[go: up one dir, main page]

JPS62227049A - Manufacture of metal-base composite material - Google Patents

Manufacture of metal-base composite material

Info

Publication number
JPS62227049A
JPS62227049A JP7142686A JP7142686A JPS62227049A JP S62227049 A JPS62227049 A JP S62227049A JP 7142686 A JP7142686 A JP 7142686A JP 7142686 A JP7142686 A JP 7142686A JP S62227049 A JPS62227049 A JP S62227049A
Authority
JP
Japan
Prior art keywords
matrix
fibers
frm
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7142686A
Other languages
Japanese (ja)
Inventor
Kazuo Toyama
外山 和男
Yoshiyasu Morita
森田 喜保
Manabu Seguchi
瀬口 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7142686A priority Critical patent/JPS62227049A/en
Publication of JPS62227049A publication Critical patent/JPS62227049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えばゴルフ用シャフト、航空機ハウジン
グ等として利用される金属マトリックスに強化繊維が一
体結合された金属基複合材料(以下「FRMJと称する
)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a metal matrix composite material (hereinafter referred to as "FRMJ") in which reinforcing fibers are integrally bonded to a metal matrix, which is used as, for example, golf shafts, aircraft housings, etc. Regarding the manufacturing method.

従来技術とその問題点 FRMは高強度繊維と金属材料を複合化した材料であり
、特性の異なった材料の組み合わせにより、それぞれの
優れた特徴を導き出すとともに欠点を補い合って飛躍的
に向上した機能を持つ材料を意味する。っこのように優
れた特性を発揮するFRMの製造方法は、■液相法、■
固相法、■一方向凝固法に大別されるが、予め積層され
た強化繊維に溶融金属を浸透させ一体化させる際に特ζ
ζ問題となるのは、■繊維とマトリックスのぬれ性、■
懺維とマトリックスの適合性、■m維とマトリックス間
の気孔の存在等である。■のぬれ性については、一般に
繊維に対し各種表面処理を施すことによって改善がはか
られている(金属学会報23 (1984)396)。
Conventional technology and its problems FRM is a composite material of high-strength fibers and metal materials. By combining materials with different characteristics, we derive the excellent characteristics of each material and compensate for their shortcomings, resulting in dramatically improved functionality. It means the material that has. The manufacturing methods for FRM that exhibit such excellent properties are: ■Liquid phase method;■
It is broadly divided into the solid phase method and the unidirectional solidification method.
ζThe issues are: ■ Wettability of the fiber and matrix, ■
These include the compatibility of the fibers and the matrix, and the presence of pores between the fibers and the matrix. Regarding the wettability (2), it is generally improved by subjecting the fibers to various surface treatments (Metals Research Bulletin 23 (1984) 396).

■の適合性とはFRM−¥il−構成する繊維に高温の
溶融金属が接触した時、両者の間に反応が生じ、ram
が劣化する程度を示すものであり、高温になる程低下す
ることが知られている(CCM−■(1982) 12
73.1315)。従って、前記■液相法では温度が非
常に高いため繊維の強度低下が生じるという問題がある
。一方、■固相法は液相法に比べ温度が低いので繊維強
度低下の問題は改善されるが、一般的には高温高圧下で
長時間処理を行なわないと十分な強度が渇られない。ま
た、1没備費が高くつき、生産性も悪い欠点を有する。
■Compatibility means that when high-temperature molten metal comes into contact with the fibers that make up FRM-\il-, a reaction occurs between the two, and ram
It is known that the higher the temperature, the more the temperature deteriorates (CCM-■ (1982) 12
73.1315). Therefore, in the above-mentioned liquid phase method (1), there is a problem in that the temperature is extremely high, resulting in a decrease in the strength of the fibers. On the other hand, (2) the solid phase method uses a lower temperature than the liquid phase method, so the problem of fiber strength reduction is alleviated, but generally sufficient strength cannot be obtained unless the treatment is carried out at high temperature and high pressure for a long time. In addition, it has the disadvantage of high consumable costs and poor productivity.

発  明  の  目  的 この発明は従来技術の前記問題点を解決するためになさ
れたもので、低い温度での短時間処理でマトリックスと
繊維との適合性に優れた高強度のFRMを製造し得る方
法を提案することを目的とする。
Purpose of the Invention The present invention was made to solve the above-mentioned problems of the prior art, and it is possible to produce a high-strength FRM with excellent compatibility between the matrix and fibers in a short period of time at low temperatures. The purpose is to propose a method.

発  明  の  構  成 この発明に係るFRMの製造方法は、kl−Mg合金を
マトリックスとし、このマトリックスと強化繊、准とを
一体成形するに際し、前記A11−Mg合金の共晶点(
450℃および437℃)と溶融点の間の温度で加圧す
ることを特徴とするものである。
Structure of the Invention The method for producing an FRM according to the present invention uses a kl-Mg alloy as a matrix, and when integrally molding this matrix, reinforcing fibers, and a material, the eutectic point (
450° C. and 437° C.) and the melting point.

すなわち、この発明は金属マトリックスに450℃およ
び437℃に共晶点を有するA/−Mg合金を用い、前
記共晶点から溶融点の間の温度に保持し、マトリックス
の一部を溶解させ一体化する方法である。このため、本
質的には液相法であるが、見掛上は同相法に近い一渾成
形法である。
That is, this invention uses an A/-Mg alloy having eutectic points at 450°C and 437°C as a metal matrix, and maintains the temperature between the eutectic point and the melting point to melt a part of the matrix and form an integral part. This is a method of Therefore, although it is essentially a liquid phase method, it is apparently a single stroke molding method that is similar to the same phase method.

この発明において、共晶点とはアルミニウムおよびマグ
ネシウムの結晶が同時に出てくる温度のことであり、第
1図にAllとMgの共晶を生ずる状態図を示すように
、純hlの融点660℃、純Mgの融点649℃に対し
、約200℃低い450’Cおよび437℃に共晶点を
有する。
In this invention, the eutectic point is the temperature at which crystals of aluminum and magnesium appear simultaneously, and as shown in Figure 1, which shows a phase diagram at which eutectic formation of All and Mg occurs, the melting point of pure HL is 660°C. , has a eutectic point at 450'C and 437°C, which is about 200°C lower than the melting point of pure Mg, 649°C.

また、A$−Mg合金の形態は箔または粉末のいずれで
もよく、合金成分は成形温度で液相の体積比が17〜5
0影となる組成を最適とする。
Further, the form of the A$-Mg alloy may be either foil or powder, and the alloy components have a liquid phase volume ratio of 17 to 5 at the forming temperature.
Optimize the composition that gives 0 shadow.

また、この発明で用いる強化繊維としては、ポロン繊維
、炭素繊維、炭化珪素繊維、アルミナ繊維が代表的であ
る。このうち、ポロン繊維はFRM用強化繊維として最
も多く使用されている。
Further, typical reinforcing fibers used in the present invention include poron fibers, carbon fibers, silicon carbide fibers, and alumina fibers. Among these, poron fibers are most commonly used as reinforcing fibers for FRM.

第2図はこの発明方法により製造されるFRMの積層構
造例を示す斜視図で、(1)は薄板状に圧延されたAl
 −Mg合金マドIJックス、(2)は一方向に方向性
をもって配向された強化繊維を示す。このFRMは、薄
板状に圧延されたAl −Mg合金マトリックス(1)
の上に強化繊維(2)を一方向に配向させて並べ、これ
を積層後、Al−Mg合金の共晶点と溶融点の間の温度
に保持しプレスで圧着せしめて一体成形することにより
得ることができる。従って、この発明方法では固相法の
ような高温高圧発生装置を必要とせず、また成形時の保
持温度が低くマトリックス全体が溶融することがないた
め、材料は基本的には固体として取扱うことが可能であ
る。
FIG. 2 is a perspective view showing an example of the laminated structure of FRM manufactured by the method of the present invention, in which (1) is an aluminum plate rolled into a thin plate.
-Mg alloy Mado IJx, (2) indicates reinforcing fibers oriented in one direction. This FRM consists of an Al-Mg alloy matrix (1) rolled into a thin plate.
By arranging the reinforcing fibers (2) in one direction on the top, and after laminating them, they are held at a temperature between the eutectic point and the melting point of the Al-Mg alloy, and are pressed together with a press to form an integral mold. Obtainable. Therefore, the method of this invention does not require a high-temperature, high-pressure generator unlike the solid-phase method, and the holding temperature during molding is low and the entire matrix does not melt, so the material can basically be handled as a solid. It is possible.

実   施   例 マトリックスとして、重量比でA175:Mg25とし
たAe−Mg合金を用い、強化繊維として直径100μ
mのポロン繊維を用い、Ae−Mg合金は圧延により厚
さ0.1flの薄板とし、この薄板より150fi長×
25n幅の小片を切り出したものを80枚用意し、この
各小片間に前記ポロン繊維を一方向に配向し組立てたも
のを温度300〜500℃、100気圧、10分間保持
の条件で焼成し、焼成後150jfl長×15ff幅の
平板引張試験片を機械加工により採取し、ASTM D
3552に準じて引張試験した。同時に成形後、繊維を
抽出し適合性を調査した結果を第3図に示す。
Example An Ae-Mg alloy with a weight ratio of A175:Mg25 was used as the matrix, and reinforcing fibers with a diameter of 100 μm were used.
The Ae-Mg alloy is rolled into a thin plate with a thickness of 0.1fl using Poron fibers of 150mm, and from this thin plate 150fi length x
Prepare 80 small pieces cut out with a width of 25n, the poron fibers are oriented in one direction between each small piece, and the assembled product is fired at a temperature of 300 to 500°C, 100 atm, and held for 10 minutes, After firing, a flat plate tensile test piece of 150jfl length x 15ff width was collected by machining, and ASTM D
A tensile test was conducted according to 3552. At the same time, after molding, the fibers were extracted and the compatibility was investigated, and the results are shown in Figure 3.

第3図より、FRM強度は400℃以下の焼成ではほと
んどAl単体と変らず、465℃、 500℃の焼成に
よりA[の約2倍となることがわかる。これは、?肖1
図の状態図からも明らかなように、マトリックス中のβ
相が450℃で溶解することに対応している。通常の液
相法で作製したB/kl FRM(Vf中50%)は、
強度上昇はAJ単体に比べ1.4倍であり、この発明方
法によるFRMの強度が優れている。
From FIG. 3, it can be seen that the strength of FRM is almost the same as Al alone when fired at 400°C or lower, and becomes about twice that of A[ when fired at 465°C and 500°C. this is,? Portrait 1
As is clear from the phase diagram shown in the figure, β in the matrix
This corresponds to the phase melting at 450°C. B/kl FRM (50% in Vf) prepared by normal liquid phase method is
The increase in strength is 1.4 times that of AJ alone, and the strength of the FRM produced by the method of this invention is excellent.

一方、抽出した焼成後のフィラメントの強度は300〜
500℃の焼成温度範囲ではもとのフィラメント強度の
90%以上を維持しており、はとんど劣化していないこ
とがわかる。液相法によるフィラメントは0.3と著し
い劣化を示しているのに比べると、この発明の効果は歴
然としている。
On the other hand, the strength of the extracted filament after firing is 300~
It can be seen that over 90% of the original filament strength was maintained in the firing temperature range of 500°C, and there was almost no deterioration. Compared to the filament produced by the liquid phase method, which shows a significant deterioration of 0.3, the effects of this invention are clear.

第4図はFRM強度とMg重量%の関係を示したもので
ある。ここで、Mg=10%では焼成温度における液相
は0%であり、全く強化されていないことがわかる。F
RM強度をAl1強度の1.5倍以上とするとMgli
t%は18〜30%が適当な丘囲である。
FIG. 4 shows the relationship between FRM strength and Mg weight %. Here, when Mg=10%, the liquid phase at the firing temperature is 0%, indicating that there is no reinforcement at all. F
When the RM strength is 1.5 times or more the Al1 strength, Mgli
A suitable range of t% is 18 to 30%.

これはβ相の体積比で約17〜80%である。液相が体
積比で50%を超えると製造時にマ) IJワックスし
み出しが生じ板形状が均一に保てず固相法的な取扱いが
できないので、焼結温度(成形温度)における液相の体
積率は前記したとおり17〜50%が最適である。
This is approximately 17 to 80% by volume of the β phase. If the liquid phase exceeds 50% by volume, IJ wax oozes out during manufacturing, and the plate shape cannot be maintained uniformly, making it impossible to handle using the solid phase method. As described above, the optimum volume ratio is 17 to 50%.

上記と全く同様の効果は、Mg 85〜69%、A15
〜31%の合金をマトリックスとして用いても得ること
ができる。
Exactly the same effect as above is obtained by Mg 85-69%, A15
It can also be obtained using ~31% of the alloy as matrix.

発  明  の  効  果 以上説明したごとく、この発明方法によれば、成形温度
が低いため強化繊維の強度特性劣化や脆弱な金属間化合
物の生成を回避することができ、高強度のFRMを製造
することができる。また、固相法と同様低い温度にもか
かわらず短時間で処理でき、同時に固相法のような高圧
発生装置を必要としないため、生産性が高くかつ設備費
も安くつく効果があり、高強度のFRMを低コストで製
造し得る。
Effects of the Invention As explained above, according to the method of the present invention, since the forming temperature is low, it is possible to avoid the deterioration of the strength characteristics of reinforcing fibers and the formation of brittle intermetallic compounds, and it is possible to produce high-strength FRM. be able to. In addition, like the solid-phase method, it can be processed in a short time despite the low temperature, and at the same time, unlike the solid-phase method, it does not require high-pressure generators, resulting in high productivity and low equipment costs. A strong FRM can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はl?とMqの共晶を生ずる状態図、第2図はこ
の発明方法により製造されるFRMの積層溝造例を示す
斜視図、第3図はこの発明の実施例におけるFRMの引
張試験結果と繊維の適合惟を示す図、第4図は同上実施
例におけるFRM強度とMg重量%の関係を示す図であ
る。 1・・・Al −Mg合金マトリックス、2・・・強化
繊維。 出願人  住友金属工業株式会社 代理人   押   1)  艮   へ 雪傭第1図 部2図 第3図 第4因 MgI戊分(%〕
Figure 1 is l? Fig. 2 is a perspective view showing an example of laminated groove formation of FRM manufactured by the method of this invention, and Fig. 3 shows the results of tensile test of FRM and fiber FIG. 4 is a diagram showing the compatibility and the relationship between FRM strength and Mg weight % in the same example. 1... Al-Mg alloy matrix, 2... Reinforced fiber. Applicant Sumitomo Metal Industries Co., Ltd. Agent Press 1) To Yukiken Figure 1 Part 2 Figure 3 Figure 4 Factor MgI Min (%)

Claims (1)

【特許請求の範囲】[Claims] Al−Mg合金をマトリックスとし、このマトリックス
と強化繊維とを一体成形するに際し、前記Al−Mg合
金の共晶点と溶融点の間の温度で加圧することを特徴と
する金属基複合材料の製造方法。
Production of a metal matrix composite material using an Al-Mg alloy as a matrix, and pressurizing at a temperature between the eutectic point and the melting point of the Al-Mg alloy when integrally molding the matrix and reinforcing fibers. Method.
JP7142686A 1986-03-28 1986-03-28 Manufacture of metal-base composite material Pending JPS62227049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7142686A JPS62227049A (en) 1986-03-28 1986-03-28 Manufacture of metal-base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7142686A JPS62227049A (en) 1986-03-28 1986-03-28 Manufacture of metal-base composite material

Publications (1)

Publication Number Publication Date
JPS62227049A true JPS62227049A (en) 1987-10-06

Family

ID=13460171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7142686A Pending JPS62227049A (en) 1986-03-28 1986-03-28 Manufacture of metal-base composite material

Country Status (1)

Country Link
JP (1) JPS62227049A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628005A (en) * 2013-11-22 2014-03-12 江苏大学 Carbon fiber reinforced aluminum base composite material for brake disc and preparation method of composite material
TWI614050B (en) * 2017-03-01 2018-02-11 彭鴻濤 Manufacturing method for golf strike pad and the components of the golf strike pad
CN110788511A (en) * 2019-11-27 2020-02-14 中国航空制造技术研究院 Preparation method of low-cost large-size fiber reinforced titanium-based composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628005A (en) * 2013-11-22 2014-03-12 江苏大学 Carbon fiber reinforced aluminum base composite material for brake disc and preparation method of composite material
TWI614050B (en) * 2017-03-01 2018-02-11 彭鴻濤 Manufacturing method for golf strike pad and the components of the golf strike pad
CN110788511A (en) * 2019-11-27 2020-02-14 中国航空制造技术研究院 Preparation method of low-cost large-size fiber reinforced titanium-based composite material
CN110788511B (en) * 2019-11-27 2022-01-21 中国航空制造技术研究院 Preparation method of low-cost large-size fiber reinforced titanium-based composite material

Similar Documents

Publication Publication Date Title
US5130209A (en) Arc sprayed continuously reinforced aluminum base composites and method
US6852273B2 (en) High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US4809903A (en) Method to produce metal matrix composite articles from rich metastable-beta titanium alloys
US4469757A (en) Structural metal matrix composite and method for making same
US4746374A (en) Method of producing titanium aluminide metal matrix composite articles
US6599466B1 (en) Manufacture of lightweight metal matrix composites with controlled structure
US4893743A (en) Method to produce superplastically formed titanium aluminide components
CN101391500B (en) Magnesium based composite material and preparation method thereof
US3900150A (en) Duplex composite tape
US4733816A (en) Method to produce metal matrix composite articles from alpha-beta titanium alloys
US4807798A (en) Method to produce metal matrix composite articles from lean metastable beta titanium alloys
US5326525A (en) Consolidation of fiber materials with particulate metal aluminide alloys
US3796587A (en) Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
JPH01252741A (en) fiber reinforced composite material
Dhingra Metal matrix composites reinforced with Fibre FP (a-Al2O3)
US5352537A (en) Plasma sprayed continuously reinforced aluminum base composites
JPS62227049A (en) Manufacture of metal-base composite material
JPH0729859B2 (en) Ceramics-Metal bonding material
US5217815A (en) Arc sprayed continously reinforced aluminum base composites
CN115971723A (en) A kind of amorphous titanium-based solder strip material and its preparation method and application
Ruutopold et al. The role of interfaces in the application of rapidly solidified metal ribbons as reinforcements for composites
US5141145A (en) Arc sprayed continuously reinforced aluminum base composites
JPH0568530B2 (en)
US5508115A (en) Ductile titanium alloy matrix fiber reinforced composites
US5697421A (en) Infrared pressureless infiltration of composites