[go: up one dir, main page]

JPS62226812A - Manufacturing method of easily sinterable perovskite powder - Google Patents

Manufacturing method of easily sinterable perovskite powder

Info

Publication number
JPS62226812A
JPS62226812A JP6851486A JP6851486A JPS62226812A JP S62226812 A JPS62226812 A JP S62226812A JP 6851486 A JP6851486 A JP 6851486A JP 6851486 A JP6851486 A JP 6851486A JP S62226812 A JPS62226812 A JP S62226812A
Authority
JP
Japan
Prior art keywords
precipitate
component
perovskite
powder
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6851486A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Yoshitaka Ariki
有木 芳孝
Masaru Kurahashi
優 倉橋
Shinichi Shirasaki
信一 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Ube Corp
Original Assignee
National Institute for Research in Inorganic Material
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Ube Industries Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP6851486A priority Critical patent/JPS62226812A/en
Publication of JPS62226812A publication Critical patent/JPS62226812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペロブスカイト型構造化合物およびその固溶
体(以下ペロブスカイトという)の原料粉末の製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a raw material powder of a perovskite-type structural compound and its solid solution (hereinafter referred to as perovskite).

ペロブスカイトは、圧電体、誘電体、半導体、センサー
、オプトエレクトロニクス材料等の機能性セラミックス
として広範囲に利用されている。
Perovskites are widely used as functional ceramics such as piezoelectrics, dielectrics, semiconductors, sensors, and optoelectronic materials.

最近はこの機能性セラミックスの高度化が進展し、その
要請に対応できる易焼結性、均一性、高嵩密度で、且つ
低コストのペロブスカイトの原料粉末が多量に効率的に
製造できる技術の開発が要望されている。
Recently, the sophistication of functional ceramics has progressed, and a technology has been developed that can efficiently produce large quantities of low-cost perovskite raw material powder that is easy to sinter, has uniformity, has high bulk density, and can meet these demands. is requested.

従来、ペロブスカイトの原料粉末の製造方法としては、
乾式法と共沈法が知られている。
Conventionally, the method for manufacturing perovskite raw material powder is as follows:
Dry method and coprecipitation method are known.

乾式法は構成原料成分の化合物を乾式で混合し、これを
仮焼する方法である。しかし、この方法では、均一組成
の原料粉末が得難いため、優れた機能性をもつペロブス
カイトを得難いし、また焼結性も十分ではない。
The dry method is a method in which compounds of constituent raw materials are mixed in a dry method and then calcined. However, with this method, it is difficult to obtain a raw material powder with a uniform composition, so it is difficult to obtain a perovskite with excellent functionality, and the sinterability is also not sufficient.

共沈法はその構成成分のすべてを一緒にした混合溶液を
作り、これにアルカリ等の沈澱形成液を添加して共沈さ
せ、この共沈物を乾燥、仮焼させる方法である。
The coprecipitation method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate-forming liquid such as an alkali is added to the mixed solution to cause coprecipitation, and this coprecipitate is dried and calcined.

この共沈法によると、均一性の優れた粉末が得易いが、
その均一性なるが故に、沈澱生成時、乾燥時または仮焼
時に粒子が凝結して二次粒子を形成し、易焼結性になり
にくい欠点があった。
According to this coprecipitation method, it is easy to obtain powder with excellent uniformity, but
Due to its uniformity, the particles tend to coagulate to form secondary particles during precipitate formation, drying or calcination, resulting in poor sinterability.

また、共沈法では各成分の該沈澱形成液に対する沈澱形
成能が同じでない場合は、例えば酸成分は実質的に10
0%沈澱を生成するが、他の成分は実質的に全部沈澱を
生成し得ないことが起こり、所望組成となし難いことが
ある。
In addition, in the coprecipitation method, if the precipitate forming ability of each component with respect to the precipitate forming solution is not the same, for example, the acid component is substantially 10
Although 0% precipitate is produced, substantially all of the other components may not be able to produce precipitate, and it may be difficult to obtain the desired composition.

更に、ペロブスカイト機能材料には鉛とチタンを同時に
含むことが極めて多い。この様なものを工業的に製造す
る場合、チタン原料として安価な四塩化チタンを使用す
ることが望ましい。しかしこれを共沈法に使用すると、
四塩化チタン中の塩素イオンが鉛と反応して白色沈澱を
生成するため、使用し難い。この場合、四塩化チタンに
代え、オキシ硝酸チタン[TiO(NO3)2]を使用
すればこの白色沈澱の生成を防ぐことができるが、オキ
シ硝酸チタンは高価であるため工業生産としては実用的
でない。
Furthermore, perovskite functional materials very often contain lead and titanium at the same time. When producing such materials industrially, it is desirable to use inexpensive titanium tetrachloride as the titanium raw material. However, when this is used in the coprecipitation method,
It is difficult to use because the chlorine ions in titanium tetrachloride react with lead to form a white precipitate. In this case, the formation of this white precipitate can be prevented by using titanium oxynitrate [TiO(NO3)2] instead of titanium tetrachloride, but titanium oxynitrate is expensive and is not practical for industrial production. .

[発明の目的コ 本発明は従来の共沈法における欠点をなくすことができ
る方法、さらには、湿式法によって易焼結性、均一性、
低コスト、高嵩密度の四つの要件を満足したペロブスカ
イトおよびその固溶体原料粉末を効率よ(製造すること
ができる方法を提供するにある。
[Purpose of the Invention] The present invention provides a method that can eliminate the drawbacks of conventional coprecipitation methods, and further improves ease of sintering, uniformity, and
The object of the present invention is to provide a method for efficiently producing perovskite and its solid solution raw material powder that satisfies the four requirements of low cost and high bulk density.

[発明の構成コ 本発明者らは前記目的を達成すべく鋭意研究の結果、一
般式ABO3(ただし、Aは酸素12配位金属元素の1
種または2種以上を、Bは酸素6配位金属元素の1種ま
たは2種以上を示す。)で表されるペロブスカイトの原
料粉末を湿式法で製造する際に、A成分の沈澱生成方法
を工夫すると、すなわちA成分の少なくとも1種の沈澱
生成を複数の沈澱形成液と接触させて沈澱を生成させる
方法で行うと、従来法の欠点を改善することができると
ともに、A成分およびB成分の微粒子が高度に相互分散
した均一粒子の沈澱物が得られ、該沈澱物を仮焼して得
られる原料粉末は、粒度分布が狭く、粒度が揃った微粒
子からなっており、しかも組成が均一であり、極めて工
業的に有利に易焼結性ペロブスカイト粉末、詳しくは易
焼結性のペロブスカイト原料粉末を製造できることを知
見し、本発明に到達した。
[Structure of the Invention] As a result of intensive research to achieve the above object, the present inventors found that the general formula ABO3 (where A is one of the oxygen-12-coordinated metal elements)
B represents one or more oxygen hexacoordination metal elements. ) When manufacturing the raw material powder of perovskite represented by When carried out by a method of producing a homogeneous particle, the drawbacks of the conventional method can be improved, and a precipitate of uniform particles in which fine particles of component A and component B are highly mutually dispersed can be obtained. The raw material powder produced has a narrow particle size distribution, consists of fine particles with uniform particle size, and has a uniform composition, making it extremely industrially advantageous to produce easily sinterable perovskite powder, more specifically, easily sinterable perovskite raw material powder. The present invention was achieved based on the discovery that it is possible to produce

本発明は、A成分(ただし、Aは酸素12配位金属元素
のIMまたは2種以上を示す。)を含有する溶液および
B成分(ただし、Bは酸素6配位金属元素の1種または
2種以上を示す。)を含有する溶液を、沈澱形成液と多
段に接触させて逐次的に沈澱を生成させ、得られた沈澱
物を仮焼して一般式ABO3で表されるペロブスカイト
型構造化合物およびその固溶体(以下ペロブスカイトと
いう)の原料粉末の製造に際し、A成分の少なくとも1
種の沈澱生成を複数の沈澱形成液と接触させることによ
って行うことを特徴とする易焼結性ペロブスカイト粉末
の製法に関するものである。
The present invention provides a solution containing component A (wherein A represents IM or two or more types of oxygen-12-coordinated metal elements) and a solution containing component B (however, B represents one type or two or more of oxygen-12-coordinated metal elements). ) is brought into contact with a precipitate-forming solution in multiple stages to sequentially generate precipitates, and the resulting precipitates are calcined to produce a perovskite-type structural compound represented by the general formula ABO3. and its solid solution (hereinafter referred to as perovskite), at least one of component A
The present invention relates to a method for producing easily sinterable perovskite powder, characterized in that precipitate formation of seeds is carried out by bringing them into contact with a plurality of precipitate forming liquids.

本発明によると、従来の共沈法における欠点を解消する
ことができる。
According to the present invention, the drawbacks of conventional coprecipitation methods can be overcome.

前記一般式ABO3のA成分の酸素12配位金属元素と
して、例えば、pb、13a、Ca、Sr及びLa等の
希土類元素が挙げられる。またB成分の酸素6配位金属
元素としては、例えば、Ti。
Examples of the oxygen-12-coordinated metal element of the component A in the general formula ABO3 include rare earth elements such as pb, 13a, Ca, Sr, and La. Further, as the oxygen hexacoordination metal element of the B component, for example, Ti.

Zr、Mg、Sc、Hf、W、Nb、Ta、Cr。Zr, Mg, Sc, Hf, W, Nb, Ta, Cr.

Mo、Mn、Fe、Co、Ni、Zn、Cd。Mo, Mn, Fe, Co, Ni, Zn, Cd.

AI、3n、As、  Bi等が挙げられる。Examples include AI, 3n, As, Bi, etc.

ペロブスカイトの構成成分であるA成分、B成分の金属
元素を含む化合物の水溶液を調製するための成分化合物
としては、特に限定されないがそれらの水酸化物、炭酸
塩、オキシ塩、硫酸塩、硝酸塩、塩化物等の無機塩、酢
酸塩、しゅう酸塩等の有機酸塩、酸化物などがある。こ
れらは一般に水溶液として使用されるが水に可溶でない
場合には適宜に酸を添加するなどして溶解させればよい
Component compounds for preparing an aqueous solution of a compound containing metal elements of component A and component B of perovskite include, but are not particularly limited to, their hydroxides, carbonates, oxysalts, sulfates, nitrates, These include inorganic salts such as chlorides, organic acid salts such as acetates and oxalates, and oxides. These are generally used as aqueous solutions, but if they are not soluble in water, they may be dissolved by adding an appropriate acid.

またNb、W等の難溶な酸化物は!lJ濁溶液溶液て使
用することができる。
Also, hardly soluble oxides such as Nb and W! A 1J turbid solution can be used.

本発明で使用する沈澱形成液としては、アンモニア(水
)、炭酸アンモニウム、炭酸水素アンモニウム、苛性ア
ルカリ、しゅう酸、しゅう酸アンモニウム、アルキルア
ミン等が挙げられる。
Examples of the precipitation forming liquid used in the present invention include ammonia (water), ammonium carbonate, ammonium hydrogen carbonate, caustic alkali, oxalic acid, ammonium oxalate, and alkyl amines.

本発明者らは、構成成分の沈澱を凝集体が少なく、分散
性の良いものにするには、沈澱物の一次粒子は不均一で
あり、その凝集体である二次粒子は均一であり、しかも
二次粒子の大きさはサブミクロン程度の適度の粒子径を
有していることが重要であるということを知見した。
The present inventors have found that in order to make the precipitate of the constituent components have fewer aggregates and have good dispersibility, the primary particles of the precipitate should be non-uniform, and the secondary particles, which are the aggregates, should be uniform; Furthermore, we have found that it is important that the secondary particles have an appropriate particle diameter of about submicrons.

これを満足するのが各構成成分を含有する溶液を沈澱形
成液と多段に接触させて逐次的に沈澱を生成させる方法
(以下、多段湿式法という)であるが、さらに多段湿式
法を行うに際し、A成分の少なくとも1種は沈澱を生成
させるときに、複数の沈澱形成液を使用して、A成分を
含有する溶液と複数の沈澱形成液とを接触させて沈澱を
生成させると、一層の効果があられれてくることを発見
した。
A method that satisfies this requirement is to bring a solution containing each component into contact with a precipitate-forming solution in multiple stages to sequentially generate precipitates (hereinafter referred to as the "multi-stage wet method"). , when at least one of the A components produces a precipitate, a plurality of precipitate forming solutions are used and a solution containing the A component is brought into contact with the plurality of precipitate forming solutions to produce a precipitate. I discovered that the effects are increasing.

本発明で使用する複数の沈澱形成液としては、前記沈澱
形成液のなかから2種以上を適宜選択して使用される。
As the plurality of precipitate forming liquids used in the present invention, two or more types of precipitate forming liquids are appropriately selected from among the above precipitate forming liquids.

具体例としては、アンモニア水−しゅう酸系、炭酸アン
モニウム−しゅう酸アンモニウム系、アンモニア−アル
キルアミン系、シゆう酸−アルキルアミン系、炭酸水素
アンモニウム−しゅう酸アンモニウム系、炭酸アンモニ
ウム−しゅつ酸アンモニウム−アンモニア水系、しゆう
酸アンモニウム−アルキルアミン系等の異種のA成分化
合物の沈澱物を与えるような組合せを好適に挙げること
ができる。これらの複数の沈澱形成液は混合溶液として
使用してもよく、また沈澱形成時に同時添加混合しても
よい。前記アルキルアミンの具体例として、メチルアミ
ン、エチルアミン、プロピルアミン、ブチルアミンなど
の低級アルキル基を有する第一アミン、シクロへキジル
ア   ′ミンの如き第一アミン、ジメチルアミン、ジ
エチルアミンなどの低級アルキル基を有する第三アミン
、トリエチルアミンの如き低級アルキル基を有する第三
アミンを挙げることができる。
Specific examples include ammonia water-oxalate system, ammonium carbonate-ammonium oxalate system, ammonia-alkylamine system, oxalic acid-alkylamine system, ammonium bicarbonate-ammonium oxalate system, ammonium carbonate-ammonium oxalate system. Suitable examples include combinations that give precipitates of different A component compounds, such as aqueous ammonia systems and ammonium oxalate-alkylamine systems. These plural precipitate forming solutions may be used as a mixed solution, or may be added and mixed simultaneously during precipitate formation. Specific examples of the alkylamine include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, butylamine, primary amines having a lower alkyl group such as cyclohexylamine, dimethylamine, diethylamine, etc. Mention may be made of tertiary amines and tertiary amines having a lower alkyl group such as triethylamine.

各構成成分の沈澱を生成させる具体的な方法としては、
例えばA成分またはA成分とB成分の金属元素を含んだ
化合物を水に分散溶解させた溶液の1種または2種以上
と複数の沈澱形成液とを接触させてA成分またはA成分
とB成分の沈澱を生成させ、次いでB成分またはB成分
とA成分の金属元素を含んだ化合物の溶液と沈澱形感液
とを接触させてB成分またはB成分とA成分の沈澱を生
成させる方法、あるいは前記と順序を代えて沈澱を生成
させる方法等を挙げることができる。
The specific method for producing precipitates of each component is as follows:
For example, the A component or the A component and the B component are brought into contact with a plurality of precipitate-forming liquids and one or more kinds of solutions prepared by dispersing and dissolving components A or a compound containing the metal elements of the A component and the B component in water. A method of forming a precipitate of component B or a solution of a compound containing a metal element of component B and component A with a precipitated sensitive liquid to produce a precipitate of component B or component B and component A, or Examples include a method of forming a precipitate in a different order from the above.

構成成分の沈澱を生成するには沈澱形成液を攪拌しなが
ら、沈澱形成液に、各構成成分の水溶液を添加してもよ
く、その反対に添加してもよい。
To form a precipitate of the constituent components, an aqueous solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa.

添加に際しては液を十分に攪拌しながら行うことが好ま
しい。
It is preferable that the addition be carried out while sufficiently stirring the liquid.

また沈澱の生成に際し、例えば一つの成分の沈澱を生成
した後、陰イオンを除去するために水洗した後、沈澱物
を新しい水またはアルコール中に分散して、さらに他成
分の水溶液と沈澱形成液を添加して沈澱を生成してもよ
い。
In addition, when forming a precipitate, for example, after forming a precipitate of one component, the precipitate is washed with water to remove anions, the precipitate is dispersed in fresh water or alcohol, and then an aqueous solution of another component and a precipitate forming solution are mixed. may be added to form a precipitate.

またA成分、B成分のほかに、ペロブス力、イトの焼結
性や特性を制御するための微量成分を添加する場合はA
成分、B成分の溶液を調製する際、それらの微量成分を
添加させてもよい。また、必要に応じて前記したように
A成分およびB成分の沈澱の生成を、多段にしてもよく
、更に交互に沈澱させてもよい。
In addition to component A and component B, when adding trace components to control the Perobus force, sinterability and properties of the
When preparing a solution of component B, trace amounts of these components may be added. Furthermore, if necessary, as described above, the precipitation of component A and component B may be formed in multiple stages, or may be caused to precipitate alternately.

前記方法により得られた沈澱物は通常の方法により洗浄
、ろ別、乾燥した後、仮焼する。乾燥は、大気圧下で行
っても減圧下で行ってもよい。
The precipitate obtained by the above method is washed, filtered, dried, and then calcined by a conventional method. Drying may be performed under atmospheric pressure or under reduced pressure.

仮焼温度としては、過度に低いと沈澱物の脱水、熱分解
が不十分であり、また過度に高いと粉末が粗大化するの
で、通常、仮焼温度は500〜1300℃の範囲が好適
である。
If the calcination temperature is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse. be.

[実施例] 以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
[Example] The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例1 酸化ニオブ(Nb20s)粉末8.860gを0.5N
  NH40H200m/に分散し、これに炭酸水素ア
ンモニウム39.5gとしゅう酸アンモニウム71.1
gを水80 Qm/に溶解した溶液を加え、硝酸ストロ
ンチウム[Sr (NO3) 2121.163gを水
500 m lに熔解した溶液を攪拌しながら徐々に添
加して沈澱を生成させた。
Example 1 8.860g of niobium oxide (Nb20s) powder was added to 0.5N
Dispersed in 200m/NH40H, and to this 39.5g of ammonium hydrogen carbonate and 71.1g of ammonium oxalate.
A solution prepared by dissolving 2121.163 g of strontium nitrate [Sr (NO3) in 500 ml of water was added thereto, and a solution prepared by dissolving 2121.163 g of strontium nitrate [Sr (NO3) in 500 ml of water] was gradually added with stirring to form a precipitate.

沈澱吻合をの液を静置し、上澄液を除去し、新たに水を
加えて十分攪拌した後、再度静置して上澄液を除去した
。この(tJ!瀉操作を5回繰り返した沈澱含有の液に
、ジエチルアミン15mj!を水100mfに加えた水
溶液を加え、さらにこの溶液に硝酸亜鉛[Zn (NO
3) 2 ・61120 ] 9. 916 gを水3
00mlに溶解した溶液を徐々に加えて沈澱を生成させ
た。この沈澱物をろ別、乾燥した後、950℃で2時間
仮焼してSr (Zn+/3Nb2/3) 03粉末を
得た。この仮焼粉末の含有元素組成は仕込みの組成と同
一であり、透過型電子顕微鏡で粒径を観察したところ0
.3〜0.4μmの均一な粒子であった。この粉末を1
,5t/cm2で成型し、1500℃で2時間焼結した
。その密度は、5.603g/ccであった。
The precipitated anastomosis solution was allowed to stand still, the supernatant liquid was removed, water was newly added and the mixture was sufficiently stirred, and then the solution was left to stand again and the supernatant liquid was removed. To the precipitate-containing solution obtained by repeating this (tJ! filtration operation 5 times), an aqueous solution of 15mj! of diethylamine in 100mf of water was added, and to this solution was added zinc nitrate [Zn (NO
3) 2 ・61120 ] 9. 916 g to 3 parts water
00 ml of the solution was gradually added to form a precipitate. This precipitate was filtered, dried, and then calcined at 950° C. for 2 hours to obtain Sr (Zn+/3Nb2/3) 03 powder. The elemental composition of this calcined powder is the same as that of the raw material, and the particle size was observed using a transmission electron microscope.
.. The particles were uniform in size from 3 to 0.4 μm. 1 of this powder
, 5t/cm2, and sintered at 1500°C for 2 hours. Its density was 5.603 g/cc.

実施例2 実施例1において、A成分の硝酸ストロンチウムの代わ
りに硝酸バリウム[Ba (NO3)2113.067
gを、また日成分の酸化ニオブの代わりに酸化タンタル
(Ta205)粉末7.365gを使用した以外は実施
例1と同様な操作を行い13a (Zrz73Ta2/
3)03の仮焼粉末を製造した。この仮焼粉末の含有元
素組成は仕込みの組成と同一であり、透過型電子顕微鏡
で粒径を観察したところ0.3〜0.4μmの均一な粒
子であった。
Example 2 In Example 1, barium nitrate [Ba (NO3) 2113.067
13a (Zrz73Ta2/
3) A calcined powder of No. 03 was produced. The elemental composition of this calcined powder was the same as that of the charged powder, and when the particle size was observed with a transmission electron microscope, it was found to be uniform particles of 0.3 to 0.4 μm.

また、この仮焼粉末を実施例1と同様に焼成し、焼結体
を得た。その密度は7.865g/ccであった。
Further, this calcined powder was fired in the same manner as in Example 1 to obtain a sintered body. Its density was 7.865 g/cc.

実施例3 実施例1において、沈澱形成液として炭酸水素アンモニ
ウムとしゅう酸アンモニウムの代わりにジエチルアミン
30mlとしゅう酸アンモニウム71.1gを使用し、
また硝酸亜鉛の代わりに硝酸マグネシウム[Mg (N
O3)2 ・6H20コ8.538gを使用した以外は
実施例1と同様な操作を行いSr (Mg+73Nb2
/3)03の仮焼粉末を製造した。この仮焼粉末の含有
元素組成は仕込みの組成と同一であった。
Example 3 In Example 1, 30 ml of diethylamine and 71.1 g of ammonium oxalate were used instead of ammonium hydrogen carbonate and ammonium oxalate as the precipitation forming liquid,
Also, instead of zinc nitrate, magnesium nitrate [Mg (N
O3)2 ・Sr (Mg+73Nb2
/3) A calcined powder of 03 was produced. The elemental composition of this calcined powder was the same as that of the raw material.

また仮焼粉末を実施例1と同様に焼成し焼結体を得た。Further, the calcined powder was fired in the same manner as in Example 1 to obtain a sintered body.

その密度は5. 243 g/ccであった。Its density is 5. It was 243 g/cc.

比較例1 実施例1においてしゅう酸アンモニウムを共存させなか
った以外は、実施例1と同様な操作を行い仮焼粉末を製
造した。この仮焼粉末の含を元素組成は仕込みの組成と
同一であったが、透過型電子顕微鏡で粒径を観察したと
ころ、0.1〜1.0μmと分布が広かった。
Comparative Example 1 A calcined powder was produced in the same manner as in Example 1 except that ammonium oxalate was not present. The elemental composition of this calcined powder was the same as that of the charged powder, but when the particle size was observed with a transmission electron microscope, it was found to have a wide distribution of 0.1 to 1.0 μm.

また、仮焼粉末を実施例1と同様に焼成し、焼結体を得
た。その密度は5.320g/ccT:あった。
Further, the calcined powder was fired in the same manner as in Example 1 to obtain a sintered body. Its density was 5.320 g/ccT.

[発明の効果コ 一般式ABO3で表されるペロブスカイトおよびその固
溶体の原料粉末の製造に際し、従来の共沈法における全
成分を同時に共沈させる方法とは異なり、複数の沈澱形
成液の存在下、A成分およびB成分の沈澱を逐次に生成
させるため、従来法では100%沈澱させることが困難
であった成分やその他の全成分を実質的に完全に沈澱さ
せることができ、また二相以上の相がさらに高度に相互
分散した状態の沈澱物が得られる結果、沈澱生成時に凝
集、もしくは乾燥、仮焼時に凝結を起こしに<<、高嵩
密度の易焼結性の粉末を再現性良く製造することができ
る。
[Effects of the Invention] When producing the raw material powder of perovskite represented by the general formula ABO3 and its solid solution, unlike the conventional coprecipitation method in which all components are coprecipitated at the same time, in the presence of multiple precipitate forming solutions, Because the A and B components are precipitated sequentially, components that were difficult to precipitate 100% with conventional methods and all other components can be precipitated substantially completely, and two or more phases can be precipitated. As a result of obtaining a precipitate in which the phases are more highly interdispersed, the precipitate does not agglomerate during formation or coagulate during drying or calcination, making it possible to produce powder with high bulk density and easy sintering with good reproducibility. can do.

また本プロセスでは各相が高度に相互分散しており、従
ってこのものを仮焼したものは十分な均一性が達成され
る。さらにプロセスが簡単であることに由来して、再現
性良く低コストで易焼結性の粉末が得られる等の優れた
効果を有する。
In addition, in this process, each phase is highly mutually dispersed, so that the calcined material achieves sufficient uniformity. Further, since the process is simple, it has excellent effects such as being able to obtain easily sinterable powder with good reproducibility and at low cost.

Claims (1)

【特許請求の範囲】[Claims] A成分(ただし、Aは酸素12配位金属元素の1種また
は2種以上を示す。)を含有する溶液およびB成分(た
だし、Bは酸素6配位金属元素の1種または2種以上を
示す。)を含有する溶液を、沈澱形成液と多段に接触さ
せて逐次的に沈澱を生成させ、得られた沈澱物を仮焼し
て一般式ABO_3で表されるペロブスカイト型構造化
合物およびその固溶体(以下ペロブスカイトという)の
原料粉末の製造に際し、A成分の少なくとも1種の沈澱
生成を複数の沈澱形成液と接触させることによって行う
ことを特徴とする易焼結性ペロブスカイト粉末の製法。
A solution containing component A (where A represents one or more types of oxygen-12-coordinated metal elements) and a solution containing B component (however, B represents one or more types of oxygen-6-coordinated metal elements). ) is brought into contact with a precipitate-forming solution in multiple stages to sequentially generate precipitates, and the resulting precipitates are calcined to produce a perovskite-type structural compound represented by the general formula ABO_3 and its solid solution. A method for producing easily sinterable perovskite powder, characterized in that, in producing a raw material powder of perovskite (hereinafter referred to as perovskite), precipitation of at least one component A is brought into contact with a plurality of precipitation forming liquids.
JP6851486A 1986-03-28 1986-03-28 Manufacturing method of easily sinterable perovskite powder Pending JPS62226812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6851486A JPS62226812A (en) 1986-03-28 1986-03-28 Manufacturing method of easily sinterable perovskite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6851486A JPS62226812A (en) 1986-03-28 1986-03-28 Manufacturing method of easily sinterable perovskite powder

Publications (1)

Publication Number Publication Date
JPS62226812A true JPS62226812A (en) 1987-10-05

Family

ID=13375900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6851486A Pending JPS62226812A (en) 1986-03-28 1986-03-28 Manufacturing method of easily sinterable perovskite powder

Country Status (1)

Country Link
JP (1) JPS62226812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243307A (en) * 1988-08-03 1990-02-13 Dainichiseika Color & Chem Mfg Co Ltd Perovskite type fine powder and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153115A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153115A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243307A (en) * 1988-08-03 1990-02-13 Dainichiseika Color & Chem Mfg Co Ltd Perovskite type fine powder and its production

Similar Documents

Publication Publication Date Title
JPS6153113A (en) Method for producing raw material powder of easily sinterable perovskite and its solid solution by wet method
JPH0559048B2 (en)
JPS62226812A (en) Manufacturing method of easily sinterable perovskite powder
JPS6363511B2 (en)
JPS6227328A (en) Method for producing easily sinterable perovskite and its solid solution raw material powder
JPH0556287B2 (en)
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPS63151673A (en) Manufacturing method of lead zirconate titanate piezoelectric ceramic
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0159205B2 (en)
JPS63285149A (en) Method for manufacturing dielectric ceramics containing samarium
JPH013019A (en) Method for producing perovskite ceramic fine powder
JPS63265811A (en) Method for producing raw material powder of easily sinterable perovskite complex oxide
JPS6325223A (en) Production of ceramic raw material powder
JPH0456777B2 (en)
JPH0481528B2 (en)
JPS6265907A (en) Method for producing easily sinterable perovskite powder
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JPH0193419A (en) Manufacturing method of piezoelectric ceramic raw material powder
JPS6325265A (en) Manufacturing method of high-density BZNT-based ferroelectric ceramic
JPH01122907A (en) Production of perovskite oxide powder
JPH0367965B2 (en)
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPS62162623A (en) Production of fine powder of lead titanate zirconate
JPS6325262A (en) Manufacturing method of high-density BBT ferroelectric ceramic