JPS62232171A - Semiconductor acceleration sensor - Google Patents
Semiconductor acceleration sensorInfo
- Publication number
- JPS62232171A JPS62232171A JP61074164A JP7416486A JPS62232171A JP S62232171 A JPS62232171 A JP S62232171A JP 61074164 A JP61074164 A JP 61074164A JP 7416486 A JP7416486 A JP 7416486A JP S62232171 A JPS62232171 A JP S62232171A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- cantilever
- cantilever beam
- acceleration
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 90
- 230000001133 acceleration Effects 0.000 title claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 63
- 238000006073 displacement reaction Methods 0.000 claims abstract description 13
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 25
- 230000000694 effects Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000001259 photo etching Methods 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Pressure Sensors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は1片持梁構造を有する半導体加速度センサに関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor acceleration sensor having a single cantilever structure.
従来の半導体加速度センサとしては、例えば、アイイー
イーイー トランザクションズ オンエレクトロン デ
バイセス(IEEE TRANSACTIONSON
ELECTRON DEVICES、 Vol、HD−
26,No12.DHC1979ρ1911)に記載さ
れているものがある。As a conventional semiconductor acceleration sensor, for example, IEEE TRANSACTIONS ON ELECTRON DEVICES (IEEE TRANSACTIONS
ELECTRON DEVICES, Vol, HD-
26, No. 12. There is one described in DHC1979ρ1911).
第6図は、上記の半導体加速度センサを示す図であり、
(A)は断面図、(B)は平面図である。FIG. 6 is a diagram showing the above semiconductor acceleration sensor,
(A) is a sectional view, and (B) is a plan view.
第6図の装置は、Si半導体基板31を上下両方向から
エツチングすることによって溝35の部分を除去し、こ
の溝35によって外部と仕切られた片持梁32を形成し
たものである。In the device shown in FIG. 6, the groove 35 is removed by etching the Si semiconductor substrate 31 from both the upper and lower directions, and a cantilever beam 32 is formed which is partitioned from the outside by the groove 35.
なお1片持梁32の先端部には、重り部36が設けられ
ており、また、片持梁32の支持部付近の厚さく半導体
基板の面に垂直な方向の寸法)は、やはりエツチングに
よって他の部分より薄くなるように形成され、これによ
って半導体基板の厚さ方向(面に垂直な方向)の加速度
に応動して変位するようになっている。Note that a weight portion 36 is provided at the tip of each cantilever 32, and the thickness near the support portion of the cantilever 32 (the dimension in the direction perpendicular to the surface of the semiconductor substrate) is also etched by etching. It is formed to be thinner than other parts, so that it is displaced in response to acceleration in the thickness direction (direction perpendicular to the surface) of the semiconductor substrate.
また、上記の面に垂直な方向の加速度による片持梁32
の変位を検出するために、片持梁32の支持部付近に拡
散抵抗33が設けられており、加速度の印加による片持
梁の変位を拡散抵抗33のピエゾ抵抗効果によって検出
するように構成されている。In addition, the cantilever beam 32 due to acceleration in the direction perpendicular to the above plane
In order to detect the displacement of the cantilever beam 32, a diffused resistor 33 is provided near the support portion of the cantilever beam 32, and the displacement of the cantilever beam due to the application of acceleration is detected by the piezoresistance effect of the diffused resistor 33. ing.
また、過度の衝撃によって片持梁32が折損するのを防
止するため、Si半導体基板31の両面をグラスガバー
34によって保護している。Further, in order to prevent the cantilever beam 32 from breaking due to excessive impact, both sides of the Si semiconductor substrate 31 are protected by glass coverrs 34.
次に、第7図は、上記第6図のごとき従来の半導体加速
度センサの製造工程を示す図である。Next, FIG. 7 is a diagram showing a manufacturing process of a conventional semiconductor acceleration sensor as shown in FIG. 6 above.
まず、(A)において、(100)結晶面を表面とする
n型のSi半導体基板31の両面に熱酸化法を用いて厚
さ約1.5−の酸化シリコン膜37を形成し、フォトエ
ツチングと熱拡散処理を2回行なうことによってp型拡
散抵抗層38と、高濃度P+拡散層39とを形成する。First, in (A), a silicon oxide film 37 with a thickness of approximately 1.5-1.5 mm is formed on both sides of an n-type Si semiconductor substrate 31 whose surface is the (100) crystal plane using a thermal oxidation method, and then photo-etched. A p-type diffused resistance layer 38 and a high concentration P+ diffused layer 39 are formed by performing thermal diffusion treatment twice.
次に、(B)において、フォトエツチングと真空蒸着法
によってAn配線M440を形成し、さらに化学気相成
長法によってリンガラス膜41を形成する。Next, in (B), an An wiring M440 is formed by photoetching and vacuum evaporation, and a phosphorus glass film 41 is further formed by chemical vapor deposition.
次に、(C)において、裏面の所定領域の酸化シリコン
膜37を除去し、これをマスクとしてK OH溶液によ
る結晶面選択エツチング法によって、目標とする片持梁
の厚さの約2倍の厚さになるまでSi半導体基板31を
エツチングする。Next, in (C), the silicon oxide film 37 in a predetermined region on the back surface is removed, and using this as a mask, a crystal plane selective etching method using a KOH solution is performed to obtain a thickness approximately twice the thickness of the target cantilever. The Si semiconductor substrate 31 is etched until it is thick.
次に、(D)において、表面の所定部分のリンガラス膜
41と、酸化シリコン膜37とをエツチングによって除
去し、これをマスクとしてKOH溶液を用いてSi半導
体基板31の両面からエツチングを行ない、溝35の部
分を除去することによって片持梁32を形成する。Next, in (D), the phosphorus glass film 41 and the silicon oxide film 37 at a predetermined portion of the surface are removed by etching, and using this as a mask, etching is performed from both sides of the Si semiconductor substrate 31 using a KOH solution. The cantilever beam 32 is formed by removing the groove 35 portion.
このとき1片持梁32の支持部付近の厚さもエツチング
されて薄くなり、所望の厚さになる。At this time, the thickness near the support portion of the single cantilever beam 32 is also etched and thinned to a desired thickness.
また、エツチングによって所定部分のリンガラス膜41
を除去し、コンタクト孔42を形成する。Further, by etching, a predetermined portion of the phosphor glass film 41 is etched.
is removed to form a contact hole 42.
最後にSi半導体基板31の両面に5図示しないグラス
カバーを取付けることにより、前記第6図のごとき半導
体加速度センサが完成する。Finally, by attaching glass covers (not shown) to both sides of the Si semiconductor substrate 31, the semiconductor acceleration sensor as shown in FIG. 6 is completed.
上記のごとき従来の半導体加速度センサにおいては、半
導体基板の上下両方向からエツチングすることによって
形成される片持梁の支持部付近の厚みを均一にするため
には、エツチング液の組成。In the conventional semiconductor acceleration sensor as described above, the composition of the etching solution is important in order to make the thickness uniform near the support part of the cantilever beam formed by etching the semiconductor substrate from both the top and bottom directions.
温度及び攪伴状態等のエツチング環境条件を一定に維持
する必要があるが、半導体基板面上の全ての部分におい
て、上記の諸条件を均一に維持することは極めて困難で
あるため、十分なエツチング精度を確保することが難し
い。It is necessary to maintain constant etching environmental conditions such as temperature and stirring conditions, but it is extremely difficult to maintain the above conditions uniformly over all parts of the semiconductor substrate surface, so it is necessary to maintain sufficient etching conditions. It is difficult to ensure accuracy.
そのため、均一な特性の半導体加速度センサを量産する
ことが困難であるという問題があった。Therefore, there has been a problem in that it is difficult to mass-produce semiconductor acceleration sensors with uniform characteristics.
また、従来の半導体加速度センサにおいては。Also, in conventional semiconductor acceleration sensors.
半導体基板の面に垂直な方向に変位する片持梁しか形成
することが出来ないため1例えば、前後左右の2方向、
すなわち、相互に垂直な2方向の加速度を検出したい場
合には、第8図に示すごとく、取付は部材43を設け、
2個の半導体加速度センサ44と45とをその片持梁の
可動方向が互いに垂直をなすように配置して固定する必
要があるため、組立て及び実装方法が複雑となり、かつ
大型化するという問題点があった。Since it is possible to form only a cantilever beam that is displaced in the direction perpendicular to the surface of the semiconductor substrate, 1.
That is, when it is desired to detect acceleration in two mutually perpendicular directions, a member 43 is installed as shown in FIG.
Since it is necessary to arrange and fix the two semiconductor acceleration sensors 44 and 45 so that the movable directions of their cantilevers are perpendicular to each other, the assembly and mounting method becomes complicated and the size increases. was there.
さらに、従来の半導体加速度センサにおいては、片持梁
構造を形成した後の半導体装置製造プロセス、あるいは
グラスカバーを装着するまでの組立て実装プロセス中に
発生するm*加速度によって片持梁が折損することがあ
るため、製造歩留が著しく低下するという問題があった
。Furthermore, in conventional semiconductor acceleration sensors, the cantilever beam may break due to m* acceleration that occurs during the semiconductor device manufacturing process after the cantilever structure is formed or during the assembly and mounting process until the glass cover is attached. Therefore, there was a problem in that the manufacturing yield was significantly reduced.
本発明は、上記のごとき従来技術の問題を解決するため
になされたものであり、特性が均一で製造歩留がよく、
しかも複数方向の加速度を検出する構造も容易に実現す
ることの出来る半導体加速度センサを提供することを目
的とするものである。The present invention was made in order to solve the problems of the prior art as described above, and has uniform characteristics and a high manufacturing yield.
Moreover, it is an object of the present invention to provide a semiconductor acceleration sensor that can easily realize a structure that detects acceleration in multiple directions.
上記の目的を達成するため、本発明においては、半導体
基板内に該半導体基板の上面から下面まで貫通する溝に
よって支持部を除いて外部と仕切られた片持梁を形成し
、かつ、上記片持梁の支持部付近の幅(半導体基板の面
に水平な方向の寸法)を、厚さく面に垂直な方向の寸法
)より小さくすることにより、半導体基板の面と水平な
方向の加速度によって変位する片持梁を形成するように
構成している。In order to achieve the above object, in the present invention, a cantilever beam is formed in a semiconductor substrate and is partitioned from the outside except for the support portion by a groove penetrating the semiconductor substrate from the upper surface to the lower surface, and By making the width (dimension in the direction horizontal to the surface of the semiconductor substrate) of the supporting beam smaller than the dimension in the direction perpendicular to the surface of the semiconductor substrate, displacement due to acceleration in the direction parallel to the surface of the semiconductor substrate can be reduced. It is configured to form a cantilever beam.
上記のように本発明の半導体加速度センサにおいては、
従来の半導体加速度センサの支持部付近の厚さく半導体
基板の面に垂直な方向の寸法)に相当するものが片持梁
の支持部付近の幅、すなオ〕ち、半導体基板の面に水平
な方向の寸法となるため、エツチングの際のマスクの形
状によってその寸法を精密に制御することが出来る。As mentioned above, in the semiconductor acceleration sensor of the present invention,
The thickness near the support part of a conventional semiconductor acceleration sensor (the dimension perpendicular to the surface of the semiconductor substrate) corresponds to the width near the support part of the cantilever beam, i.e., the width parallel to the surface of the semiconductor substrate. Since the dimensions are in the same direction, the dimensions can be precisely controlled by changing the shape of the mask during etching.
例えば、一つの方法としては、CBrF、等をエツチン
グガスとする反応性イオンエツチング法などのようにS
i半導体基板の深さ方向に対して鋭い異方圧を示すエツ
チング方法を用いることにより、片持梁の支持部付近の
幅をマスクの寸法に正確に一致させることが出来る。ま
た、他の方法としては、(110)面を有するSi半導
体基板に結晶面選択エツチング法を用いて片持梁を形成
することにより、(110)面と(111)面との結晶
面選択性で決まる高い精度で片持梁の支持部付近の輻を
設定することが出来る。For example, one method is reactive ion etching using CBrF, etc. as an etching gas.
By using an etching method that exhibits a sharp anisotropic pressure in the depth direction of the semiconductor substrate, the width of the cantilever near the supporting portion can be made to accurately match the dimensions of the mask. Another method is to form a cantilever beam on a Si semiconductor substrate having a (110) plane using a crystal plane selective etching method, thereby increasing the crystal plane selectivity between the (110) plane and the (111) plane. It is possible to set the convergence near the support part of the cantilever beam with high accuracy determined by .
したがって、均一な特性の半導体加速度センサを量産す
ることが可能になる。Therefore, it becomes possible to mass-produce semiconductor acceleration sensors with uniform characteristics.
また1本発明め半導体加速度センサにおいては、半導体
基板の面と水平な方向の加速度に感度を有するようにな
っているので、1つの半導体基板内に複数の半導体加速
度センサをそれぞれ異なった方向の加速度に感度を有す
るように形成することにより、相互に垂直方向の加速度
に感度を有するものや、あるいは更に複数の方向の加速
度に感度を有する半導体加速度センサを1つの半導体基
板に共通に形成することが可能となる。In addition, the first semiconductor acceleration sensor of the present invention is sensitive to acceleration in a direction parallel to the surface of the semiconductor substrate. By forming the semiconductor acceleration sensor so as to be sensitive to both directions, it is possible to commonly form semiconductor acceleration sensors that are mutually sensitive to acceleration in the vertical direction, or even semiconductor acceleration sensors that are sensitive to acceleration in a plurality of directions, on one semiconductor substrate. It becomes possible.
更に、本発明の半導体加速度センサにおいては、片持梁
の変位方向が半導体基板の面と水平な方向であるため、
片持梁の変位方向の周囲が半導体基板によって囲まれる
構造となっている。そのため片持梁が形成されると同時
に片持梁の保護構造も形成されることになるので、片持
梁形成以後の製造プロセス及び組立て実装プロセス中に
加わる衝撃加速度によって片持梁が折損するおそれもな
くなる。Furthermore, in the semiconductor acceleration sensor of the present invention, since the displacement direction of the cantilever beam is parallel to the surface of the semiconductor substrate,
The structure is such that the periphery of the cantilever beam in the displacement direction is surrounded by a semiconductor substrate. Therefore, a protective structure for the cantilever is also formed at the same time as the cantilever is formed, so there is a risk that the cantilever will break due to impact acceleration applied during the manufacturing process and assembly mounting process after the cantilever is formed. It also disappears.
第1図は本発明の斜視図、第2図は平面図及び断面図で
ある。FIG. 1 is a perspective view of the present invention, and FIG. 2 is a plan view and a sectional view.
第1図及び第2図において、Si半導体基Filには、
エツチングによって半導体基板の上面から下面まで貫通
する溝3が設けられており、この溝3によって支持部付
近を除いて外部の半導体基板と仕切られた片持梁2が形
成されている。In FIGS. 1 and 2, the Si semiconductor base Fil has the following:
A groove 3 penetrating the semiconductor substrate from the upper surface to the lower surface is formed by etching, and this groove 3 forms a cantilever beam 2 that is partitioned from the external semiconductor substrate except for the vicinity of the support portion.
なお、片持梁2の支持部付近における幅W1゜すなわち
Si半導体基板1の面と水平方向における梁の寸法は、
Si半導体基板1の厚さ方向の寸法W2より小さくなる
ように設定されている。Note that the width W1° of the cantilever beam 2 near the support part, that is, the dimension of the beam in the horizontal direction with respect to the surface of the Si semiconductor substrate 1 is as follows:
It is set to be smaller than the dimension W2 in the thickness direction of the Si semiconductor substrate 1.
そのため、片持梁2は、Si半導体基板1の面に垂直な
方向の加速度に対しては変位せず、面に水平な方向の加
速度に対して変位する。Therefore, the cantilever beam 2 is not displaced in response to acceleration in a direction perpendicular to the surface of the Si semiconductor substrate 1, but is displaced in response to acceleration in a direction horizontal to the surface.
したがって、上記の変位を検出する手段(詳細後述)を
設けることにより、Si半導体基板1の面に水平な方向
の加速度を検出することが出来る。Therefore, by providing a means for detecting the above-mentioned displacement (details will be described later), it is possible to detect acceleration in the direction horizontal to the surface of the Si semiconductor substrate 1.
なお、19は片持梁の重り部である。Note that 19 is a weight portion of the cantilever beam.
次に、第3図に基づいて1本発明の半導体加速度センサ
の製造工程を説明する。Next, the manufacturing process of the semiconductor acceleration sensor of the present invention will be explained based on FIG.
なお、第3図は、製造工程中における半導体加速度セン
サの断面図、及び要部の平面図を示す。Note that FIG. 3 shows a cross-sectional view of the semiconductor acceleration sensor during the manufacturing process and a plan view of the main parts.
まず、(A)において、n型のSi半導体基板1上に熱
酸化法によって厚さ約70on−の酸化シリコン膜5を
形成し、フォトエツチングによって所定の領域6の部分
の酸化シリコン1115を除去する。First, in (A), a silicon oxide film 5 with a thickness of approximately 70 on- is formed on an n-type Si semiconductor substrate 1 by thermal oxidation, and the silicon oxide 1115 in a predetermined region 6 is removed by photoetching. .
次に、(B)において、例えばCBrF、をエツチング
ガスとする反応性イオンエツチング法により、上記の酸
化シリコンllA3をマスクとしてSl半導体基板1を
上面から下面に達するまで除去し、溝11を形成する。Next, in (B), the Sl semiconductor substrate 1 is removed from the upper surface to the lower surface using the silicon oxide llA3 as a mask by reactive ion etching using, for example, CBrF as an etching gas, thereby forming a groove 11. .
ついで、フォトエツチングと不純物拡散法により、p型
不純物拡散JFJ12及びpチャネルMOSトランジス
タのソース13とドレイン14とを形成する。Next, p-type impurity diffusion JFJ12 and the source 13 and drain 14 of the p-channel MOS transistor are formed by photoetching and impurity diffusion.
次に、(C)において、フォトエツチングと熱酸化法に
よってゲート酸化膜15を形成し、さらに真空蒸着法に
よってM配線層16を形成し、また。Next, in (C), a gate oxide film 15 is formed by photoetching and thermal oxidation, and an M wiring layer 16 is further formed by vacuum evaporation.
例えば常圧化学気相成長法によってリンガラスIl’J
17を形成する。For example, by atmospheric pressure chemical vapor deposition method, phosphorus glass Il'J
form 17.
次に、CD)において、フォトエツチングによってリン
ガラス膜17に片持梁のパターンを形成し、それをマス
クとして、例えばCBrF、をエッチングガスとする反
応性イオンエツチング法により、Si半導体基板1を上
面から下面に到達するまで除去し、片持梁2を形成する
。Next, in CD), a cantilever pattern is formed on the phosphor glass film 17 by photoetching, and using this as a mask, the upper surface of the Si semiconductor substrate 1 is etched by a reactive ion etching method using, for example, CBrF as an etching gas. The cantilever beam 2 is formed by removing until the bottom surface is reached.
最後にフォトエツチングによって外部配腺用コンタクト
孔18を形成することにより、前記第1図のごとき半導
体加速度センサが完成する。Finally, a contact hole 18 for external wiring is formed by photoetching, thereby completing the semiconductor acceleration sensor as shown in FIG.
なお、第3図(D)に示すごとく、片持梁の重り部19
の両側面及びそれと対向する部分にはp型拡散層12が
設けられている。In addition, as shown in FIG. 3(D), the weight part 19 of the cantilever beam
A p-type diffusion layer 12 is provided on both side surfaces and the portion facing the side surfaces.
このp型拡散層12の重り部19の面に設けられている
部分が梁状電極20となり、また、それに対向する面に
設けられている部分が基板電極21となる。A portion of the p-type diffusion layer 12 provided on the surface of the weight portion 19 becomes the beam-like electrode 20, and a portion provided on the surface opposite thereto becomes the substrate electrode 21.
そして上記の梁状電極20と基板電極21との間に形成
される静電容量の変化を検出することにより。Then, by detecting a change in the capacitance formed between the beam-shaped electrode 20 and the substrate electrode 21.
片持梁2の変位を検出することが出来る。The displacement of the cantilever beam 2 can be detected.
次に、第4図は上記の片持梁の変位を検出する方法を説
明する図である。Next, FIG. 4 is a diagram illustrating a method for detecting the displacement of the cantilever beam.
第4図において、片持梁の重り部19の質量をM、片持
梁2のHさく半導体基板の面に垂直な方向の1法)をす
1片持梁2の支持部付近の幅(半導体基板の面に水平な
方向の寸法)をt、片持梁の長さく支持端から重り部1
9の重心までの長さ)をL、ヤング率をEとし、また、
重り部19の側面に設けた梁状電極20とそれに対向す
る面に設けた基板電極21との間隔をd、重力の加速度
をgとすれば梁状電極20と基板電極21との間の静電
容tcにおける1g当りの変化率ΔC/Cは下記(1)
式で表わされる。In FIG. 4, the mass of the weight portion 19 of the cantilever beam 2 is M, the width of the cantilever beam 2 near the support portion ( The dimension (horizontal to the surface of the semiconductor substrate) is t, and the length of the cantilever is from the support end to the weight part 1.
9) is L, Young's modulus is E, and
If the distance between the beam electrode 20 provided on the side surface of the weight part 19 and the substrate electrode 21 provided on the opposite surface is d, and the acceleration of gravity is g, then the static current between the beam electrode 20 and the substrate electrode 21 is The rate of change ΔC/C per 1 g in capacitance tc is as follows (1)
It is expressed by the formula.
上記の(1)式において1例えば、重りの質量M =2
.45X10−’g、片持梁の厚さb =500am、
片持梁の支持部付近の幅t=54、片持梁の長さL=1
000、、両電極の間隔d=10.とすれば、ヤング率
E = 1.7 X 10”dyne/ aJ、重力の
加速度g=980ell/see”であるから、静電容
量Cにおける1g当りの変化率はΔC/ C= 0.0
02&となる。In the above equation (1), 1 For example, the mass of the weight M = 2
.. 45X10-'g, cantilever thickness b = 500am,
Width near the support part of the cantilever beam t = 54, length of the cantilever beam L = 1
000,, the distance between both electrodes d=10. Then, Young's modulus E = 1.7 x 10"dyne/aJ, acceleration of gravity g = 980ell/see", so the rate of change in capacitance C per 1g is ΔC/C = 0.0
02&.
上記の容量変化を例えば、前記第1図及び第3図で示し
たごときpチャネルMQSトランジスタで構成される検
出回路によって電気信号に変換することにより、片持梁
に印加された加速度を電気信号として検出することが出
来る。For example, by converting the capacitance change described above into an electrical signal using a detection circuit composed of a p-channel MQS transistor as shown in FIGS. 1 and 3, the acceleration applied to the cantilever beam is converted into an electrical signal. Can be detected.
次に、第5図は、本発明の他の実施例図である。Next, FIG. 5 is a diagram showing another embodiment of the present invention.
第5図の実施例においては、1つのSi半導体基板22
に2つの片持梁23及び24を形成した例を示す。In the embodiment of FIG. 5, one Si semiconductor substrate 22
2 shows an example in which two cantilevers 23 and 24 are formed.
この2つの片持梁23及び24は、梁の可動方向が相互
に垂直方向となるように配置しである。These two cantilever beams 23 and 24 are arranged so that the movable directions of the beams are perpendicular to each other.
したがって、相互に垂直な2方向の加速度を検出するこ
とが出来る。Therefore, acceleration in two mutually perpendicular directions can be detected.
なお、本発明においては、エツチング時のマスクパター
ンに応じて片持梁の可動方向を設定することが出来るか
ら、種々の方向の加速度を検出する半導体センサを1つ
の半導体基板上に複数個容易に形成することが可能とな
る。In addition, in the present invention, since the movable direction of the cantilever beam can be set according to the mask pattern during etching, it is possible to easily install multiple semiconductor sensors that detect acceleration in various directions on one semiconductor substrate. It becomes possible to form.
また、前記の実施例においては、反応性エツチング法を
用いた場合について説明したが、エツチングのマスクパ
ターンを適宜選択することにより、(100)結晶面を
表面とするSi半導体基板を用いた結晶面選択エツチン
グ法を用いることも出来る。In addition, in the above embodiments, the case where a reactive etching method was used was explained, but by appropriately selecting the etching mask pattern, the crystal plane using the Si semiconductor substrate having the (100) crystal plane as the surface can be etched. Selective etching methods can also be used.
以上説明したごとく、本発明においては、半導体基板に
形成する片持梁の支持部付近の幅を半導体基板の厚さよ
り小さくすることにより、半導体基板の面と水平な方向
の加速度によって変位する片持梁を形成するように構成
しているので、半導体加速度センサの特性に大きな影響
を及ぼす支持部付近の幅をエツチングにおけるマスク形
状に応じて精密に設定することが出来る。As explained above, in the present invention, by making the width of the cantilever beam formed on the semiconductor substrate near the support part smaller than the thickness of the semiconductor substrate, the cantilever beam can be displaced by acceleration in a direction parallel to the surface of the semiconductor substrate. Since it is configured to form a beam, the width near the support portion, which has a large effect on the characteristics of the semiconductor acceleration sensor, can be precisely set according to the shape of the mask used in etching.
例えば、反応性イオンエツチング法を用いるか、あるい
は(110)面を表面とするSi半導体基板に結晶面選
択エツチング法を用いて、梁を形成することにより、エ
ツチングの異方性あるいは結晶面選択性で決まる高い精
度で片持梁の支持部付近の幅を設定することが出来る。For example, by forming beams using a reactive ion etching method or using a crystal plane selective etching method on a Si semiconductor substrate with a (110) plane as a surface, etching anisotropy or crystal plane selectivity can be improved. It is possible to set the width near the support part of the cantilever beam with high accuracy determined by .
そのため、均一な特性の半導体加速度センサを容易に址
産することが可能となる。Therefore, it becomes possible to easily produce semiconductor acceleration sensors with uniform characteristics.
また1本発明においては、複数の片持梁をそれぞれ変位
方向が異なる方向となるように1つの半導体基板上に形
成することが出来るので、例えば、相互に垂直な2方向
の加速度を分離して検出することの出来る装置を容易に
構成することが出来る。Furthermore, in the present invention, a plurality of cantilevers can be formed on one semiconductor substrate so that the displacement directions are different from each other, so that, for example, acceleration in two mutually perpendicular directions can be separated. A device capable of detection can be easily constructed.
また、片持梁の変位方向の側面が半導体基板に囲まれる
構造となっているため、片持梁の形成と同時に保護構造
も形成されることになり、片持梁形成以後の製造プロセ
ス及び組立て実装プロセス中に加わる衝撃加速度によっ
て片持梁が折損するのを防止することが出来る、等の多
くの優れた効果が得られる。In addition, since the side surface of the cantilever beam in the displacement direction is surrounded by the semiconductor substrate, a protective structure is also formed at the same time as the cantilever beam is formed. Many excellent effects can be obtained, such as being able to prevent the cantilever beam from breaking due to impact acceleration applied during the mounting process.
第1図は本発明の一実施例の斜視図、第2図は本発明の
一実施例の平面図及び断面図、第3図は本発明の一実施
例の製造工程図、第4図は本発明における片持梁の変位
を検出する方法の説明図。
第5図は本発明の他の実施例図、第6図は従来装置の一
例の断面図及び平面図、第7図は従来装置の製造工程図
、第8図は従来装置の他の一例図である。
く符号の説明〉
1・・・SL半導体基板 2・・・片持梁3・・・溝
19・・・片持梁の重り部代理人弁理
士 中 村 純之助
第1図
第2図
1−・−5i主導体基板
2−片持墳
3−−一溝
19−一一片拵梁の生り部
第3図
第6図
3475ス〃バー 33m二′WLNL第 8
図
43 真又イ寸す名下才才Fig. 1 is a perspective view of an embodiment of the present invention, Fig. 2 is a plan view and sectional view of an embodiment of the invention, Fig. 3 is a manufacturing process diagram of an embodiment of the invention, and Fig. 4 is a diagram of the manufacturing process of an embodiment of the invention. FIG. 3 is an explanatory diagram of a method for detecting displacement of a cantilever beam in the present invention. Fig. 5 is a diagram of another embodiment of the present invention, Fig. 6 is a sectional view and a plan view of an example of a conventional device, Fig. 7 is a manufacturing process diagram of the conventional device, and Fig. 8 is a diagram of another example of the conventional device. It is. Explanation of symbols> 1... SL semiconductor substrate 2... Cantilever beam 3... Groove 19... Cantilever weight section Patent attorney Junnosuke Nakamura Figure 1 Figure 2 Figure 1-- -5i main conductor board 2 - cantilevered mound 3 - one groove 19 - one single piece of wooden beam part Fig. 3 Fig. 6 3475 Siber 33m2'WLNL No. 8
Figure 43 Mamata is a talented person
Claims (1)
とによって印加された加速度を検出する半導体加速度セ
ンサにおいて、半導体基板内に、該半導体基板の上面か
ら下面まで貫通する溝によって支持部を除いて外部と仕
切られた片持梁を形成し、かつ、上記片持梁の支持部付
近の幅すなわち半導体基板の面に水平な方向の寸法を、
半導体基板の面に垂直な方向の寸法より小さな値にする
ことにより、上記半導体基板の面に水平な方向の加速度
によって変位する片持梁を形成したことを特徴とする半
導体加速度センサ。In a semiconductor acceleration sensor that detects applied acceleration by detecting displacement of a cantilever provided in a semiconductor substrate, a supporting portion is removed by a groove penetrating the semiconductor substrate from the top surface to the bottom surface of the semiconductor substrate. to form a cantilever beam partitioned from the outside, and the width of the cantilever beam near the support part, that is, the dimension in the direction horizontal to the surface of the semiconductor substrate,
A semiconductor acceleration sensor characterized in that a cantilever beam is formed that is displaced by acceleration in a direction horizontal to the surface of the semiconductor substrate by making the dimension smaller than the dimension in the direction perpendicular to the surface of the semiconductor substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074164A JPS62232171A (en) | 1986-04-02 | 1986-04-02 | Semiconductor acceleration sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074164A JPS62232171A (en) | 1986-04-02 | 1986-04-02 | Semiconductor acceleration sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62232171A true JPS62232171A (en) | 1987-10-12 |
Family
ID=13539238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61074164A Pending JPS62232171A (en) | 1986-04-02 | 1986-04-02 | Semiconductor acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62232171A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01239466A (en) * | 1988-03-18 | 1989-09-25 | Fujikura Ltd | Manufacture of semiconductor acceleration sensor |
JPH01304361A (en) * | 1988-05-31 | 1989-12-07 | Oki Electric Ind Co Ltd | Semiconductor acceleration sensor |
JPH01320470A (en) * | 1988-06-21 | 1989-12-26 | Fujikura Ltd | Semiconductor acceleration sensor |
JPH02309259A (en) * | 1989-05-24 | 1990-12-25 | Nissan Motor Co Ltd | Semiconductor acceleration sensor |
US5072288A (en) * | 1989-02-21 | 1991-12-10 | Cornell Research Foundation, Inc. | Microdynamic release structure |
US5149673A (en) * | 1989-02-21 | 1992-09-22 | Cornell Research Foundation, Inc. | Selective chemical vapor deposition of tungsten for microdynamic structures |
JPH04315477A (en) * | 1991-04-15 | 1992-11-06 | Nissan Motor Co Ltd | Three-dimensional acceleration sensor |
JPH04315056A (en) * | 1991-04-12 | 1992-11-06 | Tokai Rika Co Ltd | Acceleration sensor |
JPH04324371A (en) * | 1991-04-25 | 1992-11-13 | Tokai Rika Co Ltd | Acceleration sensor |
US5399415A (en) * | 1993-02-05 | 1995-03-21 | Cornell Research Foundation, Inc. | Isolated tungsten microelectromechanical structures |
US5426070A (en) * | 1993-05-26 | 1995-06-20 | Cornell Research Foundation, Inc. | Microstructures and high temperature isolation process for fabrication thereof |
US5610335A (en) * | 1993-05-26 | 1997-03-11 | Cornell Research Foundation | Microelectromechanical lateral accelerometer |
US5640133A (en) * | 1995-06-23 | 1997-06-17 | Cornell Research Foundation, Inc. | Capacitance based tunable micromechanical resonators |
US5914553A (en) * | 1997-06-16 | 1999-06-22 | Cornell Research Foundation, Inc. | Multistable tunable micromechanical resonators |
US6422078B2 (en) | 1992-08-21 | 2002-07-23 | Denso Corporation | Semiconductor mechanical sensor |
US6877383B2 (en) | 1998-03-31 | 2005-04-12 | Hitachi, Ltd. | Capacitive type pressure sensor |
JP2007511945A (en) * | 2003-11-14 | 2007-05-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Semiconductor device provided with resonator |
USRE40347E1 (en) | 1992-04-27 | 2008-06-03 | Denso Corporation | Acceleration sensor and process for the production thereof |
JP2009294225A (en) * | 2009-09-17 | 2009-12-17 | Denso Corp | Semiconductor dynamic quantity sensor |
USRE42359E1 (en) | 1992-10-13 | 2011-05-17 | Denso Corporation | Dynamical quantity sensor |
JP2011237403A (en) * | 2010-04-15 | 2011-11-24 | Dainippon Printing Co Ltd | Dynamical quantity sensor and method for manufacturing dynamical quantity sensor |
-
1986
- 1986-04-02 JP JP61074164A patent/JPS62232171A/en active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01239466A (en) * | 1988-03-18 | 1989-09-25 | Fujikura Ltd | Manufacture of semiconductor acceleration sensor |
JPH01304361A (en) * | 1988-05-31 | 1989-12-07 | Oki Electric Ind Co Ltd | Semiconductor acceleration sensor |
JPH01320470A (en) * | 1988-06-21 | 1989-12-26 | Fujikura Ltd | Semiconductor acceleration sensor |
US5072288A (en) * | 1989-02-21 | 1991-12-10 | Cornell Research Foundation, Inc. | Microdynamic release structure |
US5149673A (en) * | 1989-02-21 | 1992-09-22 | Cornell Research Foundation, Inc. | Selective chemical vapor deposition of tungsten for microdynamic structures |
JPH0830718B2 (en) * | 1989-05-24 | 1996-03-27 | 日産自動車株式会社 | Semiconductor acceleration sensor |
JPH02309259A (en) * | 1989-05-24 | 1990-12-25 | Nissan Motor Co Ltd | Semiconductor acceleration sensor |
JPH04315056A (en) * | 1991-04-12 | 1992-11-06 | Tokai Rika Co Ltd | Acceleration sensor |
JPH04315477A (en) * | 1991-04-15 | 1992-11-06 | Nissan Motor Co Ltd | Three-dimensional acceleration sensor |
JPH04324371A (en) * | 1991-04-25 | 1992-11-13 | Tokai Rika Co Ltd | Acceleration sensor |
USRE42083E1 (en) | 1992-04-27 | 2011-02-01 | Denso Corporation | Acceleration sensor and process for the production thereof |
USRE41213E1 (en) | 1992-04-27 | 2010-04-13 | Denso Corporation | Dynamic amount sensor and process for the production thereof |
USRE41047E1 (en) | 1992-04-27 | 2009-12-22 | Denso Corporation | Acceleration sensor and process for the production thereof |
USRE40561E1 (en) | 1992-04-27 | 2008-11-04 | Denso Corporation | Acceleration sensor and process for the production thereof |
USRE40347E1 (en) | 1992-04-27 | 2008-06-03 | Denso Corporation | Acceleration sensor and process for the production thereof |
US6463803B2 (en) | 1992-08-21 | 2002-10-15 | Nippon Denso Co., Ltd. | Semiconductor mechanical sensor |
US7407827B2 (en) | 1992-08-21 | 2008-08-05 | Denso Corporation | Semiconductor mechanical sensor |
US6550331B2 (en) | 1992-08-21 | 2003-04-22 | Denso Corporation | Semiconductor mechanical sensor |
US6868727B2 (en) | 1992-08-21 | 2005-03-22 | Denso Corporation | Semiconductor mechanical sensor |
US7866210B2 (en) | 1992-08-21 | 2011-01-11 | Denso Corporation | Semiconductor mechanical sensor |
US6938486B2 (en) | 1992-08-21 | 2005-09-06 | Denso Corporation | Semiconductor mechanical sensor |
US7040165B2 (en) | 1992-08-21 | 2006-05-09 | Denso Corporation | Semiconductor mechanical sensor |
US7685877B2 (en) | 1992-08-21 | 2010-03-30 | Denso Corporation | Semiconductor mechanical sensor |
US6422078B2 (en) | 1992-08-21 | 2002-07-23 | Denso Corporation | Semiconductor mechanical sensor |
USRE42359E1 (en) | 1992-10-13 | 2011-05-17 | Denso Corporation | Dynamical quantity sensor |
US5399415A (en) * | 1993-02-05 | 1995-03-21 | Cornell Research Foundation, Inc. | Isolated tungsten microelectromechanical structures |
US5610335A (en) * | 1993-05-26 | 1997-03-11 | Cornell Research Foundation | Microelectromechanical lateral accelerometer |
US5426070A (en) * | 1993-05-26 | 1995-06-20 | Cornell Research Foundation, Inc. | Microstructures and high temperature isolation process for fabrication thereof |
US5640133A (en) * | 1995-06-23 | 1997-06-17 | Cornell Research Foundation, Inc. | Capacitance based tunable micromechanical resonators |
US5914553A (en) * | 1997-06-16 | 1999-06-22 | Cornell Research Foundation, Inc. | Multistable tunable micromechanical resonators |
US6877383B2 (en) | 1998-03-31 | 2005-04-12 | Hitachi, Ltd. | Capacitive type pressure sensor |
JP2007511945A (en) * | 2003-11-14 | 2007-05-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Semiconductor device provided with resonator |
JP2009294225A (en) * | 2009-09-17 | 2009-12-17 | Denso Corp | Semiconductor dynamic quantity sensor |
JP2011237403A (en) * | 2010-04-15 | 2011-11-24 | Dainippon Printing Co Ltd | Dynamical quantity sensor and method for manufacturing dynamical quantity sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62232171A (en) | Semiconductor acceleration sensor | |
US4553436A (en) | Silicon accelerometer | |
US6076404A (en) | Micromechanical sensor including a single-crystal silicon support | |
US6030850A (en) | Method for manufacturing a sensor | |
US7045382B2 (en) | Method for producing micromechanic sensors and sensors produced by said method | |
US5744719A (en) | Integrated micromechanical sensor device | |
KR20000064964A (en) | Element for acceleration sensor and manufacturing method thereof | |
JPH0116030B2 (en) | ||
US5554875A (en) | Semiconductor device with force and/or acceleration sensor | |
JP2002250665A (en) | Capacitance-type sensor and its manufacturing method | |
JPH0799326A (en) | Micromechanic sensor and its preparation | |
US5172205A (en) | Piezoresistive semiconductor device suitable for use in a pressure sensor | |
KR100904994B1 (en) | Pressure sensor manufacturing method and structure | |
JPH10116996A (en) | Composite device manufacture and composite device | |
JPH0830718B2 (en) | Semiconductor acceleration sensor | |
JP3633555B2 (en) | Semiconductor dynamic quantity sensor | |
JPH11220137A (en) | Semiconductor pressure sensor and manufacture thereof | |
JP3530250B2 (en) | Manufacturing method of capacitance type acceleration sensor | |
JP2600393B2 (en) | Manufacturing method of semiconductor acceleration sensor | |
JP3494022B2 (en) | Manufacturing method of semiconductor acceleration sensor | |
JPS6267880A (en) | Manufacture of semiconductor device | |
JP3021905B2 (en) | Manufacturing method of semiconductor acceleration sensor | |
JPH0337534A (en) | Semiconductor strain detecting apparatus | |
JP4175309B2 (en) | Semiconductor dynamic quantity sensor | |
JPH08247874A (en) | Semiconductor pressure sensor and its manufacture |