[go: up one dir, main page]

JPH0729859B2 - Ceramics-Metal bonding material - Google Patents

Ceramics-Metal bonding material

Info

Publication number
JPH0729859B2
JPH0729859B2 JP60196513A JP19651385A JPH0729859B2 JP H0729859 B2 JPH0729859 B2 JP H0729859B2 JP 60196513 A JP60196513 A JP 60196513A JP 19651385 A JP19651385 A JP 19651385A JP H0729859 B2 JPH0729859 B2 JP H0729859B2
Authority
JP
Japan
Prior art keywords
metal
ceramics
sintered
silicon nitride
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60196513A
Other languages
Japanese (ja)
Other versions
JPS6256380A (en
Inventor
誠 白兼
昌子 中橋
達雄 山崎
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60196513A priority Critical patent/JPH0729859B2/en
Publication of JPS6256380A publication Critical patent/JPS6256380A/en
Publication of JPH0729859B2 publication Critical patent/JPH0729859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、セラミックスと金属の接合部材に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a joining member of ceramics and metal.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化ケイ素,炭化ケイ素,アルミナ等の各種セラミック
スは、夫々が備えた特異な性質を生かすことにより構造
部材、各種機能部材として広く利用され始じめている。
その多くの場合は、セラミックスそれ自体を単独で利用
するという態様である。こうしたセラミックスに金属を
接合できるとすれば、得られた部材は新たな機能を備え
た部材として一層広い分野での利用が可能になるものと
考えられる。
Various ceramics such as silicon nitride, silicon carbide, and alumina have been widely used as structural members and various functional members by taking advantage of their unique properties.
In many cases, the ceramic itself is used alone. If a metal can be bonded to such ceramics, it is considered that the obtained member can be used in a wider field as a member having a new function.

上述したセラミックス−金属接合部材において、それが
構造部品である場合にはセラミックスと金属の接合強度
は充分に高いことが要求され、一方機能部材である場合
には、セラミックスと金属の接合界面では連続性を有す
ることが要求される。しかしながら、一般にセラミック
スと金属とは各々原子結合状態が相違する材料であり、
両者の反応性などの化学的性質;熱膨張率;電気伝導度
などの物質的性質が互に異なるため、両者の接合時にお
いては、接合界面での冶金的接合状態が形成され難い。
In the ceramic-metal joint member described above, when it is a structural part, the joint strength between the ceramic and the metal is required to be sufficiently high, while when it is a functional member, the joint interface between the ceramic and the metal is continuous. It is required to have sex. However, in general, ceramics and metals are materials with different atomic bond states,
Since chemical properties such as reactivity of the two; thermal expansion coefficient; physical properties such as electrical conductivity are different from each other, it is difficult to form a metallurgical bonding state at the bonding interface at the time of bonding the two.

ところで、従来よりセラミックスと金属とを冶金的に接
合する方法としては、以下に示す種種の方法が知られて
いる。
By the way, conventionally, as a method for metallurgically joining ceramics and metal, the following various kinds of methods are known.

セラミックスの金属と接合すべき面にMo−Ti−Wを主
成分とする粉末と有機バインダとの混合物を塗布し、加
湿した雰囲気中で1400〜1700℃に加熱して反応させ、メ
タライジングと呼ばれる層を形成し、つづいてこのメタ
ライジング層上にNiメッキを施した後、該Niメッキに金
属(例えばCu母材)をPb−Sn系半田などにより接合する
方法。
A mixture of powder containing Mo-Ti-W as a main component and an organic binder is applied to the surface of ceramics to be joined to a metal, and the mixture is heated to 1400 to 1700 ° C in a humidified atmosphere to cause a reaction, which is called metallizing. A method of forming a layer, subsequently applying Ni plating on the metallizing layer, and then joining a metal (for example, Cu base material) to the Ni plating with Pb-Sn solder or the like.

セラミックスと金属とをAu,Ptのような貴金属,つま
り酸素との親和かが小さい金属を主成分とする合金を用
いて接合する方法。
A method of joining ceramics and metal using a noble metal such as Au or Pt, that is, an alloy whose main component is a metal having a small affinity for oxygen.

セラミックスと金属との接合部にTi,Nb,Zrなどの活性
金属又は熱処理によって活性金属に転化する活性金属水
素化物を介在させた後、両者を高温,高圧下で接合する
方法。
A method in which an active metal such as Ti, Nb, or Zr or an active metal hydride that is converted to an active metal by heat treatment is interposed at the joint between ceramics and metal, and then the two are joined at high temperature and high pressure.

しかしながら、上記の方法は必要とする工程数が多く
なり、煩雑であるという欠点を有する。上記の方法
は、簡単な工程で接合できるものの、高価な貴金属を使
用するため、経済的メリットは極めて少なく、しかも、
セラミックスと金属とが十分に接触するように高い圧力
を必要とする。上記の方法は、活性金属の作用により
強固な接合が可能であるが、前記の方法と同様に高い
接合圧力を必要とするため、変形を嫌うような部品等に
は適用することが好ましくない。
However, the above method has a drawback that it requires many steps and is complicated. Although the above method can be joined in a simple process, since an expensive precious metal is used, the economic merit is extremely small, and moreover,
High pressure is required so that the ceramic and the metal come into sufficient contact. Although the above method enables strong bonding due to the action of the active metal, it requires high bonding pressure as in the above method, and therefore is not preferably applied to parts or the like that are not susceptible to deformation.

このような問題を解決するために、米国特許法第2,857,
663号明細書には次のような接合方法が開示されてい
る。この方法は遷移金属とセラミックスの接合部に活性
金属を介在させ、該接合部を遷移金属と活性金属の合金
の融点より高く、遷移金属の融点より低い温度に加熱
し、遷移金属と活性金属の原子を相互に拡散せしめて合
金化し、この合金によって遷移金属とセラミックスとを
接合する方法である。
In order to solve such problems, US Patent No. 2,857,
No. 663 discloses the following joining method. In this method, an active metal is interposed in the joint between the transition metal and the ceramic, the joint is heated to a temperature higher than the melting point of the alloy of the transition metal and the active metal and lower than the melting point of the transition metal, This is a method in which atoms are diffused into each other to form an alloy, and a transition metal and a ceramic are joined by this alloy.

しかしながら、上記方法では得られたセラミックス−金
属接合部材を冷却する過程でセラミックスにクラックが
煩発するという問題がある。これは、セラミックスと金
属との間に発生する熱応力に基づく現象である。例え
ば、セラミックスがアルミナ、窒化ケイ素の場合、夫々
の線熱膨張係数は8.8×10-6/℃,2.5×10-6/℃であり、C
u,Ni,Feなどに比べてその値は約1桁小さいもので、両
者の接合部に発生する熱応力は大きくなる。しかも、熱
応力は接合時の温度と冷却時の温度(室温)との差が大
きければ大きいほど増大する。従って、熱応力を減ずる
ためには接合時の温度を低めることが求められ、そのこ
とは接合時に低融点のろう材の使用が要求されることに
なる。
However, the above method has a problem that cracks occur in the ceramic during the process of cooling the obtained ceramic-metal joint member. This is a phenomenon based on the thermal stress generated between ceramics and metal. For example, if the ceramic is alumina, silicon nitride, linear thermal expansion coefficient of each is 8.8 × 10 -6 /℃,2.5×10 -6 / ℃ , C
Its value is about an order of magnitude smaller than that of u, Ni, Fe, etc., and the thermal stress generated at the joint between the two becomes large. Moreover, the thermal stress increases as the difference between the temperature during joining and the temperature during cooling (room temperature) increases. Therefore, in order to reduce the thermal stress, it is required to lower the temperature at the time of joining, which requires the use of a brazing material having a low melting point at the time of joining.

上述した問題点に対して特開昭56−163093号の接合方法
の提案や活性金属を含むろう材をセラミックスと金属の
両者に拡散せしめて構成した接合部材の開発がなされて
いる。しかしながら、これらの方法は複雑な工程、長時
間の熱処理が不可避であるため、生産性等の点で問題が
あり、しかもセラミックスと金属間の熱応力の緩和には
必ずしも有効ではない。
In order to solve the above-mentioned problems, Japanese Patent Application Laid-Open No. 56-163093 proposes a joining method and develops a joining member constituted by diffusing a brazing material containing an active metal into both ceramics and metal. However, these methods have problems in terms of productivity and the like because complicated steps and long-time heat treatment are unavoidable, and are not always effective in relaxing thermal stress between ceramics and metal.

上記手法の適用時における応力緩和を果たすための方法
としては、セラミックスと金属の間に軟質金属層を介在
させ、その塑性変形及び弾性変形によって熱応力を緩和
する方法(特開昭56−41879号)、セラミックスと金属
の間に線膨張率が両者の中間の値を有する材料の層を介
在させる方法(特開昭55−113678号)、セラミックスか
ら金属にかけて線膨張率が小から大へと変化する複数の
層を順次積層して介在させる方法(特開昭55−7544号)
などが開示されている。
As a method for achieving stress relaxation when the above method is applied, a soft metal layer is interposed between ceramics and metal, and thermal stress is relaxed by its plastic deformation and elastic deformation (Japanese Patent Laid-Open No. 56-41879). ), A method of interposing a layer of a material having a coefficient of linear expansion between ceramics and metal (Japanese Patent Laid-Open No. 55-113678), and the coefficient of linear expansion changes from small to large from ceramics to metals. A method of sequentially laminating a plurality of layers and interposing them (Japanese Patent Laid-Open No. 557544)
Etc. are disclosed.

しかしながら、活性金属を含むろう材での上記接合方法
の場合、接合面にかかる圧力によって、しばしば溶融ろ
う材が接合部からはみ出すことがある。このはみ出した
溶融ろう材の量が多くなると、凝固冷却する過程におい
て、セラミックスとろう材の熱膨張係数の差に基づく熱
応力によりセラミックスにクラックが生じることがあ
る。この現象を防止するためには、はみ出しがなく、か
つ接合部全面をろう材がぬらすのに必要な最適なろう材
の量(厚さ)を決めればよいが、用いる接合材料、接合
圧力、接合温度、雰囲気等の条件により、ろう材の最適
量を決めるのは非常に困難である。また、はみ出しを機
械的に防止する方法、例えばろう材とのぬれ性の悪い材
料を用いて接合部外周をシールする方法が考えられる
が、この方法はぬれ性の悪い材料の選定が困難であるば
かりか、接合工程の煩雑化を招くことになり、現実的な
方法とはいい難い。
However, in the case of the above-described joining method using a brazing filler metal containing an active metal, the molten brazing filler metal often protrudes from the joint due to the pressure applied to the joint surface. If the amount of the molten brazing filler metal that has overflowed increases, cracks may occur in the ceramics due to thermal stress due to the difference in thermal expansion coefficient between the ceramics and the brazing filler metal during the process of solidifying and cooling. In order to prevent this phenomenon, it is necessary to determine the optimum amount (thickness) of the brazing filler metal that has no protrusion and is necessary for the brazing filler metal to wet the entire joint area. It is very difficult to determine the optimum amount of brazing filler metal depending on conditions such as temperature and atmosphere. Further, a method of mechanically preventing the protrusion is possible, for example, a method of sealing the outer circumference of the joint with a material having poor wettability with the brazing material, but this method makes it difficult to select a material having poor wettability. Not only that, but it also complicates the joining process, which is difficult to call a realistic method.

〔発明の目的〕[Object of the Invention]

本発明は、高温での接合強度が高く、しかも熱影響によ
るセラミックスのクラック発生を防止したセラミックス
−金属接合部材を提供しようとするものである。
The present invention is intended to provide a ceramic-metal bonding member that has high bonding strength at high temperatures and that prevents cracking of ceramics due to thermal effects.

〔発明の概要〕[Outline of Invention]

本発明者らは、セラミックスと金属との間に応力緩衝部
材を介在せしめて全体をろう材で接合した接合部材につ
いて鋭意研究を重ねた結果、応力緩衝材として1〜30体
積%の空孔率を有する金属焼結層を用いることによっ
て、既述の如く高温での接合強度が高く、くかも熱影響
によるセラミックスのクラック発生を防止したセラミッ
クス−金属接合部材を見い出した。
The present inventors have conducted extensive studies on a joining member in which a stress buffering member is interposed between ceramics and a metal and are wholly joined with a brazing filler metal, and as a result, a porosity of 1 to 30% by volume as a stress buffering member. As described above, the inventors have found a ceramic-metal joint member having high joint strength at high temperature and preventing cracking of ceramics due to the influence of heat, as described above.

すなわち、本発明に係わるセラミックス−金属接合部材
はセラミックスと金属の接合面に1〜30体積%の空孔率
を有する金属焼結層を配置し、かつ少なくとも前記セラ
ミックスと前記金属焼結層の間に活性金属を含む層を介
在させて接合したことを特徴とするものである。
That is, the ceramic-metal joining member according to the present invention has a metal-sintered layer having a porosity of 1 to 30% by volume on the joint surface between the ceramic and the metal, and at least between the ceramic and the metal-sintered layer. It is characterized in that they are joined with a layer containing an active metal interposed therebetween.

上記セラミックスとしては、例えばAl2O3,ZrO2などの酸
化物系セラミックス、SiC,TiCなどの炭化物系セラミッ
クス、Si3N4,AlNなどの窒化物系セラミックス等を挙げ
ることができる。
Examples of the ceramics include oxide ceramics such as Al 2 O 3 and ZrO 2 , carbide ceramics such as SiC and TiC, and nitride ceramics such as Si 3 N 4 and AlN.

上記金属としては、例えばFe,Ni,Co,Ti,Mo,W,Nb,Ta,Zr
又はこれらの合金等を挙げることができる。
Examples of the metal include Fe, Ni, Co, Ti, Mo, W, Nb, Ta, Zr.
Or these alloys etc. can be mentioned.

上記金属焼結層は、粉末冶金法により得ることができ
る。この金属としては、Ni,Co,Fe,Tiなどの融点の比較
的高い金属もしくはこれらの合金等を挙げることができ
る。こうした金属焼結層の空孔率を上記範囲に限定した
理由はその空孔率を1体積%末満にすると、熱応力の緩
和作用が低く、クラック発生の防止やせん断強度の向上
を達成できず、かといってその空孔率が30体積%を越え
ると、せん断強さの低下を招く。より好ましい空孔率の
範囲は、5〜20体積%である。
The sintered metal layer can be obtained by a powder metallurgy method. Examples of this metal include metals having a relatively high melting point such as Ni, Co, Fe and Ti, and alloys thereof. The reason why the porosity of such a metal sintered layer is limited to the above range is that when the porosity is set to 1% by volume, the effect of relaxing thermal stress is low, cracks can be prevented, and shear strength can be improved. However, if the porosity exceeds 30% by volume, the shear strength will decrease. A more preferable porosity range is 5 to 20% by volume.

上記金属焼結層の厚さは、0.3mm以上にすることが望ま
しい。この理由は、金属焼結層の厚さを0.3mm末満にす
ると、セラミックスと金属との間に発生する熱応力を有
効に吸収することが難しくなり、接合部の強度が著しく
低下したり、セラミックスにクラックが発生する恐れが
あるからである。
The thickness of the sintered metal layer is preferably 0.3 mm or more. The reason for this is that if the thickness of the metal sintered layer is set to 0.3 mm or less, it becomes difficult to effectively absorb the thermal stress generated between the ceramic and the metal, and the strength of the bonded portion is significantly reduced, This is because cracks may occur in the ceramics.

このような金属焼結層において、熱応力の吸収に大きく
寄与するのは、該金属焼結層中に無数に分布する微細
な空孔による吸収と、金属焼結層自体の塑性変形又は
弾性変形による吸収である。特に、前記の金属焼結層
中の空孔が大きく寄与しており、接合時の室温付近で生
じる最大の熱歪みを該空孔部で吸収してセラミックスの
クラック発生を防止する。一方、接合部材の高温接合強
度は金属焼結層自体の強さに依存する。従って、金属焼
結層の空孔率は、前記範囲(1〜30体積%)内において
熱応力の緩和と高温接合強さとの兼ね合いで決められ
る。
In such a metal sintered layer, the major contribution to the absorption of thermal stress is the absorption due to the innumerable fine pores distributed in the metal sintered layer and the plastic deformation or elastic deformation of the metal sintered layer itself. It is absorbed by. In particular, the pores in the above-mentioned sintered metal layer largely contribute to prevent the generation of cracks in the ceramics by absorbing the maximum thermal strain generated near room temperature at the time of bonding by the pores. On the other hand, the high temperature joint strength of the joint member depends on the strength of the sintered metal layer itself. Therefore, the porosity of the sintered metal layer is determined in the above range (1 to 30% by volume) in consideration of the relaxation of thermal stress and the high temperature bonding strength.

前記活性金属を含む層としては、例えばTi、NbまたはZr
等を箔の形態出用いることができる。また、前記活性金
属を含む層としてはTi箔とCu箔の積層薄膜、Ti箔とAg箔
の積層薄膜を用いることができる。
Examples of the layer containing the active metal include Ti, Nb, or Zr.
Etc. can be used in the form of foil. As the layer containing the active metal, a laminated thin film of Ti foil and Cu foil or a laminated thin film of Ti foil and Ag foil can be used.

前記活性金属を含む層は、前記セラミックスと前記金属
焼結層の間の他に、必要に応じて前記金属焼結層と前記
金属の間に介在させてもよい。
The layer containing the active metal may be interposed between the metal sintered layer and the metal, if necessary, in addition to between the ceramics and the metal sintered layer.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例1 まず、直径13mm、厚さ5mmの窒化ケイ素円柱体、直径13m
m、厚さ5mmの構造用炭素鋼(JIS,S45C)の円板を用意し
た。また、直径15mm、厚さ0.8mmのNi焼結体(密度92〜9
3%)を用意した。
Example 1 First, a silicon nitride cylinder having a diameter of 13 mm and a thickness of 5 mm, a diameter of 13 m
A disk of structural carbon steel (JIS, S45C) having a thickness of 5 mm and a thickness of 5 mm was prepared. Also, a Ni sintered body with a diameter of 15 mm and a thickness of 0.8 mm (density 92 to 9
3%) was prepared.

次いで、前記窒化ケイ素円柱体と炭素鋼円板の間に前記
Ni焼結体を介在させ、該窒化ケイ素円柱体とNi焼結体の
間及びNi焼結体と炭素鋼円板の間に夫々厚さ3μmのTi
箔とCu箔の積層薄膜を挾んで重ね合せた後、10kg/cm2
圧力を加えながら、5×10-5Torr,950℃×4分間の条件
に保持し、ひきつづきアルゴンガス中で冷却して窒化ケ
イ素−炭素鋼接合部材を得た。
Then, between the silicon nitride cylinder and the carbon steel disk,
With a Ni sintered body interposed, a Ti layer having a thickness of 3 μm was formed between the silicon nitride cylinder and the Ni sintered body and between the Ni sintered body and the carbon steel disk.
After sandwiching the laminated thin film of foil and Cu foil, while applying a pressure of 10 kg / cm 2 , hold at 5 × 10 −5 Torr, 950 ° C. × 4 minutes, and continue cooling in argon gas. To obtain a silicon nitride-carbon steel joint member.

得られた接合部材について、接合面にせん断応力を加
え、室温から600℃までのせん断強さを測定した。ま
た、比較例1としてNi焼結板の代りに厚さ0.8mmの純Ni
板を用いた以外、実施例1と同条件で接合した窒化ケイ
素−炭素鋼接合部材を造り、同様にせん断強さを測定し
た。これらの結果を図に示した。なお、図中のA,Bは夫
々本実施例1、比較例1の接合部材の特性線を示す。
Shear stress was applied to the joint surface of the obtained joint member, and the shear strength from room temperature to 600 ° C. was measured. Also, as Comparative Example 1, pure Ni having a thickness of 0.8 mm was used instead of the Ni sintered plate.
A silicon nitride-carbon steel joining member was made under the same conditions as in Example 1 except that the plate was used, and the shear strength was measured in the same manner. The results are shown in the figure. In addition, A and B in the figure show the characteristic lines of the joining members of Example 1 and Comparative Example 1, respectively.

図から明らかな如く、本実施例1における接合部材は、
せん断強さが室温から600℃においていずれも6kg/mm2
上であって、窒化ケイ素と炭素鋼との間の熱応力を充分
に緩和していることが推定される。これに対し、比較例
1の場合は、室温から200℃において1〜2kg/mm2のせん
断強さが認められたが、接合部材の窒化ケイ素には既に
クラックが生じており、純Ni板では熱応力の緩和が充分
になされていないことがわかる。なお、300℃以上にお
いては測定そのものができなかった。
As is clear from the figure, the joining member according to the first embodiment is
It is estimated that the shear strength is 6 kg / mm 2 or more from room temperature to 600 ° C., and the thermal stress between silicon nitride and carbon steel is sufficiently relaxed. On the other hand, in the case of Comparative Example 1, a shear strength of 1 to 2 kg / mm 2 was recognized at room temperature to 200 ° C., but cracks had already occurred in the silicon nitride of the joining member, and in the pure Ni plate It can be seen that the thermal stress is not relaxed sufficiently. The measurement itself could not be performed at 300 ° C or higher.

実施例2 まず、下記第1表に示す寸法の正方形で厚さ2mmの窒化
ケイ素板、同第1表に示す寸法の正方形で厚さ10mmの構
造用炭素鋼板(JIS S45C)を用意した。また、各々窒化
ケイ素板と同寸法で厚さ1.0mmのNi焼結板(密度90〜92
%)を用意した。
Example 2 First, a square silicon nitride plate having a size shown in Table 1 below and a thickness of 2 mm, and a square carbon steel plate (JIS S45C) having a size shown in Table 1 and a thickness of 10 mm were prepared. In addition, each Ni sintered plate (density 90 to 92) with the same dimensions as the silicon nitride plate and a thickness of 1.0 mm.
%) Was prepared.

次いで、前記各窒化ケイ素板と各炭素鋼板の間に前記Ni
焼結板を夫々窒化ケイ素の寸法に対応して介在させ、窒
化ケイ素板とNi焼結板の間及びNi焼結板と炭素鋼板の間
に夫々厚さ3μmのTi箔とCu箔の積層薄膜を挾んで重ね
た後、実施例1と同様な条件で処理して9種の窒化ケイ
素−炭素鋼接合部材を得た。
Then, the Ni between each silicon nitride plate and each carbon steel plate
Sintered plates are interposed according to the size of silicon nitride, and a laminated thin film of Ti foil and Cu foil with a thickness of 3 μm is sandwiched between the silicon nitride plate and the Ni sintered plate and between the Ni sintered plate and the carbon steel plate, respectively. Then, they were treated under the same conditions as in Example 1 to obtain nine kinds of silicon nitride-carbon steel joining members.

得られた各接合部材の外観(窒化ケイ素板のクラック発
生の有無)を観察した。その結果を同第1表に併記し
た。なお、第1表中にはNi焼結板の代りにそれらNi焼結
板と同一寸法の純Ni板を用いた以外、実施例2と同様な
方法で得た窒化ケイ素−炭素鋼接合部材の外観観察結果
を比較例2として併記した。
The appearance (presence or absence of cracks in the silicon nitride plate) of each of the obtained joint members was observed. The results are also shown in Table 1 above. In Table 1, the Ni nitride-carbon steel joint member obtained by the same method as in Example 2 was used except that the Ni sintered plate was replaced by a pure Ni plate having the same dimensions as the Ni sintered plate. The appearance observation results are also shown as Comparative Example 2.

上記第1表より明らかな如く、本実施例2の接合部材に
おいて窒化ケイ素板の接合面が100mmまでクラックが
生じず、Ni焼結板による高い熱応力緩和効果が認められ
る。これに対し、比較例2の場合、窒化ケイ素板の接合
面が10mmのみでクラックが生じないが、それ以上の大
面積になるとクラックが発生し、純Ni板による熱応力緩
和効果が十分でないことがわかる。
As is clear from Table 1 above, in the joining member of Example 2, cracks did not occur on the joining surface of the silicon nitride plate up to 100 mm, and the high thermal stress relaxation effect by the Ni sintered plate was recognized. On the other hand, in the case of Comparative Example 2, cracks do not occur when the bonding surface of the silicon nitride plate is only 10 mm, but cracks occur when the area is larger than that, and the thermal stress relaxation effect of the pure Ni plate is not sufficient. I understand.

なお、接合部材が高温でのせん断強さを必要としない場
合には、融点の比較的低いCu,Al等の金属焼結層(1〜3
0体積%の空孔率を有する)を使用しても同様なクラッ
ク発生を防止できる。これについて、以下に具体的な実
施例を説明する。
When the joining member does not require shear strength at high temperature, a sintered metal layer (1 to 3) having a relatively low melting point such as Cu or Al is used.
Similar cracks can be prevented by using 0% by volume). Regarding this, a specific example will be described below.

実施例3 まず、下記第2表に示す寸法の正方形で厚さ2mmの窒化
ケイ素板、同第2表に示す寸法の正方形厚さ10mmの構造
用炭素鋼板(JIS S45C)を用意した。また、各々窒化ケ
イ素板と同寸法で厚さ1.0mmのCu焼結板(密度95〜96
%)を用意した。
Example 3 First, a square silicon nitride plate having a size of 2 mm and a size shown in Table 2 below and a structural carbon steel plate (JIS S45C) having a square thickness of 10 mm and a size shown in Table 2 were prepared. In addition, a Cu sintered plate (density 95 to 96) with the same dimensions as the silicon nitride plate and a thickness of 1.0 mm
%) Was prepared.

次いで、前記各窒化ケイ素板と各炭素鋼板の間に前記Cu
焼結板を夫々の窒化ケイ素板の寸法に対応して介在さ
せ、これら窒化ケイ素板とCu焼結板の間及びCu焼結板と
炭素鋼板の間に夫々厚さ10μmのAg箔と3μmのTi箔の
積層薄膜を挾んで重ね合せた後、1kg/cm2の圧力を加え
ながら5×10-5Torr,850℃×6分間の条件に保持し、ひ
きつづきアルゴンガス中で冷却して9種の窒化ケイ素−
炭素鋼接合部材を得た。
Then, the Cu between each silicon nitride plate and each carbon steel plate
Sintered plates are interposed according to the dimensions of the respective silicon nitride plates, and a 10 μm thick Ag foil and a 3 μm Ti foil are respectively placed between the silicon nitride plate and the Cu sintered plate and between the Cu sintered plate and the carbon steel plate. After sandwiching and stacking the stacked thin films of, hold at 5 × 10 −5 Torr, 850 ° C. × 6 minutes while applying a pressure of 1 kg / cm 2 , and continue cooling in argon gas to nitride 9 types. Silicon-
A carbon steel joining member was obtained.

得られた各接合部材の外観(窒化ケイ素板のクラック発
生の有無)を観察した。その結果を同第2表に併記し
た。なお、第2表中にはCu焼結板の代りにそれらのCu焼
結板と同一寸法のリン脱酸銅板(JIC C1221P)を用いた
以外、上記方法と同様な工程により得た窒化ケイ素−炭
素鋼接合部材の外観観察結果を比較例3として併記し
た。
The appearance (presence or absence of cracks in the silicon nitride plate) of each of the obtained joint members was observed. The results are also shown in Table 2 above. It should be noted that, in Table 2, a silicon nitride-obtained by the same process as the above-mentioned method except that instead of the Cu sintered plate, a phosphorus deoxidized copper plate (JIC C1221P) having the same dimensions as those Cu sintered plates was used. The appearance observation result of the carbon steel joining member is also shown as Comparative Example 3.

上記第2表より明らかな如く、本実施例3の接合部材に
おいて窒化ケイ素板の接合面が150mmと大面積となっ
てもクラック発生は起こらず、Cu焼結板による高い応力
緩和効果が認められる。これに対し、比較例3の場合、
窒化ケイ素板の接合面が20mmまでのみクラックが生じ
ないが、それ以上の大面積になると、クラックが発生す
る。
As is clear from Table 2 above, even if the bonding surface of the silicon nitride plate in the bonding member of this Example 3 had a large area of 150 mm, cracks did not occur, and the high stress relaxation effect of the Cu sintered plate was recognized. To be On the other hand, in the case of Comparative Example 3,
Although the bonding surface of the silicon nitride plate does not occur is seen cracks up 20 mm, it becomes a more large area, cracks.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明によれば高温での接合強度が
高く、しかも熱影響によるセラミックスのクラック発
生、特に大面積の接合面とした時のクラック発生を防止
でき、ひいては各種の構造部材、機能部材として有用な
高信頼性のセラミックス−金属接合部材を提供できる。
As described above in detail, according to the present invention, the bonding strength at high temperature is high, and the cracking of the ceramic due to the heat effect, especially when the bonding surface having a large area can be prevented, and thus various structural members, A highly reliable ceramic-metal joining member useful as a functional member can be provided.

【図面の簡単な説明】[Brief description of drawings]

図面は本実施例1及び比較例1の窒化ケイ素−炭素鋼接
合部材の接合面に温度を加えてせん断強さを測定するこ
とにより得た特性図である。
The drawing is a characteristic diagram obtained by measuring the shear strength by applying temperature to the joint surfaces of the silicon nitride-carbon steel joint members of Example 1 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 博光 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (56)参考文献 特開 昭58−41778(JP,A) 特開 昭58−204880(JP,A) 特開 昭60−33269(JP,A) ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Hiromitsu Takeda 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside Toshiba Research Institute, Inc. (56) Reference JP-A-58-41778 (JP, A) Kai 58-204880 (JP, A) JP 60-33269 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックスと金属の接合面に1〜30体積
%の空孔率を有する金属焼結層を配置し、かつ少なくと
も前記セラミックスと前記金属焼結層の間に活性金属を
含む層を介在させて接合したことを特徴とするセラミッ
クスと−属接合部材。
1. A sintered metal layer having a porosity of 1 to 30% by volume is disposed on a joint surface of ceramics and a metal, and a layer containing an active metal is provided at least between the ceramics and the sintered metal layer. A ceramics-metal joining member characterized by being joined by interposing.
【請求項2】金属焼結層がNi、Fe、Co、Ti、Zrのいずれ
か、もしくはこれらの合金からなることを特徴とする特
許請求の範囲第1項記載のセラミックス−金属接合部
材。
2. The ceramic-metal joining member according to claim 1, wherein the metal sintered layer is made of any one of Ni, Fe, Co, Ti and Zr, or an alloy thereof.
JP60196513A 1985-09-05 1985-09-05 Ceramics-Metal bonding material Expired - Lifetime JPH0729859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196513A JPH0729859B2 (en) 1985-09-05 1985-09-05 Ceramics-Metal bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196513A JPH0729859B2 (en) 1985-09-05 1985-09-05 Ceramics-Metal bonding material

Publications (2)

Publication Number Publication Date
JPS6256380A JPS6256380A (en) 1987-03-12
JPH0729859B2 true JPH0729859B2 (en) 1995-04-05

Family

ID=16358994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196513A Expired - Lifetime JPH0729859B2 (en) 1985-09-05 1985-09-05 Ceramics-Metal bonding material

Country Status (1)

Country Link
JP (1) JPH0729859B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635993B1 (en) 1998-08-26 2003-10-21 Ngk Insulators, Ltd. Joined bodies, high-pressure discharge lamps and a method for manufacturing the same
US6703136B1 (en) 2000-07-03 2004-03-09 Ngk Insulators, Ltd. Joined body and high-pressure discharge lamp
US6642654B2 (en) 2000-07-03 2003-11-04 Ngk Insulators, Ltd. Joined body and a high pressure discharge lamp
US6812642B1 (en) 2000-07-03 2004-11-02 Ngk Insulators, Ltd. Joined body and a high-pressure discharge lamp
JP4538579B2 (en) * 2004-01-29 2010-09-08 有限会社山口ティー・エル・オー Manufacturing method of semiconductor joining member
WO2006016588A1 (en) * 2004-08-10 2006-02-16 Asahi Glass Company, Limited Window glass for vehicle
JP5804838B2 (en) * 2011-08-11 2015-11-04 古河電気工業株式会社 Ceramic joint
GB201405988D0 (en) * 2014-04-03 2014-05-21 Rolls Royce Plc Bonding method
JP6323128B2 (en) * 2014-04-03 2018-05-16 新日鐵住金株式会社 Circuit board manufacturing method
CN120097746A (en) * 2020-10-07 2025-06-06 株式会社东芝 Joint body, ceramic circuit substrate and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841778A (en) * 1981-09-07 1983-03-11 大同特殊鋼株式会社 Ceramics-metal composite structure
JPS58204880A (en) * 1982-05-21 1983-11-29 日立粉末冶金株式会社 Method of bonding glass or ceramic to sintering material

Also Published As

Publication number Publication date
JPS6256380A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
JPH02175673A (en) Joined body of ceramics and metal
JPS60131874A (en) Method of bonding ceramic and metal
US4598025A (en) Ductile composite interlayer for joining by brazing
JPH0729859B2 (en) Ceramics-Metal bonding material
JP3095490B2 (en) Ceramic-metal joint
US4657825A (en) Electronic component using a silicon carbide substrate and a method of making it
EP3968369B1 (en) Heat radiation member and method for producing same
JPS6081071A (en) Metal sheet material for ceramic bonding
JPH0520392B2 (en)
JP3005637B2 (en) Metal-ceramic joint
EP0162700B1 (en) Nitride ceramic-metal complex material and method of producing the same
JPH0723268B2 (en) Ceramics-Metal bonding material
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JPH0649620B2 (en) Method for joining ceramic member and metal member
JP2651847B2 (en) Aluminum alloy for ceramic joining
JPS62227596A (en) Ceramics-metal joining member
JPH07110795B2 (en) Ceramic-metal bonded body with excellent bonding strength
JP3505212B2 (en) Joint and method of manufacturing joint
JP2019182667A (en) Metal/ceramic conjugate
JP3041383B2 (en) Joining method of ceramics and metal
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPH0243704B2 (en) SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPS63185870A (en) Ceramic-metal joined member