JPS6222059B2 - - Google Patents
Info
- Publication number
- JPS6222059B2 JPS6222059B2 JP13680078A JP13680078A JPS6222059B2 JP S6222059 B2 JPS6222059 B2 JP S6222059B2 JP 13680078 A JP13680078 A JP 13680078A JP 13680078 A JP13680078 A JP 13680078A JP S6222059 B2 JPS6222059 B2 JP S6222059B2
- Authority
- JP
- Japan
- Prior art keywords
- absorption
- heat pump
- container
- temperature
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は吸収式ヒートポンプと圧縮式ヒートポ
ンプを組合せて使用し、排温水等の排熱を低熱源
として利用して高温を発生させる方法に関する。[Detailed Description of the Invention] [Objective of the Invention] (Field of Industrial Application) The present invention uses a combination of an absorption heat pump and a compression heat pump to generate high temperature by using waste heat such as waste hot water as a low heat source. Regarding how to generate.
(従来の技術)
温排水等の形で廃棄されている排熱を有効に利
用する方策として、ヒートポンプにより昇温する
方法があり、その用途分野が広がりつつある。こ
のヒートポンプ方法には、圧縮式ヒートポンプと
吸収式ヒートポンプの2種類がある。圧縮式は電
力等の価値の高い機械動力を必要とし、昇温巾が
大きくなると、排熱回収の意味からも、また発生
熱量単価の面からも、メリツトが少なくなる。一
方、温排水等の排熱は温度レベルが低いので、吸
収式ヒートポンプのみで100℃以上の所要の高温
を得ようとすれば、多段の吸収式ヒートポンプと
しなければならないので、装置全体が非常に大き
くなる等の欠点を有する。(Prior Art) As a method of effectively utilizing waste heat that is discarded in the form of heated waste water, etc., there is a method of raising the temperature using a heat pump, and its application fields are expanding. There are two types of heat pump methods: compression heat pumps and absorption heat pumps. The compression type requires high-value mechanical power such as electricity, and as the temperature rise range increases, the benefits decrease in terms of waste heat recovery and the unit cost of generated heat. On the other hand, waste heat such as heated waste water has a low temperature level, so if you want to obtain the required high temperature of 100℃ or more using only an absorption heat pump, you will need a multi-stage absorption heat pump, which makes the entire device extremely difficult. It has disadvantages such as being large.
また従来技術の前記欠点を少なくする目的をも
つて、圧縮式ヒートポンプと吸収式ヒートポンプ
を組合せて用いる方法もある。例えば、特開昭52
−69041号公報及び特開昭53−43266号公報所載の
組合せヒートポンプは、低温側を圧縮式とし高温
側を吸収式として組合せたものであるが、このよ
うな組合せ方式では、圧縮機を使用した第1次冷
凍サイクルは、第2次冷凍サイクルを構成する吸
収式冷凍機を作動させるために高温の発生熱源と
ならねばならず、したがつて第1次冷凍サイクル
の圧縮機による昇温巾を大きくする必要が生じ、
大きな圧縮機が必要となる。しかも高温側が吸収
式であると、腐蝕の問題や不凝縮性ガスの混入に
よる吸収式ヒートポンプの吸収器の能力低下等の
問題も引き起す。 There is also a method of using a combination of a compression heat pump and an absorption heat pump in order to reduce the above-mentioned drawbacks of the prior art. For example, JP-A-52
The combination heat pumps described in JP-A-69041 and JP-A-53-43266 have a compression type on the low-temperature side and an absorption type on the high-temperature side. The primary refrigeration cycle must become a high-temperature heat source in order to operate the absorption refrigerator that constitutes the secondary refrigeration cycle, and therefore the temperature increase by the compressor of the primary refrigeration cycle is limited. It became necessary to increase the
A large compressor is required. Moreover, if the high-temperature side is an absorption type, problems such as corrosion and a decrease in the capacity of the absorber of the absorption type heat pump due to the contamination of non-condensable gases will occur.
また、低温側に吸収式を高温側に圧縮式を用い
る組合せ方式としては、例えば、特公昭52−580
号公報所載の冷暖房方法がある。しかしながらこ
の公知方法は、変動する冷房負荷に対応させて冷
凍作用を発生させるために、吸収式冷凍機の発生
器に蒸気等からなる高温熱源を必要としているも
のであつて、排温水等のような低温の熱源ではそ
の冷房負荷の要求に応ずることが困難であるた
め、公知方法はこのような低熱源によつては能率
よく作動させることが到底困難である。 In addition, as a combination method using an absorption type on the low temperature side and a compression type on the high temperature side, for example,
There are heating and cooling methods listed in the issue. However, this known method requires a high-temperature heat source made of steam or the like in the generator of the absorption chiller in order to generate a refrigeration effect in response to the changing cooling load. Since it is difficult for a low temperature heat source to meet the cooling load requirements, it is extremely difficult for known methods to operate efficiently with such a low temperature heat source.
(発明が解決しようとする問題点)
前記のように従来技術においては、それぞれ問
題点がある。本発明は、低温側に吸収式ヒートポ
ンプを高温側に圧縮式ヒートポンプを用い、かつ
排温水等の比較的温度の低い熱源を有効に利用
し、所要の高温を得ることができる高温発生方法
に係るものであつて従来技術の前記種々の問題点
を除去することを目的とする。(Problems to be Solved by the Invention) As described above, each of the conventional techniques has its own problems. The present invention relates to a high temperature generation method that uses an absorption heat pump on the low temperature side and a compression heat pump on the high temperature side, and effectively utilizes a relatively low temperature heat source such as waste hot water to obtain a desired high temperature. The object of this invention is to eliminate the various problems mentioned above in the prior art.
(問題点を解決するための手段)
本発明の高温発生方法は前記の問題点を解決す
るために、
吸収式ヒートポンプの第2容器の発生部におい
て冷却水より温度の高い低熱源を利用して希溶液
の濃縮を行わせ、発生した蒸気冷媒を前記第2容
器の凝縮部において前記冷却水により冷却凝縮さ
せること、
この液冷媒を前記吸収式ヒートポンプの第1容
器の蒸発部に導入して前記低熱源により蒸発さ
せ、この冷媒蒸気を前記第1容器の吸収部におい
て前記発生部より導入される濃溶液により吸収
し、吸収の結果、希釈された希溶液は前記発生部
に導入すること、
前記発生部において得られる熱と前記吸収に際
して得られる吸収熱とにより得られる中温を熱源
として利用して圧縮式ヒートポンプの冷媒液を蒸
発させ、この冷媒蒸気を圧縮した後、凝縮器に導
いて凝縮液化させて高温を得ること、
により構成される。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the high temperature generation method of the present invention utilizes a low heat source with a temperature higher than the cooling water in the generation part of the second container of the absorption heat pump. Concentrating the dilute solution and cooling and condensing the generated vapor refrigerant with the cooling water in the condensing section of the second container; introducing the liquid refrigerant into the evaporating section of the first container of the absorption heat pump; evaporating with a low heat source, absorbing this refrigerant vapor in an absorption section of the first container by a concentrated solution introduced from the generation section, and introducing the diluted solution as a result of absorption into the generation section; The medium temperature obtained by the heat obtained in the generation part and the absorbed heat obtained during the absorption is used as a heat source to evaporate the refrigerant liquid of the compression type heat pump, and after compressing this refrigerant vapor, it is led to a condenser and condensed into liquid. and obtaining a high temperature.
(作用)
吸収式ヒートポンプの発生部において低熱源に
より希溶液の濃縮を行わせ、発生した蒸気冷媒
(例えば水蒸気)を凝縮部において冷却凝縮さ
せ、この液冷媒を蒸発部において低熱源により蒸
発させ、発生した蒸気冷媒を吸収部において濃縮
液に吸収させる。前記吸収部を蒸発器として用い
る圧縮式ヒートポンプを運転してその凝縮器にお
いて高圧高温冷媒の保有する熱を負荷流体に供給
し所要の高温を得る。(Function) Concentrating a dilute solution using a low heat source in the generation section of an absorption heat pump, cooling and condensing the generated vapor refrigerant (e.g. water vapor) in the condensing section, and evaporating this liquid refrigerant in the evaporation section using a low heat source. The generated vapor refrigerant is absorbed into a concentrated liquid in an absorption section. A compression heat pump using the absorption section as an evaporator is operated, and the heat held by the high-pressure, high-temperature refrigerant is supplied to the load fluid in the condenser to obtain a required high temperature.
(実施例) 本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described based on the drawings.
第2図は圧縮機の性能をスクリユー圧縮機を例
にとつて示したものである。図から分るように、
スクリユー圧縮機を用いるヒートポンプの成績係
数(=発生熱量/投入した機械的動力)は、昇温
巾に強く影響され、昇温巾が大きくなると、成績
係数は急激に低下する。 FIG. 2 shows the performance of a compressor using a screw compressor as an example. As you can see from the figure,
The coefficient of performance (=amount of heat generated/input mechanical power) of a heat pump using a screw compressor is strongly influenced by the temperature increase width, and as the temperature increase width increases, the coefficient of performance decreases rapidly.
また第3図は排熱源の利用温度と冷却水の温度
差が20℃の場合であつて、かつ臭化リチウム
(LiBr)水溶液を作業媒体として用いた場合の吸
収式ヒートポンプの昇温のために必要な段数の一
例を示したものである。図から分るように、70℃
程度の昇温をしたい場合は、最少限4段必要であ
る。 Figure 3 shows the temperature rise of an absorption heat pump when the difference between the exhaust heat source usage temperature and the cooling water temperature is 20°C, and a lithium bromide (LiBr) aqueous solution is used as the working medium. This shows an example of the required number of stages. As you can see from the figure, 70℃
If you want to raise the temperature to a certain extent, a minimum of four stages are required.
一方、吸収式ヒートポンプ一般では20℃程度の
昇温が可能であり、熱源の温度が例えば50℃程度
の温度であると、100℃〜120℃程度の高温を発生
させるヒートポンプの場合、その昇温巾が50℃〜
70℃となるから一段の吸収式ヒートポンプと圧縮
式ヒートポンプとを組合せることにより成績係数
にして1〜2の改善が可能となる。 On the other hand, general absorption heat pumps can raise the temperature by about 20℃, and if the temperature of the heat source is about 50℃, for example, in the case of a heat pump that generates a high temperature of about 100℃ to 120℃, the temperature increase will be Width: 50℃~
Since the temperature is 70°C, it is possible to improve the coefficient of performance by 1 to 2 by combining a single-stage absorption heat pump and a compression heat pump.
第1図はその具体的な系統図を示すものであつ
て、低温側を吸収式ヒートポンプとし、高温側を
圧縮式ヒートポンプとして組合せたものである。 FIG. 1 shows a specific system diagram, in which an absorption heat pump is used on the low temperature side and a compression heat pump is used on the high temperature side.
1は吸収式ヒートポンプの第1容器で蒸発部2
と吸収部3とからなる。4は吸収式ヒートポンプ
の第2容器で発生部5と凝縮部6とからなる。圧
縮式ヒートポンプは圧縮機7、凝縮器8、膨脹弁
9及び複数の蒸発管10からなる蒸発器11から
なる。12はクーリングタワー、13,14,1
5は循環ポンプである。 1 is the first container of the absorption heat pump and the evaporation part 2
and an absorbing section 3. A second container 4 of the absorption heat pump is composed of a generation section 5 and a condensation section 6. The compression heat pump consists of a compressor 7, a condenser 8, an expansion valve 9, and an evaporator 11 made up of a plurality of evaporation pipes 10. 12 is a cooling tower, 13, 14, 1
5 is a circulation pump.
吸収式ヒートポンプの第1容器1及び第2容器
4を連通する管系について説明すると、26は希
溶液管、27は濃溶液管、28は液冷媒の水が流
れる水管である。吸収式ヒートポンプへの熱源と
して温排水が第1容器1及び第2容器4に連通す
る管系については、20が温排水供給用の本管、
21,22が供給用の分岐管、23,24が流出
用の分岐管である。クーリングタワー12に連通
する冷却水の流路は、流出管30と流出管31と
からなつている。 To explain the pipe system that communicates the first container 1 and the second container 4 of the absorption heat pump, 26 is a dilute solution pipe, 27 is a concentrated solution pipe, and 28 is a water pipe through which liquid refrigerant water flows. Regarding the pipe system in which heated waste water is communicated with the first container 1 and the second container 4 as a heat source for the absorption heat pump, 20 is a main pipe for supplying heated waste water;
21 and 22 are branch pipes for supply, and 23 and 24 are branch pipes for outflow. The cooling water flow path communicating with the cooling tower 12 is composed of an outflow pipe 30 and an outflow pipe 31.
圧縮式ヒートポンプの冷媒流路は、低圧中温冷
媒蒸気の流入管32、高圧高温蒸気の吐出管3
3、高圧冷媒液の流出管34とからなつている。 The refrigerant flow path of the compression heat pump includes an inflow pipe 32 for low-pressure medium-temperature refrigerant vapor, and a discharge pipe 3 for high-pressure high-temperature vapor.
3. It consists of a high-pressure refrigerant liquid outflow pipe 34.
次にこの実施例のヒートポンプを利用して高温
を発生させる方法について説明する。 Next, a method of generating high temperature using the heat pump of this embodiment will be explained.
先ず低温側に用いられる吸収式ヒートポンプ系
統についての作動を説明するに、臭化リチウムと
水との希溶液が希溶液管26から第2容器4の発
生部5に導入され、一方、分岐管21を通つて発
生部5に導入される低熱源の温排水等により加熱
されて蒸発が行われ、蒸気冷媒を発生する。蒸発
の結果、濃縮された臭化リチウムの濃溶液は、循
環ポンプ13により濃溶液管27を通つて第1容
器1の吸収部3に導入される。 First, to explain the operation of the absorption heat pump system used on the low temperature side, a dilute solution of lithium bromide and water is introduced from the dilute solution pipe 26 into the generation section 5 of the second container 4, while the branch pipe 21 The refrigerant is heated and evaporated by a low heat source such as heated waste water introduced into the generating section 5 through the refrigerant, thereby generating a vapor refrigerant. As a result of the evaporation, the concentrated solution of lithium bromide is introduced by the circulation pump 13 through the concentrated solution tube 27 into the absorption section 3 of the first container 1 .
第2容器4の発生部5において発生した蒸気冷
媒は、同容器内の凝縮部6に流動し、ここにおい
てクーリングタワー12から循環ポンプ15によ
り流入管30を通つて導入される冷却水により冷
却されて凝縮する。凝縮水となつた液冷媒は、循
環ポンプ14により水管28を介して第1容器1
の蒸発部2に導入される。 The vapor refrigerant generated in the generation section 5 of the second container 4 flows into the condensation section 6 in the same container, where it is cooled by cooling water introduced from the cooling tower 12 through the inlet pipe 30 by the circulation pump 15. Condense. The liquid refrigerant that has become condensed water is transferred to the first container 1 via the water pipe 28 by the circulation pump 14.
is introduced into the evaporation section 2.
第1容器1の蒸発部2に導入された液冷媒は、
分岐管22を通つて導入される温排水により加熱
されて蒸発し、次いで蒸気冷媒は同容器内の吸収
部3に至り、該吸収部3に導入される臭化リチウ
ムの濃溶液と直接接触することにより該溶液に吸
収され、この際吸収熱を発生する。吸収の結果、
希薄となつた希溶液は希溶液管26を通つて再び
第2容器4の発生部5に導入される。 The liquid refrigerant introduced into the evaporation section 2 of the first container 1 is
The vaporized refrigerant is heated and evaporated by the heated wastewater introduced through the branch pipe 22, and then reaches the absorption section 3 in the same container, where it comes into direct contact with the concentrated solution of lithium bromide introduced into the absorption section 3. As a result, it is absorbed into the solution, generating heat of absorption. As a result of absorption,
The diluted solution is again introduced into the generating section 5 of the second container 4 through the dilute solution tube 26.
次に高温側に用いられる圧縮式ヒートポンプの
系統についての作動を説明するに、第1容器1の
吸収部3内にある「複数の蒸発管10」は圧縮式
ヒートポンプの蒸発器11を構成しており、第1
容器1内の蒸発部2において得られる熱と吸収部
3において得られる吸収熱とにより得られる中温
を蒸発管10において受けて加熱されて中温とな
つた圧縮式ヒートポンプの冷媒は、蒸発器11か
ら流入管32を経て圧縮機7に吸入され、圧縮さ
れた後、吐出管33から凝縮器8に導入され、循
環管16を流れる被加熱流体(負荷流体)に給熱
し、これを所要の高温度に加熱する。凝縮器8で
液化した高圧冷媒液は、流出管34から膨脹弁9
を経て再び吸収部3内の蒸発管10に至り蒸発す
る。 Next, to explain the operation of the compression heat pump system used on the high temperature side, "the plurality of evaporation tubes 10" in the absorption section 3 of the first container 1 constitute the evaporator 11 of the compression heat pump. 1st
The refrigerant of the compression heat pump, which has been heated to a medium temperature by receiving the medium temperature obtained by the heat obtained in the evaporation section 2 and the absorbed heat obtained in the absorption section 3 in the evaporation tube 10 in the container 1, is transferred from the evaporator 11. After being sucked into the compressor 7 through the inflow pipe 32 and compressed, it is introduced into the condenser 8 through the discharge pipe 33, and heat is supplied to the fluid to be heated (load fluid) flowing through the circulation pipe 16, and the fluid is heated to a required high temperature. Heat to. The high-pressure refrigerant liquid liquefied in the condenser 8 is passed from the outflow pipe 34 to the expansion valve 9.
After that, it reaches the evaporation tube 10 in the absorption section 3 again and evaporates.
なお、希溶液の顕熱を有効に利用するために希
溶液と濃溶液との間で熱交換が行われるように、
希溶液管26と濃溶液管27との間に熱交換器を
設置することができる。 In addition, in order to effectively utilize the sensible heat of the dilute solution, heat exchange is performed between the dilute solution and the concentrated solution.
A heat exchanger can be installed between the dilute solution tube 26 and the concentrated solution tube 27.
前記の高温発生方法によると、圧縮機の吸込み
側に至る冷媒蒸気を外部の温排水の温度よりも高
い中温まで上昇させることができる。すなわち、
第1容器1の蒸発部2において外部からの低熱源
の温排水からの熱を受けて加熱蒸発された吸収式
ヒートポンプの蒸気冷媒(水蒸気)が、同容器の
吸収部3に至り、濃溶液によつて吸収されること
に伴う発熱現象により更に加熱されるので、これ
と熱交換をする圧縮式ヒートポンプの蒸発管10
を流れる冷媒液は、温排水の温度よりも高い中温
にまで加熱されることとなる。 According to the above-described high temperature generation method, the refrigerant vapor reaching the suction side of the compressor can be raised to a medium temperature higher than the temperature of the external heated waste water. That is,
The vapor refrigerant (water vapor) of the absorption heat pump, which is heated and evaporated in the evaporation section 2 of the first container 1 by receiving heat from the heated waste water of a low heat source from the outside, reaches the absorption section 3 of the same container and becomes a concentrated solution. The evaporation tube 10 of the compression heat pump exchanges heat with the heat exchanger, which is further heated due to the exothermic phenomenon caused by the absorption.
The refrigerant liquid flowing through the tank will be heated to a medium temperature higher than the temperature of the heated waste water.
一例をあげれば、外部の低熱源である温排水の
温度が70℃であるとすると、圧縮式ヒートポンプ
の蒸発管10において蒸発した冷媒蒸気は圧縮機
7に吸入されるに際し88℃の中間温度とすること
ができ、したがつて凝縮器8において負荷流体の
温度を110℃にまで上昇させることができる。 For example, if the temperature of heated waste water, which is an external low heat source, is 70°C, the refrigerant vapor evaporated in the evaporation tube 10 of the compression heat pump will have an intermediate temperature of 88°C when it is sucked into the compressor 7. Therefore, the temperature of the load fluid in the condenser 8 can be increased to 110°C.
なお、吸収式ヒートポンプの蒸発部2と発生部
5とを前記のように同一の低熱源によつて加熱す
ることなく、必要に応じ別異の低熱源によつて加
熱することも勿論可能である。 Note that it is of course possible to heat the evaporation part 2 and the generation part 5 of the absorption heat pump by different low heat sources as necessary, instead of heating them by the same low heat source as described above. .
本発明は、圧縮機に吸入される冷媒蒸気が、吸
収式ヒートポンプの第1容器1の蒸発部において
低熱源である温排水によつて加熱蒸発された蒸気
の熱と同容器の吸収部において吸収に伴う発熱と
によつて加熱されるため、該冷媒蒸気の温度を低
熱源の温排水よりも高い中間温度にまで上昇させ
ることができる。このため圧縮式ヒートポンプの
凝縮器を流れる負荷流体の所要の高温度との間の
温度差が小さくてすむことになり、換言すれば圧
縮式ヒートポンプの圧縮機において昇温巾を小さ
くすることができることになり、該ヒートポンプ
の成績係数を改善することができる。
In the present invention, the refrigerant vapor sucked into the compressor is heated and evaporated in the evaporation section of the first container 1 of the absorption heat pump by heated waste water, which is a low heat source, and the heat of the vapor is absorbed in the absorption section of the same container. The temperature of the refrigerant vapor can be raised to an intermediate temperature higher than that of the heated waste water of a low heat source. Therefore, the temperature difference between the required high temperature of the load fluid flowing through the condenser of the compression heat pump can be small, and in other words, the temperature rise range in the compressor of the compression heat pump can be reduced. This makes it possible to improve the coefficient of performance of the heat pump.
そして、吸収式ヒートポンプは、圧縮式ヒート
ポンプの冷媒の蒸発器に対して給熱して圧縮機に
吸入される冷媒蒸気の温度を専ら上昇させる機能
を果すものであつて、吸収式ヒートポンプ自体で
冷房を行うというような機能までを果すことがな
いものであるため、比較的温度の低い温排水等の
低熱源によつても十分にその機能を果すことがで
きるものである。したがつて、本発明は、従来技
術のように蒸気等の高温熱源を必要とせず、容易
に入手できる低熱源を有効に利用して、実用的で
効率のよいヒートポンプの運転を行わせ高温を発
生させることができる特徴を有する。 Absorption heat pumps have the function of supplying heat to the refrigerant evaporator of a compression heat pump to raise the temperature of the refrigerant vapor sucked into the compressor, and the absorption heat pump itself performs cooling. Since it does not perform any functions such as heating, it can sufficiently perform its functions even with a low heat source such as relatively low-temperature heated waste water. Therefore, unlike the prior art, the present invention does not require a high-temperature heat source such as steam, but effectively utilizes an easily available low-temperature heat source to operate a heat pump in a practical and efficient manner. It has the characteristic that it can be generated.
第1図は本発明の方法を実施するための一つの
装置のフローシートダイヤグラム、第2図はスク
リユー圧縮機を用いる圧縮式ヒートポンプの性能
曲線図、第3図は臭化リチウム水溶液を用いる吸
収式ヒートポンプの理論段数特性図である。
1……第1容器、2……蒸発部、3……吸収
部、4……第2容器、5……発生部、6……凝縮
部、7……圧縮機、8……凝縮器。11……蒸発
器。
Figure 1 is a flow sheet diagram of one device for carrying out the method of the present invention, Figure 2 is a performance curve diagram of a compression type heat pump using a screw compressor, and Figure 3 is an absorption type heat pump using a lithium bromide aqueous solution. It is a theoretical plate number characteristic diagram of a heat pump. 1... First container, 2... Evaporation section, 3... Absorption section, 4... Second container, 5... Generation section, 6... Condensation section, 7... Compressor, 8... Condenser. 11...Evaporator.
Claims (1)
いて冷却水より温度の高い低熱源を利用して希溶
液の濃縮を行わせ、発生した蒸気冷媒を前記第2
容器の凝縮部において前記冷却水により冷却凝縮
させ、この液冷媒を前記吸収式ヒートポンプの第
1容器の蒸発部に導入して前記低熱源により蒸発
させ、この蒸気冷媒を前記第1容器の吸収部にお
いて前記発生部より導入される濃溶液により吸収
し、吸収の結果、希釈された希溶液は前記発生部
に導入し、前記蒸発部において得られる熱と前記
吸収に際して得られる吸収熱とにより得られる中
温を熱源として利用して圧縮式ヒートポンプの冷
媒液を蒸発させ、この冷媒蒸気を圧縮した後、凝
縮器に導いて凝縮液化させることによつて所要の
高温を得ることを特徴とするヒートポンプを利用
する高温発生方法。1 Concentrate the dilute solution using a low heat source with a temperature higher than that of the cooling water in the generation section of the second container of the absorption heat pump, and transfer the generated vapor refrigerant to the second container.
The liquid refrigerant is cooled and condensed by the cooling water in the condensing part of the container, and this liquid refrigerant is introduced into the evaporation part of the first container of the absorption heat pump and evaporated by the low heat source, and this vapor refrigerant is transferred to the absorption part of the first container. As a result of the absorption, the diluted solution is introduced into the generation section, and the heat obtained in the evaporation section and the absorption heat obtained during the absorption are used to absorb the concentrated solution introduced from the generation section. Utilizes a heat pump that uses medium temperature as a heat source to evaporate the refrigerant liquid of the compression type heat pump, compresses this refrigerant vapor, and then leads it to a condenser where it is condensed and liquefied to obtain the required high temperature. High temperature generation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13680078A JPS5563364A (en) | 1978-11-08 | 1978-11-08 | High temperature heat pump system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13680078A JPS5563364A (en) | 1978-11-08 | 1978-11-08 | High temperature heat pump system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5563364A JPS5563364A (en) | 1980-05-13 |
JPS6222059B2 true JPS6222059B2 (en) | 1987-05-15 |
Family
ID=15183805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13680078A Granted JPS5563364A (en) | 1978-11-08 | 1978-11-08 | High temperature heat pump system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5563364A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63245369A (en) * | 1987-03-27 | 1988-10-12 | Shintou Bureetaa Kk | Polishing method and device thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE109880T1 (en) * | 1981-03-24 | 1994-08-15 | Alefeld Georg | MULTISTAGE DEVICE WITH WORKING FLUID AND ABSORBENT CIRCUITS, AND METHODS OF OPERATION OF SUCH DEVICE. |
JPS5811362A (en) * | 1981-07-14 | 1983-01-22 | 三菱電機株式会社 | Absorption type heat pump for rankine cycle |
JPS5888576A (en) * | 1981-11-24 | 1983-05-26 | 松下電器産業株式会社 | Air conditioner |
JPS58104474A (en) * | 1981-12-15 | 1983-06-21 | 松下電器産業株式会社 | Air conditioner |
-
1978
- 1978-11-08 JP JP13680078A patent/JPS5563364A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63245369A (en) * | 1987-03-27 | 1988-10-12 | Shintou Bureetaa Kk | Polishing method and device thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS5563364A (en) | 1980-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180172320A1 (en) | Multi-stage plate-type evaporation absorption cooling device and method | |
CN101968288B (en) | Absorption-compression composite refrigeration cycle system | |
CN103090593B (en) | Heat pump circulating system and heat pump cycle method and vapo(u)rization system | |
CN101329118A (en) | A compact absorption heat pump device capable of significantly increasing the waste heat temperature | |
CN101261054A (en) | A large temperature rise absorption heat pump unit | |
CN108444146A (en) | A kind of marine air-conditioning system and refrigerating method based on lithium bromide-water | |
CN2913969Y (en) | Compression type and absorption type associated refrigerating plant | |
CN100570241C (en) | Double-effect lithium bromide absorption refrigeration device for waste heat utilization of flue gas | |
CN110793230A (en) | Large-temperature span high-temperature heat pump system | |
JPS6222059B2 (en) | ||
CN113418320B (en) | Device for increasing temperature of low-temperature heat source and method of use thereof | |
CN101344342A (en) | Membrane Distillation Heat Recovery Absorption Refrigeration Plant | |
CN214501779U (en) | Double-effect lithium bromide absorption type water chilling unit with two-stage refrigeration | |
CN112747494B (en) | Two-stage and double-effect composite lithium bromide absorption type water chilling unit | |
CN110736301B (en) | High-pressure gas hot and cold water unit | |
CN115111802A (en) | Coupling compression and absorption type high-temperature heat pump system and method thereof | |
CN208090780U (en) | A kind of lithium bromide absorption type heat pump gain of heat type unit | |
JP3290464B2 (en) | Combined refrigeration equipment | |
CN112717448A (en) | Low boiling point working medium compression secondary steam device | |
CN207299605U (en) | A kind of heated type refrigerating circulatory device | |
CN101187510A (en) | Three-effect absorption refrigeration system | |
RU2784256C1 (en) | Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors | |
CN113587491B (en) | Two-stage generation absorption type heat pump air conditioner | |
CN219656366U (en) | Low-temperature heat source refrigerating system | |
CN112747496B (en) | Double-effect lithium bromide absorption type water chilling unit with two-stage refrigeration |