JPS62162623A - Production of fine powder of lead titanate zirconate - Google Patents
Production of fine powder of lead titanate zirconateInfo
- Publication number
- JPS62162623A JPS62162623A JP61004716A JP471686A JPS62162623A JP S62162623 A JPS62162623 A JP S62162623A JP 61004716 A JP61004716 A JP 61004716A JP 471686 A JP471686 A JP 471686A JP S62162623 A JPS62162623 A JP S62162623A
- Authority
- JP
- Japan
- Prior art keywords
- elements
- precipitate
- kinds
- fine powder
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 title claims 2
- 239000002244 precipitate Substances 0.000 claims abstract description 49
- 239000007864 aqueous solution Substances 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 13
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- 239000010936 titanium Substances 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 13
- 239000007788 liquid Substances 0.000 abstract description 12
- 238000001556 precipitation Methods 0.000 abstract description 9
- 229910052745 lead Inorganic materials 0.000 abstract description 6
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 abstract description 2
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910003074 TiCl4 Inorganic materials 0.000 abstract 1
- 229910008334 ZrO(NO3)2 Inorganic materials 0.000 abstract 1
- 150000004679 hydroxides Chemical class 0.000 abstract 1
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 19
- 239000002245 particle Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000001354 calcination Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- -1 chlorine ions Chemical class 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910020698 PbZrO3 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- YEBIHIICWDDQOL-YBHNRIQQSA-N polyoxin Chemical compound O[C@@H]1[C@H](O)[C@@H](C(C=O)N)O[C@H]1N1C(=O)NC(=O)C(C(O)=O)=C1 YEBIHIICWDDQOL-YBHNRIQQSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical class O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、圧電材料、焦電材料等として用いられるチタ
ン酸ジルコン酸釦(以下、rPZTJという)焼結体の
製造に好適である PZT微粉末の製法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is suitable for manufacturing a sintered body of titanate zirconate button (hereinafter referred to as rPZTJ) used as a piezoelectric material, pyroelectric material, etc. Concerning powder manufacturing method.
従来、PZT焼結体の製造方法としては、鉛(pb)、
ジルコニウム(Zr)およびチタン(Ti)の各酸化物
を所要割合に混合し仮焼した後、粉砕、成形し、成形物
を酸化鉛(pbo)を含む空気中もしくは酸素中で12
00℃程度の温度で焼結する乾式の方法が用いられて来
た。この乾式法では、仮焼により得られた原料粉末は組
成の均一性が低く、平均粒径が数μIと大きいため、焼
結には1200℃程度の高温が必要であった。Conventionally, methods for manufacturing PZT sintered bodies include lead (pb),
After mixing zirconium (Zr) and titanium (Ti) oxides in the required proportions and calcining them, they are crushed and molded, and the molded product is heated for 12 hours in air containing lead oxide (pbo) or in oxygen.
A dry method of sintering at a temperature of about 0.000C has been used. In this dry method, the raw material powder obtained by calcination has low uniformity of composition and has a large average particle size of several μI, so a high temperature of about 1200° C. is required for sintering.
一方、得られるPZT焼結体の品質向上、省エネルギー
のための易焼結性の向上、などの見地から1組成が均一
であるとともに平均粒径がサブミクロンオーダーである
微細な原料粉末が望まれている。On the other hand, from the viewpoint of improving the quality of the obtained PZT sintered body and improving the ease of sintering for energy saving, a fine raw material powder with a uniform composition and an average particle size on the submicron order is desired. ing.
近時、易焼結性PZT微粉末の製法として沈殿形成によ
って目的組成の微粉末を得る湿式法が用いられるように
なって来た。湿式法の一つとして目的組成になるよう所
要量のPb、 ZrおよびTiの各元素化合物を含む水
溶液をアルカリを含む沈殿形成液に同時に混合して3種
の元素の沈殿を同時に形成させる共沈法が知られている
。Recently, as a method for producing easily sinterable PZT fine powder, a wet method has been used to obtain a fine powder having a desired composition by precipitation formation. Co-precipitation, which is one of the wet methods, involves simultaneously forming a precipitate of three elements by simultaneously mixing an aqueous solution containing the required amount of each elemental compound of Pb, Zr, and Ti with a precipitate-forming solution containing an alkali to obtain the desired composition. The law is known.
しかし、一つの沈殿形成液に対する各元素の沈殿形成能
(例えば、一定pHにおける各元素の沈殿物の溶解度積
)が異なるため必らずしも仕込み組成と同一組成の沈殿
微粒子が得られるとは限らず。However, since the precipitate forming ability of each element in a single precipitate forming solution (for example, the solubility product of the precipitate of each element at a constant pH) is different, it is not necessarily possible to obtain precipitated fine particles with the same composition as the charged composition. Not limited.
また、沈殿の形成時に凝集して2次粒子を形成し易く、
その結果易焼結性の向上に限界があるという問題があっ
た。さらに、チタンの原料化合物としては安価な四塩化
チタンの使用が望まれるが、塩素イオンは鉛と反応して
白色沈殿を形成するため使用することができないという
難点もあった。In addition, when forming a precipitate, it tends to aggregate and form secondary particles,
As a result, there was a problem in that there was a limit to the improvement in sinterability. Furthermore, although it is desirable to use inexpensive titanium tetrachloride as a raw material compound for titanium, there is also the drawback that chlorine ions cannot be used because they react with lead to form a white precipitate.
本発明は、前記従来の共沈法の問題点を解決するものと
して、
Pb、 ZrおよびTiから選ばれる1種または2種の
元素の化合物を含む水溶液から超音波中で前記1種また
は2種の元素を含む沈殿物を生成させ。The present invention solves the problems of the conventional coprecipitation method, and involves the step of extracting the one or two elements selected from Pb, Zr, and Ti from an aqueous solution containing a compound of one or two elements in ultrasonic waves. A precipitate containing the elements is formed.
次に、得られた沈殿物を分散させた状態で、前記3種の
元素のうち残る2種または1種の元素の化合物を含む水
溶液から超音波中で該2種または1種の元素を含む沈殿
物を生成させる操作を必要回数行なって前記3種の元素
をすべて沈殿させ。Next, in a state in which the obtained precipitate is dispersed, an aqueous solution containing a compound of the remaining two or one of the three elements is subjected to ultrasonic waves containing the remaining two or one of the elements. The operation for forming a precipitate is performed a necessary number of times to precipitate all three types of elements.
次に、得られた前記3種の元素を含む沈殿物を550〜
750℃で仮焼して1組成がPbx′1rATi1−A
O3(但し、0.9≦x≦1.2.0.1≦A≦0.9
8)で表わされる微粉末を得ることからなる PZT微
粉末の製法を提供するものである。Next, the obtained precipitate containing the three types of elements was
After calcining at 750℃, 1 composition is Pbx'1rATi1-A
O3 (however, 0.9≦x≦1.2.0.1≦A≦0.9
The present invention provides a method for producing PZT fine powder, which comprises obtaining a fine powder represented by 8).
本発明の製法は、沈殿を形成する際にPb、 Zrおよ
びTiの3種の元素を同時に沈殿(共沈)させず、沈殿
形成を2段階以上に分けて行なう方法(以下、r多段湿
式法」という)である。具体的には、例えば、これら3
種の元素のうち、第1段目で1種の元素を沈殿させ第2
段目で残る2種の元素を共沈させる方法、その逆に、第
1段目で2種の元素を共沈させ、第2段目で残る1種の
元素を沈殿させる方法、3種の元素ごとに順次沈殿形成
を行な、 い、したがって3段階に分けて沈殿形成を
行なう方法、さらには4段階以上に分けて沈殿形成を行
なう方法が挙げられる。通常は、沈殿形成を2段または
3段に分けて行なうのが一般的である。The production method of the present invention is a method in which the three elements Pb, Zr, and Ti are not precipitated (co-precipitated) at the same time when forming a precipitate, but the precipitate formation is performed in two or more stages (hereinafter referred to as multi-stage wet method). ”). Specifically, for example, these three
Among the seed elements, one element is precipitated in the first stage and the second element is precipitated.
A method in which the remaining two elements are co-precipitated in the first stage, and vice versa, a method in which the two elements are co-precipitated in the first stage and one element remaining in the second stage is precipitated. Examples include a method in which precipitate formation is performed sequentially for each element, thus forming the precipitate in three stages, and a method in which the precipitate is formed in four or more stages. Usually, precipitation is formed in two or three stages.
本発明の別の特徴は、これら2段階以上の沈殿形成過程
すべてを超音波中で行なう点にある。Another feature of the present invention is that all of these two or more steps of precipitation formation are carried out under ultrasonic waves.
本発明の製法に原料として用いることができる。It can be used as a raw material in the production method of the present invention.
Pb、 ZrおよびTiの化合物としては、例えば、こ
れら元素のオキシ塩化物、炭酸塩、オキシ硝酸塩、硫酸
塩、硝酸塩、酢酸塩、ギ酸塩、シュウ酸塩等の有機酸も
しくは無機酸の塩類、水酸化物、塩化物、酸化物などが
挙げられるが、特にこれらに制限されるものではない。Examples of compounds of Pb, Zr and Ti include salts of organic or inorganic acids such as oxychlorides, carbonates, oxynitrates, sulfates, nitrates, acetates, formates, and oxalates of these elements; Examples include, but are not limited to, oxides, chlorides, and oxides.
使用する化合物が水溶性でない場合には、鉱酸等を添加
して可溶化すれば使用することができる。If the compound to be used is not water-soluble, it can be used by solubilizing it by adding a mineral acid or the like.
本発明は多段湿式法を採用するため、相性が悪いため従
来の共沈法では用いることができなかつた化合物でも組
合わせて使用することができる。Since the present invention employs a multi-stage wet method, compounds that cannot be used in conventional coprecipitation methods due to poor compatibility can be used in combination.
例えば、前述の四塩化チタンでも、Tiとpbの沈殿を
別段階で行なうようにすれば使用することができる。For example, the aforementioned titanium tetrachloride can also be used if Ti and PB are precipitated in separate steps.
沈殿の形成は、原料化合物を含む水溶液を過剰量の沈殿
形成液に混合することにより行なう。用いられる沈殿形
成液としては、例えばアンモニヤ、炭酸アンモニウム、
苛性アルカリ、炭酸ソーダ、しゆう酸、しゆう酸アンモ
ニウム及びオキシンやアミンなどの有機試薬などの溶液
が挙げられる。The precipitate is formed by mixing an aqueous solution containing the raw material compound with an excess amount of the precipitate forming liquid. Examples of the precipitation forming liquid used include ammonia, ammonium carbonate,
Examples include solutions of caustic alkali, soda carbonate, oxalic acid, ammonium oxalate, and organic reagents such as oxins and amines.
これらから選定すればよい。You can choose from these.
第1段階の沈殿形成と第2段階の沈殿形成に用いる沈殿
形成液が同じ場合には、第1段階の沈殿形成で得られた
沈殿物を含む水溶液にそのまま第2段階で沈殿させよう
とする元素を含む水溶液を混合すればよく、この場合沈
殿形成液は既に過剰量添加済みであるから場合によって
は改めて添加する必要はない。また、第2段階の沈殿形
成液が第1段階の沈殿形成液と異なり、しかも第1段階
で用いた沈殿形成液が第2段階では存在しない方が望ま
しい場合には、第1段階の沈殿形成後、沈殿物を洗浄し
た後5水または第2段階で沈殿させる元素を含む水溶液
に分散させた状態で第2段階の沈殿形成を実施すればよ
い。If the precipitate forming liquid used for the first stage precipitate formation and the second stage precipitate formation is the same, the aqueous solution containing the precipitate obtained in the first stage precipitate formation is used for precipitation in the second stage. It is sufficient to mix an aqueous solution containing the elements, and in this case, since an excessive amount of the precipitate forming liquid has already been added, there is no need to add it again depending on the case. In addition, if the precipitate forming liquid in the second stage is different from the precipitate forming liquid in the first stage, and it is desirable that the precipitate forming liquid used in the first stage does not exist in the second stage, the precipitate forming liquid in the first stage Thereafter, the precipitate may be washed and then dispersed in water or an aqueous solution containing the element to be precipitated in the second step, and the second step of precipitate formation may be carried out.
このようにして得られる沈殿粒子は、超音波中で形成さ
れる結果、凝集による2次粒子の形成が極端に抑えられ
た、平均粒径が数十人のオーダーの微細なものである。The thus obtained precipitated particles are formed in ultrasonic waves, and as a result, the formation of secondary particles due to aggregation is extremely suppressed, and the average particle size is fine, on the order of several tens of particles.
得られた沈殿は、洗浄、乾燥後に次の仮焼に供されるが
、洗浄はエタノール等のアルコール類を用いることが望
ましく、これにより乾焼、仮焼における凝集を一層抑制
することができる。The obtained precipitate is subjected to the next calcination after washing and drying, and it is preferable to use an alcohol such as ethanol for washing, so that agglomeration during drying and calcination can be further suppressed.
得られた沈殿物の仮焼は、空気中もしくは酸素中におい
て550〜750℃、好ましくは600〜700℃にお
いて行なう、仮焼時間は、大体1〜2時間でよい。この
仮焼によりPZTの単−相からなり、平均粒径1μm以
下の微粉末が得られる。仮焼の温度が550℃未満では
、PbTi01をPbZrO3の相が共存し、固相反応
が完了したPZT単−相とはならない。The obtained precipitate is calcined in air or oxygen at a temperature of 550 to 750°C, preferably 600 to 700°C, and the calcining time may be approximately 1 to 2 hours. By this calcination, a fine powder consisting of a single phase of PZT and having an average particle size of 1 μm or less is obtained. If the calcination temperature is lower than 550° C., phases of PbTi01 and PbZrO3 coexist, and a PZT single phase in which the solid phase reaction is completed does not occur.
また、750℃を超えると粒成長が顕著になり、易焼結
性の微粉末を得ることができない。Furthermore, if the temperature exceeds 750°C, grain growth becomes significant, making it impossible to obtain easily sinterable fine powder.
こうして得られた本発明のPZT微粉末を用いて焼結体
を製造するには、該微粉末を好ましくは粉砕後、成形し
、成形物を、好ましくはPbO蒸気を含む酸素中におい
て、900〜1200℃で焼結する。In order to produce a sintered body using the PZT fine powder of the present invention obtained in this way, the fine powder is preferably pulverized and then molded, and the molded product is heated to a temperature of 900 to Sinter at 1200°C.
焼結の温度が、900℃未満では相対密度95%以上の
高密度焼結体は得られず、1200℃を超えるとPbO
の蒸発が顕著となり、組成の変化や異常粒成長が生じる
などのため、均一な高密度焼結体を得ることができない
。本発明のPZT微粉末は、900〜1000℃という
1000℃以下の温度でも高密度焼結体が得られる点で
有利である。さらに、このような低温の焼結によれば、
焼結過程におけるPbOの蒸発が極めて少なく、従って
、目的組成の焼結体の製造が容易であり、また、PbO
含有雰囲気の使用を必要としなくなるから炉内でのるつ
ぼへの試料装填の操作が極めて簡単となる。また、異常
粒成長が生じ難く、粒径が小さい均一な焼結体を得るこ
とができる。特に、焦電体膜、圧電体膜あるいは圧電ア
クチェーターに用いられる積層素子をスクリーン印刷法
などにより製造するとき、異常粒成長が生じ難いため、
粒径のそろった膜が製造でき、かつ膜が変形し難い。If the sintering temperature is less than 900°C, a high-density sintered body with a relative density of 95% or more cannot be obtained, and if it exceeds 1200°C, PbO
evaporation becomes significant, resulting in changes in composition and abnormal grain growth, making it impossible to obtain a uniform high-density sintered body. The PZT fine powder of the present invention is advantageous in that a high-density sintered body can be obtained even at a temperature of 900 to 1000°C, which is 1000°C or lower. Furthermore, according to such low temperature sintering,
There is extremely little evaporation of PbO during the sintering process, so it is easy to produce a sintered body with the desired composition.
Since there is no need to use a containing atmosphere, the operation of loading the sample into the crucible in the furnace becomes extremely simple. In addition, it is possible to obtain a uniform sintered body with small grain size and less likely to cause abnormal grain growth. In particular, when manufacturing laminated elements used in pyroelectric films, piezoelectric films, or piezoelectric actuators by screen printing, abnormal grain growth is difficult to occur.
A film with uniform particle size can be produced, and the film is not easily deformed.
また、電極用ペーストをペレット状の成形体や厚膜成形
体に印刷し、これを焼結する場合(例えば、積層素子用
) 、 Ag系の安価な電極材料を用いることができる
などの利点があり、本発明の製法により得られるPZT
微粉末の工業的意義は極めて大である。In addition, when printing electrode paste on a pellet-like molded body or a thick film molded body and sintering this (for example, for a laminated device), there are advantages such as being able to use an inexpensive Ag-based electrode material. Yes, PZT obtained by the production method of the present invention
The industrial significance of fine powder is extremely large.
なお、上記焼結の際の焼結時間は2〜100時間が好ま
しく、特に、900〜1000℃で焼結する場合は20
〜100時間が好ましい。The sintering time during the above sintering is preferably 2 to 100 hours, particularly 20 to 100 hours when sintering at 900 to 1000°C.
~100 hours is preferred.
超音波を沈殿形成過程に適用すると、液中に振動場およ
びキャビテーション現象が生じ機械的な力が作用する結
果、極めて微少領域の攪拌が可能となる。例えば沈殿形
成液に超音波を作用させておいて、沈殿させようとする
元素の化合物の水溶液を滴下すると溶液はただちに反応
し沈殿粒子を形成する。この沈殿粒子は継続的に作用さ
れている超音波の機械的な力によって凝集を最小限に抑
制されるものと考えられる。2段階目以後の沈殿形成過
程では、超音波によって分散している微粒子を核として
その上に沈殿形成して粒成長するか。When ultrasonic waves are applied to the precipitate formation process, a vibration field and cavitation phenomenon are generated in the liquid, and mechanical force is applied, making it possible to stir extremely small areas. For example, when ultrasonic waves are applied to a precipitation forming solution and an aqueous solution of a compound of an element to be precipitated is dropped, the solution immediately reacts and forms precipitated particles. It is considered that the agglomeration of the precipitated particles is minimized by the mechanical force of the continuously applied ultrasonic waves. In the precipitate formation process from the second stage onward, the fine particles dispersed by the ultrasonic wave are used as nuclei to form precipitates on top of them, and grains grow.
新たな沈殿粒子として、生成し既に分散している微粒子
と混合するため、各元素の極めてミクロな混合が可能と
なるものと推察される。It is surmised that since the new precipitated particles are generated and mixed with the already dispersed fine particles, extremely microscopic mixing of each element is possible.
このようにして3種の元素が数十人程度の微粒子として
ミクロに混合した状態で、沈殿物が得られる結果、次の
仮焼段階で容易にPZT粒子に転化し、サブミクロンオ
ーダーの易焼結性PZT微粉末が得られるものと考えら
れる。In this way, a precipitate is obtained in which the three types of elements are microscopically mixed as fine particles of about several dozen particles, and as a result, they are easily converted into PZT particles in the next calcination step, and are easily sintered in the submicron order. It is considered that a concreted PZT fine powder is obtained.
以下1本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.
実施例
オキシ硝酸ジルコニウム2.535gと四塩化チタン1
.922gを水500mRに溶解した水溶液を超音波浴
中の5Nのアンモニア水600+nQに攪拌しながら滴
下し、ジルコニウムとチタンの水酸化物の沈殿物を作っ
た。超音波浴中で該共沈殿物の分散している溶液に硝酸
鉛6.983 gを含む水溶液200mflを滴下して
、ジルコニウム、チタン、釦の水酸化物沈殿を得た。Example 2.535 g of zirconium oxynitrate and 1 part of titanium tetrachloride
.. An aqueous solution of 922 g dissolved in 500 mR of water was added dropwise to 600+nQ of 5N ammonia water in an ultrasonic bath with stirring to form a precipitate of zirconium and titanium hydroxides. 200 mfl of an aqueous solution containing 6.983 g of lead nitrate was added dropwise to the solution in which the coprecipitate was dispersed in an ultrasonic bath to obtain hydroxide precipitates of zirconium, titanium, and buttons.
該沈殿物を洗浄、乾燥後、600℃で1時間仮焼するこ
とでX線回折からPbZro、52Tio、4aOzの
PZT単−相のみからなる原料粉末を得た。After washing and drying the precipitate, the precipitate was calcined at 600° C. for 1 hour to obtain a raw material powder consisting of only a PZT single phase of PbZro, 52Tio, and 4aOz from X-ray diffraction.
該原料粉末を2t/aJで成形し、成形物をpbo蒸気
を飽和足金む酸素雰囲気中において、900〜1200
℃の範囲内の種々の温度で焼結した。The raw material powder was molded at 2t/aJ, and the molded product was heated to a temperature of 900 to 1200 in an oxygen atmosphere containing saturated PBO vapor.
Sintered at various temperatures within the range of °C.
得られた焼結体の焼結密度を測定し、理論密度(〜8g
/ff1)に対する相対密度を求めた。また、焼結体中
の異常粒子成長の有無を調べるとともに、平均粒径を測
定した。これらの結果を表1に示す。The sintered density of the obtained sintered body was measured and the theoretical density (~8g
/ff1) was determined. In addition, the presence or absence of abnormal grain growth in the sintered body was investigated, and the average grain size was measured. These results are shown in Table 1.
表1から明らかなように、理論密度(>8g/a#)に
対する相対密度で95%以上のPZT高密度焼結体が得
られた。また、異常粒子成長は無く、900℃の平均粒
径は3.0μmと小さく均一で高密度焼結体が得られた
。As is clear from Table 1, a PZT high-density sintered body with a relative density of 95% or more relative to the theoretical density (>8 g/a#) was obtained. Further, there was no abnormal grain growth, and a uniform, high-density sintered body was obtained with a small, uniform, and high-density average grain size at 900°C of 3.0 μm.
比較例
沈殿形成過程を超音波中で行なわない以外は実施例1と
同じ方法で原料粉末を得1種々の温度において、実施例
1と同様の条件で焼結したところ、得られた焼結体につ
いて表2に示す結果が得られた。Comparative Example Raw material powder was obtained in the same manner as in Example 1, except that the precipitate formation process was not carried out in ultrasonic waves. 1 Sintered at various temperatures and under the same conditions as in Example 1, the obtained sintered bodies were The results shown in Table 2 were obtained.
1000℃以上の焼結温度では高密度焼結体が得られた
が、900℃では高密度焼結体は得られなかった。A high-density sintered body was obtained at a sintering temperature of 1000°C or higher, but no high-density sintered body was obtained at a sintering temperature of 900°C.
表1
表2
〔発明の効果〕
多段湿式法を用いることにより、Pb、 ZrおよびT
iの各沈殿物の沈殿形成能(溶解度積など)を考慮して
、目的組成の微粉末が得られるように各元素の仕込組成
を容易に調節することができる。Table 1 Table 2 [Effect of the invention] By using a multi-stage wet method, Pb, Zr and T
Considering the precipitate forming ability (solubility product, etc.) of each precipitate in i, the charged composition of each element can be easily adjusted so as to obtain a fine powder having the desired composition.
得られるPZT微粉末は、PZT単−相からなるサブミ
クロンオーダーの粒子からなるため高い易焼結性を有し
、1000℃以下の温度の焼結で高密度焼結体を製造す
ることができる。The obtained PZT fine powder has high sinterability because it consists of submicron-order particles made of a single PZT phase, and a high-density sintered body can be produced by sintering at a temperature of 1000°C or less. .
Claims (1)
または2種の元素の化合物を含む水溶液から超音波中で
前記1種または2種の元素を含む沈殿物を生成させ、 次に、得られた沈殿物を分散させた状態で、前記3種の
元素のうち残る2種または1種の元素の化合物を含む水
溶液から超音波中で該2種または1種の元素を含む沈殿
物を生成させる操作を必要回数行なって前記3種の元素
をすべて沈殿させ、 次に、得られた前記3種の元素を含む沈殿物を550〜
750℃で仮焼して、組成がPb_xZr_ATi_1
_−_AO_3(但し、0.9≦x≦1.2、0.1≦
A≦0.98)で表わされる微粉末を得ることからなる
チタン酸ジルコン酸鉛微粉末の製法。(1) A precipitate containing the one or two elements selected from lead, zirconium, and titanium is generated from an aqueous solution containing a compound of one or two elements selected from lead, zirconium, and titanium using ultrasonic waves; An operation of generating a precipitate containing the remaining two or one of the three elements using ultrasonic waves from an aqueous solution containing a compound of the remaining two or one of the three elements in a state where the precipitate is dispersed. is repeated a necessary number of times to precipitate all the three types of elements, and then the obtained precipitate containing the three types of elements is
Calcined at 750℃, the composition is Pb_xZr_ATi_1
_−_AO_3 (However, 0.9≦x≦1.2, 0.1≦
A method for producing a fine powder of lead zirconate titanate, which comprises obtaining a fine powder represented by A≦0.98).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61004716A JPS62162623A (en) | 1986-01-13 | 1986-01-13 | Production of fine powder of lead titanate zirconate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61004716A JPS62162623A (en) | 1986-01-13 | 1986-01-13 | Production of fine powder of lead titanate zirconate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62162623A true JPS62162623A (en) | 1987-07-18 |
JPH0236532B2 JPH0236532B2 (en) | 1990-08-17 |
Family
ID=11591604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61004716A Granted JPS62162623A (en) | 1986-01-13 | 1986-01-13 | Production of fine powder of lead titanate zirconate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62162623A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182104A (en) * | 1986-02-03 | 1987-08-10 | Mitsui Petrochem Ind Ltd | Formation of inorganic hydroxide precipitate |
JPH05124802A (en) * | 1991-10-30 | 1993-05-21 | Mitsubishi Materials Corp | Production of composite ceramic powder |
-
1986
- 1986-01-13 JP JP61004716A patent/JPS62162623A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62182104A (en) * | 1986-02-03 | 1987-08-10 | Mitsui Petrochem Ind Ltd | Formation of inorganic hydroxide precipitate |
JPH05124802A (en) * | 1991-10-30 | 1993-05-21 | Mitsubishi Materials Corp | Production of composite ceramic powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0236532B2 (en) | 1990-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kutty et al. | Direct precipitation of lead zirconate titanate by the hydrothermal method | |
US3699044A (en) | Preparation of ferroelectric ceramic compositions | |
US5066617A (en) | Method for producing plzt powder | |
JPS6214490B2 (en) | ||
JPH0159967B2 (en) | ||
JPS61186219A (en) | Production of lead-containing fine powder | |
JPS62162623A (en) | Production of fine powder of lead titanate zirconate | |
JPS6363511B2 (en) | ||
JP2547007B2 (en) | Method for producing perovskite type oxide fine powder | |
JPH0517189B2 (en) | ||
JPS63151673A (en) | Manufacturing method of lead zirconate titanate piezoelectric ceramic | |
JPH0159205B2 (en) | ||
JPH0798663B2 (en) | Manufacturing method of pyroelectric porcelain for infrared sensor | |
KR100531137B1 (en) | Method for Preparation of Piezoelectric Ceramics by Coprecipitation | |
JPS63144116A (en) | Production of oxide particle | |
JPH0193419A (en) | Manufacturing method of piezoelectric ceramic raw material powder | |
JPS62202821A (en) | Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process | |
JP3041411B2 (en) | Method for producing raw material powder for piezoelectric ceramics | |
JPH0524861B2 (en) | ||
JPS62241823A (en) | Lead zirconate titanate fine powder | |
JPS61186221A (en) | Manufacturing method of lead-containing oxide fine powder | |
JPS6265907A (en) | Method for producing easily sinterable perovskite powder | |
JPH01122907A (en) | Production of perovskite oxide powder | |
JPS62226812A (en) | Manufacturing method of easily sinterable perovskite powder | |
JPH0798664B2 (en) | Manufacturing method of fine powder for producing pyroelectric porcelain for infrared sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |