin may be molded in a space (cavity) in which the two faces face each other. This method has the advantage that it is possible to apply a sufficient orienting magnetic field to the cavity of the molded product, resulting in a degree of orientation of over 95%.Furthermore, it contains magnetic powder to improve magnetic properties. Even if the amount is increased and the flow orientation is poor, it is possible to mold and orient the material deep inside.
(発明が解決しようとする問題点)
しかしラジアル又はアキシャル異方性配向成形品を多極
に着磁する場合には、着磁に使用する磁気の磁路6(第
2−2図中の6)が、成形品内部の1部において、磁性
粉のもつ磁化容易軸(磁性粉の磁化され易い方向)と9
0°の方向を向いてしまう為に、配向度そのものは高い
が配向方向が1部具なるために、磁気がその部分におい
て規制されてしまい磁気性能か材料の持っている性能と
してはかなり低い所で使用しなければならないという大
きな原理的問題点があった。(Problem to be Solved by the Invention) However, when magnetizing a radially or axially anisotropically oriented molded product into multiple poles, the magnetic path 6 used for magnetization (6 in Figure 2-2) ) is the axis of easy magnetization of the magnetic powder (the direction in which the magnetic powder is easily magnetized) and 9
Because it faces in the 0° direction, the degree of orientation itself is high, but since the orientation direction is one part, the magnetism is restricted in that part, and the magnetic performance or the performance of the material is quite low. There was a major theoretical problem in that it had to be used in
上記問題点を解決する方法として、最近、着磁の際に使
用される磁気回路と類似の形状にあらかじめ多極異方性
配向している樹脂成形品に着磁を施すという方法が用い
られている。この方法は、例えば第3−1図に断面図を
示すように、N、S極を交互にかけているキャビティー
中で成形品を作成するものである。As a method to solve the above problems, a method has recently been used in which magnetization is applied to a resin molded product that has been previously oriented with multipolar anisotropy in a shape similar to the magnetic circuit used for magnetization. There is. In this method, for example, as shown in the cross-sectional view of FIG. 3-1, a molded product is created in a cavity in which N and S poles are alternately applied.
この方法で得られた樹脂成形品は、着磁に使用される磁
気回路と配向方向が一致しているものの、多極の配向磁
場を発生させるためのN、S極構造か対向磁極とならな
いために、前記のラジアル異方性配向、アキシャル異方
性配向の場合に使用させるギヤツブ間パーミアンスに比
較して、この方法では漏洩パーミアンスだけによって発
生する磁場を用いて配向させねばならず、配向用の磁場
としては対向磁極(ラジアル異方性配向、アキ。Although the resin molded product obtained by this method has an alignment direction that matches the magnetic circuit used for magnetization, it does not have an N-S pole structure or opposing magnetic poles to generate a multi-pole alignment magnetic field. Compared to the gear-to-gear permeance used in the radial anisotropic orientation and axial anisotropic orientation described above, this method requires orientation using a magnetic field generated only by leakage permeance. The magnetic field is opposed magnetic poles (radial anisotropic orientation, aki.
シャシ異方性配向)の場合と比較して数分の1〜数十分
の1になってしまうという原理的な欠点があった。又配
向そのものの深さも、対向磁極の様に成形品の半径方向
または厚み方向には磁束がほとんど通らないために、多
極になればなるほど表面層のみでしか磁束が通らず、表
面層のみしか配向か起こらなくなってしまい、他の大部
分は等方性になっているままであり、磁気特性の向上に
寄与しない所が大部分をしめていた。さらに多極の場合
N、Sの磁極間の距離か近くなるため磁束がキャビティ
ーを通らず磁極間で直接リークしてしまうことによる配
向磁場そのものの低下との相乗効果によって非常に効率
が低下してしまっていた。There is a fundamental drawback that the amount is a few to several tenths of that of the chassis anisotropic orientation. In addition, the depth of the orientation itself is such that magnetic flux hardly passes in the radial direction or thickness direction of the molded product like with opposing magnetic poles, so the more poles there are, the more magnetic flux passes only through the surface layer, Orientation no longer occurs, and most other areas remain isotropic, and most of the areas do not contribute to improving magnetic properties. Furthermore, in the case of multiple poles, the distance between the N and S magnetic poles becomes close, so the magnetic flux does not pass through the cavity and leaks directly between the magnetic poles, resulting in a synergistic effect with a decrease in the alignment magnetic field itself, resulting in a significant decrease in efficiency. I had left it behind.
また、その為に、ラジアル異方性配向、アキシャル異方
性配向では問題なく使用できていた磁性粉の含有量の多
い高性能材料等は流動配向性が悪いため、多極成形配向
においてはほとんど配向せず、使用できないという大き
な原理的欠点があった。In addition, for this reason, high-performance materials with a high content of magnetic powder, which could be used without problems in radial anisotropic orientation and axial anisotropic orientation, have poor flow orientation, so they are rarely used in multipolar molding orientation. It had a major fundamental defect in that it could not be used because it could not be oriented.
このように、多極異方性配向成形方法を用いても、磁性
粉含有量の少い磁気特性の低いものしか使用できないこ
とから、ラジアル異方性配向やアキシャル異方性配向で
磁性粉含有量の多い高性能材料を配向させたものと結果
的には大差がなくなってしまっていた。In this way, even if a multipolar anisotropic orientation molding method is used, only materials with a small magnetic powder content and low magnetic properties can be used. In the end, the results were not much different from those in which a large amount of high-performance material was oriented.
(発明の目的〕
本発明は上記従来の問題点に鑑み成されたものであり、
その目的は、磁気性能を充分に発揮できる多極異方性配
向されている部分を有する樹脂磁石の製造方法、特に表
面層だけでなく内部深くまで多極異方性配向されている
樹脂磁石の製造方法を提供することにある。(Object of the invention) The present invention has been made in view of the above-mentioned conventional problems,
The purpose is to develop a method for manufacturing resin magnets that have multipolar anisotropically oriented parts that can fully demonstrate magnetic performance, especially for resin magnets that have multipolar anisotropically oriented parts not only in the surface layer but also deep inside. The purpose is to provide a manufacturing method.
C問題点を解決するための手段〕
本発明の上記目的は、磁性粉を含む樹脂磁石の組成物を
筒状のキャビティー内で溶融状態に保ちつつ該キャビテ
ィーに磁場をかけることにより該磁性粉を異方性配向さ
せる工程を含む多極異方性配方磁場の製造方法であって
、異方性配向させる工程として、該キャビティーの内外
周側からラジアル又はアキシャル異方性配向退場をかけ
磁性粉をラジアル又はアキシャル異方性配向させる工程
と、続いて該キャビティーの外周側から多極異方性配方
磁場をかけ磁性粉の一部を多極異方性配方させる工程と
を含む多極異方性配方磁場の製造方法によって達成され
る。Means for Solving Problem C] The above-mentioned object of the present invention is to maintain the resin magnet composition containing magnetic powder in a molten state in a cylindrical cavity and to apply a magnetic field to the cavity. A method for producing a multipolar anisotropic orientation magnetic field including a step of anisotropically orienting powder, the step of anisotropically orienting the powder comprising applying radial or axial anisotropic orientation exit from the inner and outer peripheral sides of the cavity. A multi-pole method including the step of radially or axially anisotropically orienting the magnetic powder, and the step of applying a multipolar anisotropic orienting magnetic field from the outer periphery of the cavity to orient a part of the magnetic powder in a multipolar anisotropic manner. This is achieved by a method of producing a polar anisotropic orienting magnetic field.
本発明の多極異方性配方磁場の製造方法について第1−
1図〜第1−4図を用いて説明する。Regarding the manufacturing method of the multipolar anisotropic orienting magnetic field of the present invention, Part 1-
This will be explained using FIGS. 1 to 1-4.
第1−11図〜第1−3図はそわぞれ、金型キャビティ
ー内の成形品と配力磁極の関係等を示す模式図である。1-11 to 1-3 are schematic diagrams showing the relationship between the molded product in the mold cavity and the distribution magnetic poles, respectively.
第1−1図〜第]−3図において、1はラジアル異方性
配向用のN極、2はラジアル異方性配向用のS極、3は
成形品(又はキャビティー)、4はフェライト磁性粉、
5はラジアル異方性配向用の磁束の流れ、7はラジアル
異方性配向磁場発生コイル、8は脱磁用コイル、9は交
互にN、S極をかける多極異方性配向用のパルス磁界用
のコイルであり、IOは多極異方性配向用磁場である。In Figures 1-1 to 1-3, 1 is an N pole for radial anisotropic orientation, 2 is an S pole for radial anisotropic orientation, 3 is a molded product (or cavity), and 4 is a ferrite. magnetic powder,
5 is a flow of magnetic flux for radial anisotropic orientation, 7 is a radial anisotropic orientation magnetic field generating coil, 8 is a demagnetizing coil, 9 is a pulse for multipolar anisotropic orientation that alternately applies N and S poles. It is a coil for a magnetic field, and IO is a magnetic field for multipolar anisotropic orientation.
また第1−4図においてはaはラジアル異方性配向用の
電流波形を表すグラフ、bは高周波減衰脱磁用電流波形
を表すグラフ、Cはパルス磁界による多極異方性配向用
電流波形を表すグラフである。In Fig. 1-4, a is a graph representing a current waveform for radial anisotropic orientation, b is a graph representing a current waveform for high frequency attenuation demagnetization, and C is a current waveform for multipolar anisotropic orientation using a pulsed magnetic field. This is a graph representing
本発明の多極異方性樹脂M1石の製造方法の一態様とし
ては、まず第1−1図に断面図を示すような金型の、ラ
ジアル異方性配力用のN極1、ラジアル異方性配力用の
S極2のあいだの空間(キャビティー)において、磁性
粉と高分子材料との混合物を、磁性粉が容易に向きを変
えることがてきるような溶融状態にしておいて、ラジア
ル異方性配向用コイル7に第1−4図のaに波形を示す
ような直流電流を流す。このコイルによりて発生した磁
束はラジアル異方性配向磁極N極1を通って成形品3内
部を通って第]−2図に示すようなラジアル異方性配向
用磁束の流れ5となってラジアル異方性配向用磁極S極
2へ流れて閉ループとなる。As one aspect of the method for manufacturing the multipolar anisotropic resin M1 stone of the present invention, first, the N pole 1 for radial anisotropic distribution, the radial In the space (cavity) between the S poles 2 for anisotropic force distribution, the mixture of magnetic powder and polymer material is brought into a molten state so that the magnetic powder can easily change direction. Then, a direct current having a waveform shown in a of FIG. 1-4 is passed through the radial anisotropic orientation coil 7. The magnetic flux generated by this coil passes through the radial anisotropy orientation magnetic pole N pole 1, passes through the inside of the molded product 3, and becomes a radial anisotropy orientation magnetic flux flow 5 as shown in Figure 1-2. It flows to the magnetic pole S pole 2 for anisotropic orientation, forming a closed loop.
このとき、成形品内部では第1−2図に示すように磁性
粉(例えばフェライト磁性粉)がラジアル方向へ配列す
る。キャビティー内に樹脂磁石の材料を溶融状態で存在
せしめるのと、コイルに電流を流す順番は上記に限らず
、コイルに電流を流しキャビティーに磁場を発生させて
いるところへ、樹脂磁石の材料を射出してもよく、この
場合は、材料及び磁場の条件等にもよるが射出、配向の
工程は約0.5秒〜1秒で完了する。At this time, magnetic powder (for example, ferrite magnetic powder) is arranged in the radial direction inside the molded product as shown in FIGS. 1-2. The order in which the resin magnet material is made to exist in a molten state in the cavity and the current is passed through the coil is not limited to the above. In this case, the injection and orientation steps are completed in about 0.5 seconds to 1 second, depending on the material and magnetic field conditions.
次にラジアル異方性配向用電流を切って第1−4図のb
に波形を示すような脱磁電流を流す。この脱磁電流は、
フェライト磁性粉の向きを変化させないためにできるだ
け高い周波数応答の電流を使用する。例えばラジアル配
向用コイルに比較して脱磁用コイルは、ターン数を減ら
すことによってコイルのインダクタンスを低下させ逆方
向パルス磁界を短いパルス幅でかけわばよく、l/I
000〜1710000秒で脱磁できる。Next, turn off the current for radial anisotropy orientation and
A demagnetizing current with a waveform shown in is applied. This demagnetizing current is
Use a current with as high a frequency response as possible to avoid changing the orientation of the ferrite magnetic powder. For example, compared to a radial orientation coil, a demagnetizing coil can be used by reducing the number of turns to lower the coil inductance and applying a reverse pulsed magnetic field with a short pulse width.
It can be demagnetized in 000 to 1710000 seconds.
次にキャビティーに第1−4図に波形を示すようなパル
又電流Cを第1−3図のパルス磁界発生用コイル9に流
すことにより多極異方性配向用磁場1゜を発生させる。Next, a pulse or current C having the waveform shown in Fig. 1-4 is passed through the cavity to the pulsed magnetic field generating coil 9 shown in Fig. 1-3, thereby generating a magnetic field of 1° for multipolar anisotropic orientation. .
これにより今までラジアル方向二配向していた磁性粉に
うち、この多極異方性配向用磁場10の強くかかった部
分にあるものは第13図に示す様に向きを変えて多極異
方性配向となり、多極異方性配向用磁場10の弱いとこ
ろはラジアル異方性配向のまま残る。As a result, among the magnetic powders that have been oriented in two radial directions up until now, those in the areas where the magnetic field 10 for multipolar anisotropy orientation is strongly applied change their orientation as shown in FIG. The magnetic field 10 for multipolar anisotropy orientation is weak, and the radial anisotropy orientation remains.
以上の様にして2回、配向させた後、冷却固化させるこ
とにより多極異方性配向された部分のある異方性配向樹
脂磁石が得られる。After being oriented twice in the manner described above, an anisotropically oriented resin magnet having a multipolar anisotropically oriented portion is obtained by cooling and solidifying.
脱磁用磁場を発生させる方法としては上記のような方法
に限らずパルス磁界発生用コイル9に1710000秒
程度の短いパルス幅の磁界をかけて必要な部分だけを脱
磁して、その後に配向用のパルス幅の広いl7100〜
l/I 000秒程パルパルス磁界をかけても可能であ
る。The method of generating a magnetic field for demagnetization is not limited to the method described above, but it is also possible to apply a magnetic field with a short pulse width of about 1,710,000 seconds to the pulsed magnetic field generating coil 9 to demagnetize only the necessary portion, and then perform orientation. wide pulse width l7100~
It is also possible to apply a pulse magnetic field for about l/I 000 seconds.
また、キャビティー内に溶融状態の磁性粉混入高分子材
料を存在せしめる方法としては、射出成形法、トランス
ファー法、ホットプレス法、反応成形法等が使用できる
。In addition, as a method for making the polymer material mixed with magnetic powder in a molten state exist in the cavity, injection molding, transfer, hot pressing, reaction molding, etc. can be used.
本発明の異方性樹脂磁石の製造方法により製造される異
方性樹脂磁石の組成物は、磁性粉とバインダーを主成分
としており、その他、滑剤等が添加される。The anisotropic resin magnet composition manufactured by the anisotropic resin magnet manufacturing method of the present invention contains magnetic powder and a binder as main components, and a lubricant and the like are also added.
磁性粉としては、フェライト系やサマリウムコバルト系
等の希土類金属系等が使用できるが、着磁のためのエネ
ルギーが少なくてすむフェライトが好適に使用される。As the magnetic powder, ferrite, rare earth metal such as samarium cobalt, etc. can be used, but ferrite is preferably used because it requires less energy for magnetization.
使用される具体的なフェライトとしてはストロンチウム
フェライトやバリウムフェライト等が挙げられる。Specific examples of ferrites used include strontium ferrite and barium ferrite.
バインダーとしてはポリアミドやポリブチレンテレフタ
レートやポリフェニレンサルファイド等の従来公知の任
意の樹脂磁石用のバインダー材料が使用される。磁性粉
の配合割合は樹脂磁石の組成物の市−1江に対しておよ
そ70w L”*〜90wt!jiの範囲である。As the binder, any conventionally known binder material for resin magnets such as polyamide, polybutylene terephthalate, polyphenylene sulfide, etc. can be used. The blending ratio of the magnetic powder is in the range of approximately 70wL''* to 90wt!ji with respect to the weight of the resin magnet composition.
滑剤としては、ステアリン酸金属塩やビスアミド系等が
使用され、又表面処理剤としてはシラン系、チタネート
系等のものが使用される。As the lubricant, metal stearate, bisamide, etc. are used, and as the surface treatment agent, silane, titanate, etc. are used.
本発明の異方性樹脂磁石の製造方法においては、ラジア
ル又はアキシャル異方性配向させた次に多極異方性配向
用磁場をかけるため、成形品の奥深くまで多極異方性配
向用磁場が誘導される。In the method for manufacturing an anisotropic resin magnet of the present invention, since the magnetic field for multipolar anisotropic orientation is applied after radial or axial anisotropic orientation, the magnetic field for multipolar anisotropic orientation is applied deep into the molded product. is induced.
これは多極異方性配向用磁場がラジアル異方性配向させ
た磁性粉と磁気連鎖を起こし奥深くまで磁場がとどきや
すくなるからである。This is because the multipolar anisotropic orientation magnetic field creates a magnetic chain with the radially anisotropically oriented magnetic powder, making it easier for the magnetic field to reach deep inside.
また、4−記ように磁場が効率よくかかり磁性粉を配向
させる力が大きいため、磁性粉を多く含んでいる高性能
材料を使用することもできる様になり、さらに高性能な
プラスチックマグネットが得られるようになフた。In addition, as described in 4-4, since the magnetic field is applied efficiently and the force that orients the magnetic powder is large, it is now possible to use high-performance materials containing a large amount of magnetic powder, and even higher-performance plastic magnets can be obtained. I was able to do so.
〔発明の効果)
本発明の異方性樹脂磁石の製造方法においては0等方性
を残さず磁石全体が異方性配向されているので磁気効率
かよい、
■多極異方性配向か、少ないエネルギーで磁気的に効率
よく行える、
■樹脂磁石の深部まで多極異方性配向されるので性能の
よい異方性樹脂磁石が得られる、■高性能にするために
磁性粉含有量を多くした流動性の悪い材料に対しても配
向が容易に行える等の効果がある。[Effects of the invention] In the method for manufacturing an anisotropic resin magnet of the present invention, the entire magnet is anisotropically oriented without leaving zero isotropy, so magnetic efficiency is good. ■ Multipolar anisotropic orientation is low. It can be performed magnetically efficiently using energy. ■Multi-polar anisotropic orientation extends deep into the resin magnet, resulting in an anisotropic resin magnet with good performance. ■Increased magnetic powder content for high performance. It has the advantage that even materials with poor fluidity can be easily oriented.
第1−1図は本発明による多極異方性成形配向用金型の
模式断面図であり、第1−2図は本発明によるラジアル
異方性配向用磁場をかけた状態での磁束の流れと配向の
様子を表す模式図であり、第1−3図は脱磁した後に多
極異方性配向磁場をかけたときの磁束の流れと配向の様
子を表す模式図であり、第1−4は、各コイルに流す励
磁用電流波形を表すグラフであり、
第2−1図及び第2−2図は、従来例のラジアル異方性
配向成形による金型磁極部及び成形品の模式第3−1図
及び第3−2図は、従来例の多極異方成形配向による金
型磁極部及び成形品の模式図である。
1ニラシアル異方性配向用のNi
2ニラシアル異方性配向用のS極
3:成形品
4:フェライト磁性粉
5ニラシアル異方性配向用の磁束の流れ7 ラジアル異
方性配向磁場発生コイル8:脱磁用コイル
9:多極異方性配向用のパルス磁界用のコイル10:多
極異方性配向用磁場IO
aニラシアル異方性配向用の電流波形を表すグラフ
b:脱磁用パルス電流波形を表すグラフC:パルス磁界
による多極異方性配向用電流波形を表すグラフ
第1−1図
第1−3図
第1−4図
第2−1図
第2−2図
第3−1図
第3−2図Fig. 1-1 is a schematic cross-sectional view of a mold for multipolar anisotropic molding and orientation according to the present invention, and Fig. 1-2 shows the magnetic flux in a state where a magnetic field for radial anisotropic orientation according to the present invention is applied. FIG. 1-3 is a schematic diagram showing the flow and orientation of magnetic flux when a multipolar anisotropic alignment magnetic field is applied after demagnetization. -4 is a graph showing the excitation current waveform flowing through each coil, and Figures 2-1 and 2-2 are schematic diagrams of the mold magnetic pole part and molded product obtained by conventional radial anisotropic orientation molding. FIGS. 3-1 and 3-2 are schematic diagrams of a mold magnetic pole part and a molded product produced by conventional multipolar anisotropic molding orientation. 1 Ni for niradial anisotropic orientation 2 S pole for niradial anisotropic orientation 3 Molded product 4: Ferrite magnetic powder 5 Magnetic flux flow for niradial anisotropic orientation 7 Radial anisotropic orientation magnetic field generating coil 8: Coil for demagnetization 9: Coil for pulsed magnetic field for multipolar anisotropic orientation Coil 10: Magnetic field for multipolar anisotropic orientation IO a Graph representing the current waveform for niradial anisotropic orientation b: Pulse current for demagnetization Graph C representing the waveform: Graph representing the current waveform for multipolar anisotropic orientation caused by a pulsed magnetic field Figure 1-1 Figure 1-3 Figure 1-4 Figure 2-1 Figure 2-2 Figure 3-1 Figure 3-2
Claims (1)
内で溶融状態に保ちつつ該キャビティーに磁場をかける
ことにより該磁性粉を異方性配向させる工程を含む多極
異方性樹脂磁石の製造方法であって、異方性配向させる
工程として、該 キャビティーの内外周側からラジアル又はアキシャル異
方性配向磁場をかけ磁性粉をラジアル又はアキシャル異
方性配向させる工程と、続いて該キャビティーの外周側
から多極異方性配方磁場をかけ磁性粉の一部を多極異方
性配方させる工程とを含むことを特徴とする多極異方性
樹脂磁石の製造方法。[Claims] A multi-purpose method comprising the step of maintaining a resin magnet composition containing magnetic powder in a molten state within a cylindrical cavity and applying a magnetic field to the cavity to anisotropically orient the magnetic powder. A method for producing a polar anisotropic resin magnet, which comprises applying a radial or axial anisotropic orientation magnetic field from the inner and outer peripheral sides of the cavity to orient the magnetic powder in a radial or axial anisotropic orientation. A multipolar anisotropic resin magnet characterized by comprising a step of applying a multipolar anisotropic orienting magnetic field from the outer circumferential side of the cavity to orient a part of the magnetic powder in a multipolar anisotropic manner. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7546286A JPH0654742B2 (en) | 1986-04-03 | 1986-04-03 | Method for manufacturing multipolar anisotropic resin magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7546286A JPH0654742B2 (en) | 1986-04-03 | 1986-04-03 | Method for manufacturing multipolar anisotropic resin magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62232910A true JPS62232910A (en) | 1987-10-13 |
JPH0654742B2 JPH0654742B2 (en) | 1994-07-20 |
Family
ID=13576993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7546286A Expired - Fee Related JPH0654742B2 (en) | 1986-04-03 | 1986-04-03 | Method for manufacturing multipolar anisotropic resin magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0654742B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014216510A (en) * | 2013-04-26 | 2014-11-17 | 株式会社日本製鋼所 | Manufacturing method for plastic magnet |
JP2017129143A (en) * | 2016-01-19 | 2017-07-27 | プファイファー・ヴァキューム・ゲーエムベーハー | Vacuum pump, permanent magnet supporting portion, monolith-type permanent magnet, and manufacturing method of monolith-type permanent magnet |
-
1986
- 1986-04-03 JP JP7546286A patent/JPH0654742B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014216510A (en) * | 2013-04-26 | 2014-11-17 | 株式会社日本製鋼所 | Manufacturing method for plastic magnet |
JP2017129143A (en) * | 2016-01-19 | 2017-07-27 | プファイファー・ヴァキューム・ゲーエムベーハー | Vacuum pump, permanent magnet supporting portion, monolith-type permanent magnet, and manufacturing method of monolith-type permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JPH0654742B2 (en) | 1994-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5181971A (en) | Magnet and method of manufacturing the same | |
JPS6359243B2 (en) | ||
JPS61112310A (en) | Manufacture of permanent magnet | |
US4954800A (en) | Magnet and method of manufacturing the same | |
CS213750B1 (en) | Method of making the anizotropic permanent magnets | |
JPS57170501A (en) | Production of magneto roll | |
JPS62232910A (en) | Manufacture of multi-polar anisotropic resinous magnet | |
JPS55154721A (en) | Annular permanent magnet and manufacture thereof | |
JPS6252913A (en) | Method and device for manufacture of multipolar anisotropic cylindrical magnet | |
JPS588571B2 (en) | Simultaneous orientation magnetization method in injection molding | |
JPH0611014B2 (en) | Manufacturing method of cylindrical magnet | |
JPH071727B2 (en) | Anisotropic resin magnet and manufacturing method thereof | |
JPS62235703A (en) | Anisotropic resin magnet | |
JPH0559572B2 (en) | ||
JPS5923448B2 (en) | anisotropic magnet | |
JPS62232107A (en) | Anisotropic resin magnet | |
JPH02178011A (en) | Manufacture of annular permanent magnet, annular permanent magnet manufactured thereby and mold for annular permanent magnet | |
JPH0736371B2 (en) | Method for manufacturing multipolar anisotropic resin magnet | |
JPS62229817A (en) | Manufacture of polar anisotropic long molded product | |
JPS60931B2 (en) | Anisotropic magnet manufacturing method and manufacturing device | |
JPS60211908A (en) | Manufacturing method of cylindrical permanent magnet | |
JPS61125010A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet | |
JPS61125009A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet | |
JPH0471205A (en) | Manufacture of bond magnet | |
JPS62130813A (en) | Manufacture of cylindrical multipolar anisotropic magnet and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |