JPS62220732A - Vibration isolator encapsulating liquid - Google Patents
Vibration isolator encapsulating liquidInfo
- Publication number
- JPS62220732A JPS62220732A JP6115786A JP6115786A JPS62220732A JP S62220732 A JPS62220732 A JP S62220732A JP 6115786 A JP6115786 A JP 6115786A JP 6115786 A JP6115786 A JP 6115786A JP S62220732 A JPS62220732 A JP S62220732A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- orifice
- loss factor
- liquid
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/10—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Combined Devices Of Dampers And Springs (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、液体封入式防振体に関し、とシわけオリフ
ィスを複数設けることによシ複数の振動減衰域を持つよ
うになった液体封入式防振体に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a liquid-filled vibration isolator, and relates to a liquid-filled vibration isolator that has a plurality of vibration damping regions by providing a plurality of separated orifices. Regarding the vibration body.
従来の技術
この釉、従来の液体封入式防振体としては、例えば特開
昭58−72741号公報C示されたものがある。しか
し、この液体封入式防振体にあっては、複数のオリフィ
スが夫々に共通する1つのダイヤフラム室に設けられて
いるため、このオリフィスのうち液体通過抵抗の大きな
側のオリフィスでロスファクタを発生しようとしても液
体通過抵抗が小さな側のオリフィスを介して容易に液体
移動してし葦う。したがって、通過抵抗の大きな側のオ
リフィスで受けもつ周波数帯のロスファクタピーク値は
、通過抵抗の小さな側のオリフィスで受けもつ周波数帯
のロスファクタピーク値(二比較して著しく小さくなる
(第3図の■参照)。この結果、オリフィスを複数設け
たことによる効果が十分に発揮されず、1つのオリフィ
スのみを設けたものと差異が殆んでなくなってし甘う。BACKGROUND OF THE INVENTION A conventional liquid-filled vibration isolator using this glaze is disclosed in, for example, Japanese Unexamined Patent Publication No. 58-72741C. However, in this liquid-filled vibration isolator, multiple orifices are provided in one common diaphragm chamber, so a loss factor occurs in the orifice on the side where the liquid passage resistance is large. Even if you try, the liquid will move easily through the orifice on the side where the resistance to liquid passage is small. Therefore, the loss factor peak value of the frequency band served by the orifice on the side with larger passing resistance is significantly smaller than the loss factor peak value of the frequency band served with the orifice on the side with smaller passing resistance (see Figure 3). As a result, the effect of providing a plurality of orifices is not fully demonstrated, and there is almost no difference from providing only one orifice.
ところで、上記複数のオリフィス(二よって発生する夫
々のロスファクタのピーク値は、略同じ大きさに股定す
るつまりロスファクタ特性が各ピーク値を滑らかに結ぶ
曲線で描かれること≦二より、谷ピーク値間およびピー
ク値近傍の周波数帯のロスファクタも大きく設定される
ので振動減衰領域を広くとることができることが知られ
ている。By the way, the peak values of each loss factor generated by the plurality of orifices (2) are determined to be approximately the same size, that is, the loss factor characteristic is drawn by a curve that smoothly connects each peak value. It is known that the loss factor in the frequency band between peak values and in the vicinity of the peak value is also set large, so that the vibration damping region can be widened.
そこで、枚数のオリフィスが有する個々のロスファクタ
発生機能を、他のオリフィスに影響されることなく十分
l:発揮させると共(−1夫々のロスファクタピーク値
の高さを略等しくするようC−した液体封入式防振体が
既(二開発されている(%wI昭60−195210号
)。Therefore, the loss factor generation function of each orifice is fully demonstrated without being influenced by other orifices. Two liquid-filled vibration isolators have already been developed (%wI No. 1987-195210).
すなわち、この液体封入式防振体1は、第8図に示すよ
う≦1図外のパワーユニット側及び車体側(二装着され
る第1枠体2および第2枠体3間に、弾性体たるゴム体
4で液密的に囲繞される液体室5が設けられている。こ
の液体室5の上下端部には前記第1枠体2から一体(二
延設される第1仕切板6および前記第2枠体3下端に配
曾される第2仕切板7が設けられ、かつ第1仕切板6の
上方は第1ダイヤフラム8で液密的に覆われると共C−
1第2仕切板7の下方は第2ダイヤフラム8で液密的(
二種われている。そして、第1仕切板6と第1ダイヤフ
ラム8との間を第1ダイヤフラム室10とし、第2仕切
板1と第2ダイヤフラム9との間を第2ダイヤフラム室
11としている。一方、前記第1仕切板6(二は、液体
室5と第1ダイヤフラム室8とを連通ずる迷路状の第1
オリフイス12が形成されていると共に、前記第2仕切
板Iには液体室5と第2ダイヤフラム室11とを連通ず
る迷路状の第2オリフイス13が形成されている。また
、前記第1ダイヤフラム8の上方な榎う第1被覆板14
の周縁部+:、第1ダイヤフラム8の枠板8aを挾んで
第1枠体2の周縁がかしめ固定されている。That is, as shown in FIG. 8, this liquid-filled vibration isolator 1 has an elastic body between the power unit side outside the figure and the vehicle body side (2) between the first frame body 2 and the second frame body 3 to be attached. A liquid chamber 5 is provided which is liquid-tightly surrounded by a rubber body 4. At the upper and lower ends of this liquid chamber 5, a first partition plate 6 and a first partition plate 6 integrally extended from the first frame 2 are provided. A second partition plate 7 is provided at the lower end of the second frame body 3, and the upper part of the first partition plate 6 is covered with a first diaphragm 8 in a liquid-tight manner.
1. The lower part of the second partition plate 7 is made liquid-tight by the second diaphragm 8 (
There are two types. The space between the first partition plate 6 and the first diaphragm 8 is defined as a first diaphragm chamber 10, and the space between the second partition plate 1 and the second diaphragm 9 is defined as a second diaphragm chamber 11. On the other hand, the first partition plate 6 (2) is a labyrinth-shaped first partition plate that communicates the liquid chamber 5 and the first diaphragm chamber 8.
An orifice 12 is formed in the second partition plate I, and a labyrinth-shaped second orifice 13 that communicates the liquid chamber 5 and the second diaphragm chamber 11 is also formed in the second partition plate I. Also, a first covering plate 14 extending above the first diaphragm 8
Peripheral edge portion +: The peripheral edge of the first frame body 2 is fixed by caulking, sandwiching the frame plate 8a of the first diaphragm 8.
一方、前記第2ダイヤフラム9の下方を覆う第2被覆板
15の周縁部に、第2仕切板7の周縁および第2ダイヤ
フラムBの周縁を挾んで第2枠体3の周縁がかしめ固定
されている。On the other hand, the periphery of the second frame 3 is caulked and fixed to the periphery of the second cover plate 15 covering the lower part of the second diaphragm 9, sandwiching the periphery of the second partition plate 7 and the periphery of the second diaphragm B. There is.
そして、上記第1オリフイス12の通路長さを比較的短
かく形成して、ロスファクタのピーク周波数を大きく設
定すると共に、第2オリフイス13の通路長さを比較的
長く形成して、ロスファクタのピーク周波数を小さく設
定している。更(二、前記第1ダイヤフラム8の肉厚を
前記第2ダイヤフラムBの肉厚よシ大きくして剛性を高
め、拡張弾性が第2ダイヤフラム9よp高くなるように
設定されている。これによって、全てのオリフィスによ
り得られる1つのロスファクタ特性は、略等しいピーク
値が滑らかな曲線で結ばれる状態となシ、広い範囲C:
亘って高いロスファクタ値を得られるようf二lってい
る。The passage length of the first orifice 12 is formed relatively short to set a large peak frequency of the loss factor, and the passage length of the second orifice 13 is formed relatively long to increase the loss factor. The peak frequency is set low. Furthermore, the first diaphragm 8 is made thicker than the second diaphragm B to increase its rigidity, and its expansion elasticity is set to be higher than that of the second diaphragm 9. , one loss factor characteristic obtained by all orifices is a state in which approximately equal peak values are connected by a smooth curve, and a wide range C:
f2 is set so that a high loss factor value can be obtained throughout.
発明が解決しようとする問題点
しかしながら、上記特願昭60−195210号のもの
rl、前記のように第1ダイヤフラム室1oと第2ダイ
ヤフラム室11が液体室5を挾んで上下に分離した状態
で配置されており、夫々別個独立に構成されているため
、構造が複雑になる。また、冬用1・第2枠体2,3を
夫々用1・第2被櫟板14゜15に別々にかしめ固定し
なければならないなど、製造作業が煩雑になり、コスト
が高くなるといった間鵬がある。Problems to be Solved by the Invention However, in the above-mentioned Japanese Patent Application No. 60-195210, the first diaphragm chamber 1o and the second diaphragm chamber 11 are vertically separated with the liquid chamber 5 in between, as described above. The structure is complicated because they are arranged separately and independently. In addition, the manufacturing work becomes complicated and costs increase, as the first and second winter frames 2 and 3 must be separately caulked and fixed to the first and second winter use plates 14 and 15, respectively. There is Peng.
更にまた、上記従来の各液体封入式防振体(−あっては
、エンジンの踊シやこもり音など中・高周波振動に対し
て動ばね定数を抑制するような工夫が全くなされていな
いため、車体振動の十分な低減が図れない。Furthermore, each of the above-mentioned conventional liquid-filled vibration isolators (-) has not been designed to suppress the dynamic spring constant against medium and high frequency vibrations such as engine vibrations and muffled noises. Vehicle body vibration cannot be sufficiently reduced.
問題点を解決するための手段
この発明は、弾性体で囲繞された液体室が、ロスファク
タのピーク周波数を夫々異にした複数のオリフィスを介
して該オリフィスに専用の各ダイヤフラム室に連通し、
かつ前記各ダイヤフラム室のダイヤフラム拡張弾性を、
対応するオリフィスのロスファクタピーク周波数が大き
いものほど高く設定した液体封入式防振体であって、前
記各ダイヤフラム室を、前記所定のダイヤフラムを介し
て重合一体に形成し、更(−1各ダイヤフラムを隔成す
る前記所定のダイヤフラムを、各ダイヤフラム室の軸方
向に微動可能に設けたことを特徴としている。Means for Solving the Problems This invention provides a method in which a liquid chamber surrounded by an elastic body communicates with each diaphragm chamber dedicated to each orifice through a plurality of orifices each having a different peak frequency of a loss factor,
and the diaphragm expansion elasticity of each diaphragm chamber,
The liquid-filled vibration isolator is configured such that the loss factor peak frequency of the corresponding orifice is set higher as the loss factor peak frequency is larger, and each of the diaphragm chambers is integrally formed with the predetermined diaphragm interposed therebetween. It is characterized in that the predetermined diaphragm separating the diaphragms is provided so as to be slightly movable in the axial direction of each diaphragm chamber.
作 用
上記構成のこの発明(二よれば、各オリフィス専用のダ
イヤフラム室を設けることによシ、各オリフィスによシ
異なるロスファクタ周波数の振動を、夫々のオリフィス
を通して効果的に減衰できる。According to the present invention (2) having the above configuration, by providing a diaphragm chamber dedicated to each orifice, vibrations having different loss factor frequencies for each orifice can be effectively damped through each orifice.
また、各オリフィス(−よシ発揮されるロスファクタピ
ーク値は、このピーク周波数の大きさに比例し、ダイヤ
フラム室のダイヤフラム拡張弾性の大きさCユ反比例す
ることが不出願人≦二より確認されており、従って、ダ
イヤフラム拡張弾性を上記のように構成することCユよ
り、各オリフィスのロスファクタピーク値の高さを略等
しくすることができる。In addition, it has been confirmed by the applicant≦2 that the loss factor peak value exhibited by each orifice (-) is proportional to the magnitude of this peak frequency, and inversely proportional to the magnitude C of the diaphragm expansion elasticity of the diaphragm chamber. Therefore, by configuring the diaphragm expansion elasticity as described above, the heights of the loss factor peak values of each orifice can be made approximately equal.
しかも、車体の中・高周波数振動域f二おいて、各ダイ
ヤフラム室を隔成する所定のダイヤフラムがダイヤフラ
ム室の軸方向へ微動するため、これによって動ばね定数
が抑制され高周波域の振動を十分に低減することが可i
]でとなる。更【二、各ダイヤフラム室を重合一体に形
成したため、構造が簡単となるばかシか、防振体の製造
作業能率の向上を図ることができる。Moreover, in the middle and high frequency vibration range f2 of the car body, the predetermined diaphragm that separates each diaphragm chamber slightly moves in the axial direction of the diaphragm chamber, which suppresses the dynamic spring constant and sufficiently suppresses vibration in the high frequency range. can be reduced to i
]. Furthermore, since each diaphragm chamber is integrally formed by polymerization, the structure is not only simplified, but also the production efficiency of the vibration isolator can be improved.
実施例 以下、この発明の実施例を図面に基づいて詳述する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図はこの発明の第1実施例を示し、この液体封入式
防振体21は、図外のパワーユニット側および車体側(
ユ装着される第1支持枠22字及び第2支持枠23とを
有し、これら第1・第2支持枠22゜23間には、弾性
体たるゴム体24で液密的に囲繞される液体室25が設
けられていると共に、大径円丁
板状の第2ダイヤフラム30を介して上記液体室25と
気密的に隔成された空気室26が設けられている。また
前記液体室25の下部には、中央が膨出した仕切板27
と、−に面の一部が上記仕切板27の外周端C接合され
た円墳状の支持板28とが上記第2ダイヤフラム30と
所定間隔をもって配設されている。FIG. 1 shows a first embodiment of the present invention, and this liquid-filled vibration isolator 21 has a power unit side (not shown) and a vehicle body side (not shown).
It has a first support frame 22 and a second support frame 23 that are attached to the housing, and a rubber body 24 that is an elastic body is surrounded in a liquid-tight manner between the first and second support frames 22 and 23. A liquid chamber 25 is provided, and an air chamber 26 is also provided, which is airtightly separated from the liquid chamber 25 via a second diaphragm 30 having a large diameter disc shape. Further, at the bottom of the liquid chamber 25, a partition plate 27 with a bulge in the center is provided.
and a support plate 28 in the shape of a circular mound, a part of which is joined to the outer circumferential end C of the partition plate 27, are arranged at a predetermined distance from the second diaphragm 30.
そして、上記仕切板21と第2ダイヤフラム30との間
に、上記支持板28の中央(二固定された円板状の第1
ダイヤフラム29を介して第1ダイヤフラム室31と第
2ダイヤフラム室32が上下に重合一体に形成されてい
る。また、上記支持板28は、外幼部2θaが、合成樹
脂製の環状支持枠33の内周に形成された同項*33a
+二上下Cユ微動可能(最大可劫約0.4 m )に遊
嵌支持されている。更に、前記第1ダイヤフラム室31
は、仕切板27の略中央に股けられた短寸の第1オリフ
イス34イニよって液体室25(二連通している。第2
ダイヤフラム室32は、仕切板27の上記支持板28と
接合した部位を断面矩形状に膨出して形成された円環状
の第2オリフイス35によって液体室25に連通してお
り、この第2オリフイス35は一端が仕切板27に、他
端が支持板28C:夫々穿設された開口35a r 3
5bを有している。そして、上記第1オリフイス34を
短かく形成して、ロスファクタのピーク周波数を大きく
設定する一方、第2オリフイス35を円環状に長く形成
して、ロスファクタのピーク周波数を小さく設定してい
る。Then, between the partition plate 21 and the second diaphragm 30, a disk-shaped first
A first diaphragm chamber 31 and a second diaphragm chamber 32 are formed vertically and integrally with each other via the diaphragm 29. In addition, the support plate 28 has an outer portion 2θa formed on the inner periphery of an annular support frame 33 made of synthetic resin.
It is supported by a loose fit that allows slight movement up and down (maximum movement of approximately 0.4 m). Furthermore, the first diaphragm chamber 31
The liquid chamber 25 (the two are in communication with each other through a short first orifice 34 inserted approximately in the center of the partition plate 27).
The diaphragm chamber 32 communicates with the liquid chamber 25 through an annular second orifice 35 formed by expanding a portion of the partition plate 27 that is joined to the support plate 28 to have a rectangular cross section. One end is formed in the partition plate 27, and the other end is formed in the support plate 28C: an opening 35a r 3 formed respectively.
5b. The first orifice 34 is formed short to set the peak frequency of the loss factor high, while the second orifice 35 is formed long in an annular shape to set the peak frequency of the loss factor small.
更にまた、前記第1ダイヤフラム29の肉厚は、第2ダ
イヤフラム30の肉厚よシ大きくして剛性を高め、第1
ダイヤフラム29の拡張弾性が第2ダイヤフラム30の
拡張弾性よシ高くなるよう≦二股定している。これは本
願発明者らが実験を行なったところオリフィスによるロ
スファクタのピーク周波数はダイヤフラムの拡張弾性が
高いほど大きくなるという実験結果に基づいて決定され
ている。Furthermore, the thickness of the first diaphragm 29 is made larger than that of the second diaphragm 30 to increase rigidity.
Two branches are determined so that the expansion elasticity of the diaphragm 29 is higher than the expansion elasticity of the second diaphragm 30. This is determined based on the experimental results conducted by the inventors of the present invention, which showed that the peak frequency of the loss factor due to the orifice increases as the expansion elasticity of the diaphragm increases.
そして、前記第2ダイヤフラム30と環状支持枠33は
、前記第2支持枠23の外周縁23aと前記ゴム体24
の外側を被覆する円環状枠36の外周縁38aとの間に
挾持された形でかしめ(二よシ一体向に固定されている
。このように、一つのかしめ行程で各ダイヤフラム室3
1 、32などを一緒に形成できるので製造作業能率が
向−ヒする。The second diaphragm 30 and the annular support frame 33 are connected to the outer peripheral edge 23a of the second support frame 23 and the rubber body 24.
The diaphragm chamber 3 is clamped between the outer peripheral edge 38a of the annular frame 36 that covers the outside of the diaphragm chamber 3 (the two sides are fixed together).In this way, each diaphragm chamber 3 is
1, 32, etc. can be formed together, improving manufacturing efficiency.
したがって、この実施例1二よれば、パワーユニット振
動の低周波成分は、第1.第2ダイヤフラム831,3
2などにより、−刃高周波成分はゴム体24や第1ダイ
ヤフラム2B、仕切板27などの作用によって十分に減
衰される。すなわち、低周波成分は、ゴム体24の変形
(二伴って液体室25内の作動液体(例えば水)が、第
1.第2オリフイス34 、35を介して液体室25と
第1.第2ダイヤフラム室31 、32間で移動するこ
とによシ振動することにより振動減衰されるようC″−
なっている。また、長さの短かい第1オリフイス34の
ロスファクタピーク周波数は低周波域のなかでも高い周
波数帯に設定され、長い第2オリフイス35のロスファ
クタピーク周波数は、低周波のなかでも低い周波数1−
設定され、夫々の周波数帯の振動減衰を効果的に行なっ
ている。尚、本実施例では液体封入式防振体21が、パ
ワーユニット支持に用いられるもので、割振対象を5〜
20七となるエンジンシエイりに設定し、低周波側のロ
スファクタピーク周波数ftを5〜8 Hz 、高周波
側のロスファクタピーク周波数f2を13〜18Hz付
近(二股定しせ、これら両ピーク周波数f+ 、 fz
を持つロスファクタ特性で前記エンジンシェイクの振動
数域をカバーするようにチューニングしである。Therefore, according to this embodiment 1 and 2, the low frequency component of the power unit vibration is caused by the first . Second diaphragm 831,3
2, etc., the -blade high frequency component is sufficiently attenuated by the action of the rubber body 24, the first diaphragm 2B, the partition plate 27, etc. That is, the low frequency component is caused by the deformation of the rubber body 24 (as a result of the deformation of the rubber body 24, the working liquid (for example, water) in the liquid chamber 25 passes through the first and second orifices 34 and 35 to the liquid chamber 25 and the first and second C″- so that the vibration is damped by moving between the diaphragm chambers 31 and 32.
It has become. Further, the loss factor peak frequency of the first orifice 34 having a short length is set to a high frequency band in the low frequency range, and the loss factor peak frequency of the long second orifice 35 is set to a frequency band 1 which is low among the low frequencies. −
settings, effectively damping vibrations in each frequency band. In this embodiment, the liquid-filled vibration isolator 21 is used to support the power unit, and the allocation targets are 5 to 5.
207, the loss factor peak frequency ft on the low frequency side is set to 5 to 8 Hz, and the loss factor peak frequency f2 on the high frequency side is set to around 13 to 18 Hz. , fz
It is tuned to cover the frequency range of the engine shake with a loss factor characteristic of .
第2図は前記第1図と同一構成部分C−同一符号を1・
Jシて示した液体封入式防振体21のモデル図で、この
モデル図1m基づいて振動特性の実験結果を述べる。尚
、図中にはゴム体24の撮動入力方面ばね、K+t/′
iゴム体24の拡張弾性によるばね、K!は第1ダイヤ
フラム29の拡張弾性Kd、ばね、K墨は第2ダイヤフ
ラム30の拡張弾性Kd2と空気室2Bの窒気ばねとの
オlによるばね、mfl 、 mlは第1.第2オリフ
イス34 、35内の液体質量、A1は液体室25内の
等揃断面積、A2. AMは第1.第2ダイヤフラム2
9 、30の等揃断面積、S2 、 Ssは第1゜第2
オリフイス34 、35の開口面積、 12 、1s
は第1.第2オリフイス34 、35の長さを示す。FIG. 2 shows the same components as those in FIG.
The experimental results of the vibration characteristics will be described based on the model diagram 1m of the liquid-filled vibration isolator 21 shown in J. In addition, in the figure, the photographing input direction spring of the rubber body 24, K+t/'
i Spring due to expansion elasticity of the rubber body 24, K! is the expansion elasticity Kd of the first diaphragm 29 and the spring, K is the spring due to the expansion elasticity Kd2 of the second diaphragm 30 and the nitrogen spring of the air chamber 2B, mfl and ml are the springs of the first diaphragm 29. The liquid mass in the second orifices 34 and 35, A1 is an equal cross-sectional area in the liquid chamber 25, A2. AM is number 1. Second diaphragm 2
9 and 30, S2 and Ss are the 1st and 2nd
Opening area of orifices 34 and 35, 12, 1s
is the first. The length of the second orifices 34 and 35 is shown.
次(−示す表は、前記モデルに基づいて第1ダイヤフラ
ム2gと第2ダイヤフラム30の拡張弾性Kdl 、
Kdzを、目的とするロスファクタ特性が得られるよう
1こ変化させた実験結果である。The table below (- shows the expansion elasticity Kdl of the first diaphragm 2g and the second diaphragm 30 based on the above model,
These are the results of an experiment in which Kdz was changed by one so as to obtain the target loss factor characteristic.
表
第3図は前記六のダイヤフラム拡張弾性を夫々変化させ
た場合のロスファクタ特性を示し、図中特性(1)は、
第1ダイヤフラム29の拡張弾性Kd、を45Kt/m
、第2ダイヤフラム30を2.OKp/m l:設定し
た場合で、この場合は低周波側のロスファクタピーク値
(約5 Hz域)が若干低くなっておシ、高周波側では
ロスファクタピーク値(約12 Hz域)が比較的高く
なっているが、前述の特開昭58−72741号公報の
もの(組C;比較して滑らかな曲線となる。このため、
前記両ピーク値間及び両ピーク値近傍でカバーされるエ
ンジンシェイクの振動数域のロスファクタ(tafiδ
)値は一様に大きく設定される。この結果、エンジンシ
ェイクの振動数域は、第1.第2オリフイス34 、3
5及び第1.第2ダイヤフラム室31 、32で効率よ
く減衰されることI−なる。Table 3 shows the loss factor characteristics when the six diaphragm expansion elasticities are changed, and the characteristic (1) in the figure is:
The expansion elasticity Kd of the first diaphragm 29 is 45Kt/m.
, the second diaphragm 30 is 2. OKp/ml: When set, in this case the loss factor peak value on the low frequency side (approximately 5 Hz area) is slightly lower, and on the high frequency side the loss factor peak value (approximately 12 Hz area) is compared. However, the curve is smooth compared to that of the above-mentioned Japanese Patent Application Publication No. 58-72741 (group C;
Loss factor (tafiδ) of the engine shake frequency range covered between the two peak values and near the two peak values
) values are set uniformly large. As a result, the engine shake frequency range is 1. 2nd orifice 34, 3
5 and 1st. The second diaphragm chambers 31 and 32 efficiently damp the signal.
また、特性(It)は、第1ダイヤフラム29の拡張弾
性Kd+を20 Ky/■、第2ダイヤフラム30を2
.OKp/1mに設定した場合で、この場合は上記とは
逆に低周波側のロスファクタピーク値(約5 Hz域)
が比較的高く、高周波側ではロスファクタピーク値(約
12 Hz域)が若干低くなっているが、前記の場合と
同様比較的滑らかな曲線となる。したがって、上記特性
(1)の場合とは高・低周波側のロスファクタ(taI
+)値が異なるものの、両ピーク値間及び両ピーク値近
傍でカバーされるエンジンシェイクの振動数域のロスフ
ァクタ値が一様に大きくなる0
尚、前記いずれの場合でも第1オリフイスの径は3.5
φ■、長さは10■、第2オリフイスの径は4mm、長
さは150■に設定されている。Further, the characteristics (It) are that the expansion elasticity Kd+ of the first diaphragm 29 is 20 Ky/■, and the expansion elasticity Kd+ of the second diaphragm 30 is 20 Ky/■.
.. When set to OKp/1m, in this case, contrary to the above, the loss factor peak value on the low frequency side (approximately 5 Hz area)
is relatively high, and the loss factor peak value (approximately 12 Hz region) is slightly low on the high frequency side, but the curve is relatively smooth as in the previous case. Therefore, the loss factor (taI) on the high/low frequency side is different from the case of characteristic (1) above.
+) Although the values are different, the loss factor value in the engine shake frequency range covered between the two peak values and near the two peak values is uniformly large 0. In any of the above cases, the diameter of the first orifice is 3.5
The diameter of the second orifice is 4 mm, and the length is 150 mm.
一方、中・高周波数域例えば30〜250 Hzで0.
1■以下の振幅の場合は、前記第1ダイヤフラム29を
含む第1ダイヤフラム室31全体が支持板28を介して
上下微動するため、動はね定数が第4図の特性Iで示す
ように従来(It)と比較し約150 Hz付近まで十
分(二抑制される。この結果、上記ゴム体24の振動吸
収作用と相俟って中・高波数成分の振動が効果的に減衰
される。On the other hand, in the middle and high frequency ranges, for example 30 to 250 Hz, it is 0.
In the case of an amplitude of 1■ or less, the entire first diaphragm chamber 31 including the first diaphragm 29 slightly moves up and down via the support plate 28, so that the dynamic spring constant is as shown by characteristic I in FIG. (It) is sufficiently suppressed up to about 150 Hz. As a result, together with the vibration absorbing effect of the rubber body 24, the vibrations of medium and high wave number components are effectively damped.
第5図はこの発明の第2実施例を示しておシ、これは支
持板28の外端部28aが、環状ゴム部材40を介して
環状支持枠33に上下動可能に固定されており、また、
支持板2Bの上下動範囲は環状支持枠33の円環溝33
a上下端縁で最大約0.4mC規制されている。したが
って、この実施例においても第1実施例と同様な作用効
果が得られ、%に第1ダイヤフラム29による動ばね定
数の抑制作用が得られ、中・高周波数の振動を十分(二
減衰できる。FIG. 5 shows a second embodiment of the present invention, in which the outer end 28a of the support plate 28 is fixed to the annular support frame 33 via an annular rubber member 40 so as to be movable up and down. Also,
The vertical movement range of the support plate 2B is the annular groove 33 of the annular support frame 33.
a Maximum limit is approximately 0.4 mC at the upper and lower edges. Therefore, in this embodiment, the same effects as in the first embodiment can be obtained, and the first diaphragm 29 can suppress the dynamic spring constant, thereby sufficiently damping medium and high frequency vibrations.
第6図は、この発明の第3実施例を示し、との実施例で
は、第2オリフイス35を仕切板21とは別体の環状板
50及び支持板28で構成し、この環状板50及び支持
板28の外端部を第2ダイヤフラム30の外端部と重ね
合わせて第2支持枠23と円環状枠3Bの各外周縁23
a 、 38a間に一体的C:固定されている。また、
仕切板27のフランジ状外端部27aが、上記環状板5
0及び支持板28の内端部間に形成された円環溝51内
に、最大可動が0.4mに規制されつつ上下微動可能に
遊嵌支持されている。FIG. 6 shows a third embodiment of the present invention, in which the second orifice 35 is composed of an annular plate 50 and a support plate 28 that are separate from the partition plate 21, The outer end of the support plate 28 is overlapped with the outer end of the second diaphragm 30, and each outer peripheral edge 23 of the second support frame 23 and the annular frame 3B is
a, integral C: fixed between 38a. Also,
The flange-shaped outer end 27a of the partition plate 27 is connected to the annular plate 5.
0 and the inner end of the support plate 28, the support plate 28 is loosely fitted and supported in an annular groove 51 formed between the inner end of the support plate 28 so as to be able to move slightly up and down while the maximum movement is limited to 0.4 m.
したがって、この実施例も高周波数の振動に対して第1
ダイヤフラム29を含む第1ダイヤフラム室31全体が
上下微動するため、動ばね定数の抑制作用が働き、中・
高周波数の振動を十分に減衰できる。Therefore, this embodiment also has a first effect on high frequency vibrations.
Since the entire first diaphragm chamber 31 including the diaphragm 29 moves slightly up and down, the movement spring constant is suppressed, and the middle and
High frequency vibrations can be sufficiently damped.
呆7図は、この発明の第4実施例を示し、この実施例で
は上記第3実施例における仕切板27の外端部27aが
、環状ゴム部材BOを介して支持板2Bに上下動可能f
二固定されており、この上下可動範囲は円環$61の上
下端縁で最大約0.4m+程度に規制されている。した
がって、この実施例でも上記第3実施例と同様な効果が
得られる。Figure 7 shows a fourth embodiment of the present invention, in which the outer end 27a of the partition plate 27 in the third embodiment is movable up and down on the support plate 2B via an annular rubber member BO.
The vertical movable range is limited to about 0.4 m+ at the upper and lower edges of the ring $61. Therefore, this embodiment also provides the same effects as the third embodiment.
尚、上記各実施例では、主としてエンジンシェイクの振
動数領域を減衰する場合について説明したが、他の振動
対象を減衰させることも可能である。また、この発明を
他の振動減衰体たとえばサスペンションのブツシュ箇に
適用することも可能である。In each of the above embodiments, the case where the frequency range of engine shake is mainly damped has been described, but it is also possible to damp other objects of vibration. It is also possible to apply the present invention to other vibration damping bodies, such as suspension bushings.
発明の効果
以上の説明で明らかなように、この発明の液体封入式防
振体にあっては、他のオリフィスに影響されることなく
夫々のロスファクタピーク値を大きく設定でき、かつ各
オリフィスによって得られるロスファクタピーク値を略
等しくすることができる。従って、広範囲に亘って高い
ロスファクタ値が得られ、この結果1つの防振体で振動
減衰領の振動吸収作用と相俟って中・高周波数域の車体
振動を十分C−低減できる。Effects of the Invention As is clear from the above explanation, in the liquid-filled vibration isolator of the present invention, each loss factor peak value can be set to a large value without being influenced by other orifices, and each orifice The resulting loss factor peak values can be made substantially equal. Therefore, a high loss factor value can be obtained over a wide range, and as a result, one vibration isolator can sufficiently reduce vehicle body vibration in the medium and high frequency ranges by combining with the vibration absorption function in the vibration damping region.
更に、この発明は、複数のダイヤフラム室を所定のダイ
ヤフラムを介して重合一体に形成したため、全体の構造
が極めて簡単となplこれによって品質V理が容易とな
る。更にまた、製造工数の削減(二よシ製造作業能率の
向−[及びコストの低廉化が図れる。Further, in the present invention, since the plurality of diaphragm chambers are integrally formed via a predetermined diaphragm, the overall structure is extremely simple, and quality control is thereby facilitated. Furthermore, the number of manufacturing steps can be reduced (secondarily, manufacturing efficiency can be improved, and costs can be reduced).
第1図はこの発明の第1実施例を示す断面図、第2図は
この発明のモデル図、第3図はこのモデルに基づいて実
験によって得られた各種ロスファクタの態様を示す特性
図、第4図はこの発明の実施例と従来の液体封入式防振
体の動はね特性を示す比較図、第5図はこの発明の第2
実施例を示す断面図、第6図はこの発明の第3実施例を
示す断面図、第7図はこの発明の第4実施例を示す断面
図、第8図は先願に係る液体封入式防振体を示す断面図
である。
21・・・液体封入式防振体、24・・・ゴム体(弾性
体)、25・・・液体室、27・・・仕切板、29・・
・第1ダイヤフラム(所定ダイヤフラム)、30・・・
第2ダイヤフラム、31・・・第1ダイヤフラム室、3
2・・・第2ダイヤフラム室、34・・・第1オリフイ
ス、35・・・第2オリフイス。
外2名
第8図FIG. 1 is a sectional view showing a first embodiment of the invention, FIG. 2 is a model diagram of the invention, and FIG. 3 is a characteristic diagram showing aspects of various loss factors obtained through experiments based on this model. Fig. 4 is a comparison diagram showing the dynamic splash characteristics of an embodiment of the present invention and a conventional liquid-filled vibration isolator, and Fig.
6 is a sectional view showing a third embodiment of the invention, FIG. 7 is a sectional view showing a fourth embodiment of the invention, and FIG. 8 is a liquid-filled type according to the earlier application. It is a sectional view showing a vibration isolator. 21... Liquid-filled vibration isolator, 24... Rubber body (elastic body), 25... Liquid chamber, 27... Partition plate, 29...
・First diaphragm (predetermined diaphragm), 30...
Second diaphragm, 31...First diaphragm chamber, 3
2... Second diaphragm chamber, 34... First orifice, 35... Second orifice. 2 people outside Figure 8
Claims (1)
ーク周波数を夫々異にした複数のオリフィスを介して該
オリフィスに専用の各ダイヤフラム室に連通し、かつ前
記各ダイヤフラム室のダイヤフラム拡張弾性を、対応す
るオリフィスのロスファクタピーク周波数が大きいもの
ほど高く設定した液体封入式防振体であって、前記各ダ
イヤフラム室を、前記所定のダイヤフラムを介して重合
一体に形成し、更に、各ダイヤフラム室を隔成する前記
所定のダイヤフラムを、各ダイヤフラム室の軸方向に微
動可能に設けたことを特徴とする液体封入式防振体。(1) A liquid chamber surrounded by an elastic body communicates with each diaphragm chamber dedicated to the orifice through a plurality of orifices having different peak frequencies of loss factors, and the diaphragm expansion elasticity of each diaphragm chamber is set higher as the loss factor peak frequency of the corresponding orifice is larger, the diaphragm chambers are integrally formed via the predetermined diaphragm, and each diaphragm A liquid-filled vibration isolator characterized in that the predetermined diaphragm separating the chambers is provided so as to be slightly movable in the axial direction of each diaphragm chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6115786A JPS62220732A (en) | 1986-03-19 | 1986-03-19 | Vibration isolator encapsulating liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6115786A JPS62220732A (en) | 1986-03-19 | 1986-03-19 | Vibration isolator encapsulating liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62220732A true JPS62220732A (en) | 1987-09-28 |
Family
ID=13163020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6115786A Pending JPS62220732A (en) | 1986-03-19 | 1986-03-19 | Vibration isolator encapsulating liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62220732A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229131A (en) * | 1988-03-09 | 1989-09-12 | Tokai Rubber Ind Ltd | Fluid sealed type mount device |
FR2628805A1 (en) * | 1988-03-19 | 1989-09-22 | Tokai Rubber Ind Ltd | ELASTIC MOUNTING STRUCTURE WITH FLUID FILLING MOBILE ELEMENTS AND ORIFICES |
JPH02245536A (en) * | 1989-03-18 | 1990-10-01 | Kinugawa Rubber Ind Co Ltd | Fluid sealing vibrationproofing unit |
-
1986
- 1986-03-19 JP JP6115786A patent/JPS62220732A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229131A (en) * | 1988-03-09 | 1989-09-12 | Tokai Rubber Ind Ltd | Fluid sealed type mount device |
FR2628805A1 (en) * | 1988-03-19 | 1989-09-22 | Tokai Rubber Ind Ltd | ELASTIC MOUNTING STRUCTURE WITH FLUID FILLING MOBILE ELEMENTS AND ORIFICES |
JPH02245536A (en) * | 1989-03-18 | 1990-10-01 | Kinugawa Rubber Ind Co Ltd | Fluid sealing vibrationproofing unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2875723B2 (en) | Hydraulic damper | |
JP2657952B2 (en) | Hydraulic damping two-chamber engine mount | |
KR102365152B1 (en) | Hydraulic engine-mount | |
US4767106A (en) | Hydroelastic support, in particular for a vehicle engine | |
JP5678073B2 (en) | Vibration isolator | |
US4802658A (en) | Vibration isolating apparatus | |
JPS63280944A (en) | Fluid elastic supporter for particularly suspending engine for car | |
JP2000193015A (en) | Fluid sealing type vibration control device | |
JPS62220732A (en) | Vibration isolator encapsulating liquid | |
US6932332B2 (en) | Hydraulic antivibration support | |
JPS6145131A (en) | Resilient supporting device | |
JPH0791526A (en) | Belt pulley | |
JPS59190531A (en) | Engine mount with fluid inside | |
JPS6256643A (en) | Vibropreventive element with liquid encapsulated | |
JPH032749Y2 (en) | ||
JP3542063B2 (en) | Liquid ring mount | |
JP4039827B2 (en) | Liquid seal mount | |
JPS62220730A (en) | Vibration isolator encapsulating liquid | |
JPH01126451A (en) | Fluid sealed-in vibration isolator | |
JPS62215143A (en) | Liquid sealed type vibration isolating body | |
KR102105831B1 (en) | Active engine-mount | |
JPS62220731A (en) | Vibration isolator encapsulating liquid | |
JPS6034544A (en) | Fluid-filled mount | |
JPS6155429A (en) | Vibration isolating supporter | |
JP3567952B2 (en) | Liquid-filled mount |