[go: up one dir, main page]

JPS62217668A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62217668A
JPS62217668A JP6122586A JP6122586A JPS62217668A JP S62217668 A JPS62217668 A JP S62217668A JP 6122586 A JP6122586 A JP 6122586A JP 6122586 A JP6122586 A JP 6122586A JP S62217668 A JPS62217668 A JP S62217668A
Authority
JP
Japan
Prior art keywords
silicide
layer
insulating film
source
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6122586A
Other languages
Japanese (ja)
Inventor
Toshio Taniguchi
谷口 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6122586A priority Critical patent/JPS62217668A/en
Publication of JPS62217668A publication Critical patent/JPS62217668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔匝 要〕 本発明は、MIS型半導体装置に2けるソース・ドレイ
ン領域抵抗低減とゲート電極配線抵抗低減とをそれぞれ
十分に行うため、シリサイド層形成とトンネル絶縁膜を
介して金属層t−積層する構造を併用した半導体装置構
造を提供するものである。
[Detailed Description of the Invention] [Summary] In order to sufficiently reduce the source/drain region resistance and the gate electrode wiring resistance in MIS type semiconductor devices, the present invention includes the formation of a silicide layer and a tunnel insulating film. The present invention provides a semiconductor device structure that also uses a structure in which metal layers are laminated via a metal layer T-layer.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特にMlB型半導体装置に関する
The present invention relates to a semiconductor device, and particularly to an MIB type semiconductor device.

MIS型半導体装置では、高集積化に伴い配線寄生抵抗
による信号伝播遅延が顕著になってきておシ、特ゲート
電極配線とソース・ドレイン領域の層抵抗を低減するこ
とは重要な課題である。
In MIS type semiconductor devices, signal propagation delays due to wiring parasitic resistance are becoming more prominent as the integration becomes higher, and reducing the layer resistance, especially in gate electrode wiring and source/drain regions, is an important issue.

〔従来の技術〕[Conventional technology]

上記課題達成のために従来提案されている方法の1つに
シリサイド技術がある。これはノース・ドレイン領域と
ゲートポリシリコン層表面を露出させた状態でシリサイ
ドを形成可能なMo、W、Tiのような高融点金属を被
層し、固相反応で露出シリコン表面部のみシリサイドを
形成し、残余金属は除去して、必要箇所のみ低抵抗化用
シリサイドr形成する技術である。
One of the methods conventionally proposed to achieve the above-mentioned problem is silicide technology. In this method, a high-melting point metal such as Mo, W, or Ti that can form silicide is coated with the north drain region and gate polysilicon layer surface exposed, and silicide is formed only on the exposed silicon surface through a solid phase reaction. This is a technique in which the remaining metal is removed, and silicide R for lowering resistance is formed only in necessary locations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のシリサイド技術では、ソース・ドレイン領域及び
ゲートポリシリコン表面に同等厚みのシリサイドが形成
される。
In conventional silicide technology, silicide of equal thickness is formed on the source/drain regions and the gate polysilicon surface.

シリサイド形成には下地シリコンの反応が寄与するので
、シリサイド層はシリコン内へもぐり込む形で形成され
る。一方、ソース・ドレイン領域は高密度化のため渋く
なるばかシであり、例えば800nm前後の接合深さし
かない。この浅い接合にまでシリサイド化が進むと接合
全短絡破壊する可能性がある。他方、ゲートポリシリコ
ン層に関してはこれは長尺のワード線として使用された
りするので、抵抗低ビスの要求は一層強く、ソース・ド
レイン接合に影響がない程鹿の薄いシリサイド層を同様
に形成した程此では要求金満足し得ない◇本発明は以上
の点に艦み、ソース・ドレイン領域とゲート電極配線と
をそれぞれ十分に低抵抗化できる構造を提供することを
目的とする。
Since the reaction of the underlying silicon contributes to the formation of silicide, the silicide layer is formed by penetrating into the silicon. On the other hand, the source/drain regions become difficult to achieve due to high density, and have a junction depth of only about 800 nm, for example. If silicide progresses to this shallow junction, there is a possibility that the junction will be completely short-circuited and destroyed. On the other hand, since the gate polysilicon layer is used as a long word line, the requirement for low resistance is even stronger, so a silicide layer that is thin enough not to affect the source/drain junction is similarly formed. In view of the above points, the present invention aims to provide a structure in which the resistances of the source/drain regions and the gate electrode wiring can be sufficiently reduced.

〔問題点に%決するための手段〕[Means to resolve issues]

本発明では、ノース・ドレイン領域表面にはクリサイド
層金形成すると共に、ゲート電極配線では同様に形成し
たシリサイド上に更にトンネル絶縁膜を介して金属層を
積層する。
In the present invention, a metal silicide layer is formed on the surface of the north drain region, and a metal layer is further laminated on the silicide formed in the same manner for the gate electrode wiring via a tunnel insulating film.

〔作 用〕[For production]

上記構成によυ、グー)III極配綜での抵抗は金属層
によってソース・ドレイン領域よりも低減されるので、
両者共必要十分なまでに低抵抗化できる。
With the above configuration, the resistance in the υ, gu) III pole arrangement is lower than that in the source/drain region by the metal layer, so
Both can be made as low as necessary and sufficient.

〔実施例〕〔Example〕

ag1図は本発明実施例の構造断面図でおり、同図中1
はシリコン基板、2はソース・ドレインn十領域、8は
ノース・ドレイン低濃度領域、3はシリサイド層、4は
ゲート絶縁膜、5はポリシリコン、6はトンネル絶縁膜
、7は金属層、8,9は絶縁膜、10はAI電極である
Figure ag1 is a cross-sectional view of the structure of the embodiment of the present invention.
2 is a silicon substrate, 2 is a source/drain region, 8 is a north/drain low concentration region, 3 is a silicide layer, 4 is a gate insulating film, 5 is polysilicon, 6 is a tunnel insulating film, 7 is a metal layer, 8 , 9 is an insulating film, and 10 is an AI electrode.

第2図(a)〜@)は本発明実施例の製造工程を示す図
で、第1図と同番号は同一部分を示す。
FIGS. 2(a) to 2) are diagrams showing the manufacturing process of an embodiment of the present invention, and the same numbers as in FIG. 1 indicate the same parts.

次に、製造工程に沿って本発明実施例ケ説明する。Next, embodiments of the present invention will be explained along the manufacturing process.

先ず、基板1上にフィールド絶縁膜(図示せず)やゲー
ト絶縁膜4t−形成した後に、ゲート電極配線の一部を
なすポリシリコン層パターン5(厚さ20Onm位)t
−形成し、低濃度ソース・ドレインn型層8をポリシリ
コンロ?マスクとするAsイオン注入で形成する。その
後、全面にPIJm 8 ve200■m位の厚みにC
VD法で成長させる(第2図(a))。
First, after forming a field insulating film (not shown) and a gate insulating film 4t on a substrate 1, a polysilicon layer pattern 5 (about 20 nm thick) forming a part of the gate electrode wiring is formed.
- Form a low concentration source/drain n-type layer 8 of polysilicon? It is formed by As ion implantation using a mask. After that, apply C to a thickness of about PIJm 8 ve200mm on the entire surface.
It is grown by the VD method (Fig. 2(a)).

次に、絶縁膜glnIE法で全面エッチして、ポリシリ
コン側壁部にのみ、所謂サイドウオールの形に残す。こ
こで高濃度ソース・ドレイン領域2形成のイオン注入を
行う。その後に亮融点金属11、例えばTaを厚さ10
〜2Qnm  に全面被着する(第2図の))。
Next, the entire surface of the insulating film is etched using the glnIE method, leaving only the polysilicon sidewall portion in the form of a so-called sidewall. Here, ion implantation is performed to form high concentration source/drain regions 2. After that, a high melting point metal 11, for example Ta, is applied to a thickness of 10
~2Qnm (Fig. 2)).

次に、酸化雰囲気中で基板を加熱し、固相反応によるシ
リサイド作成と共に、厚さ2〜3nraのTad化物r
lA6に形成する。シリサイド化のための熱処理は、非
酸化雰囲気で別途行ってもよい。
Next, the substrate is heated in an oxidizing atmosphere to create silicide by solid-phase reaction, and a Tad compound r with a thickness of 2 to 3 nra is formed.
Formed in lA6. The heat treatment for silicidation may be performed separately in a non-oxidizing atmosphere.

かくして第2図(C)のように、シリサイド8とTa酸
化物から成るトンネル絶縁膜6が形成される。
Thus, as shown in FIG. 2(C), a tunnel insulating film 6 made of silicide 8 and Ta oxide is formed.

シリコンの露出部以外には、未反応のTa1lが残る0 次いで、高融点金属(Mo、W  など)?約200n
mの厚みに堆積し、ゲート電極のパターンにバターニン
グする。更に、露出したTa酸化物膜6とTaglJl
lt−エツチング除去して第2図(d)の構造會得る。
Unreacted Ta1l remains in areas other than the exposed silicon parts.Next, high melting point metal (Mo, W, etc.)? Approximately 200n
It is deposited to a thickness of m and patterned into a gate electrode pattern. Furthermore, the exposed Ta oxide film 6 and TaglJl
After removal by lt-etching, the structure shown in FIG. 2(d) is obtained.

この後は層間絶縁膜9を被着し、コンタクトホール形成
後、人1電極配線10を形成すると第1図の構造となる
After this, an interlayer insulating film 9 is deposited, contact holes are formed, and electrode wiring 10 is formed, resulting in the structure shown in FIG.

第1図の完成構造において、金属層7と下層シリサイド
8陸ポリシリコン層5との間にはトンネル絶縁86が介
在するが、トンネルを流によって両者は導通状態であシ
、一体的な導電層として機能する。その実効的な導1!
率は金R層7により与えられるので、ポリシリコンより
高いことは勿論全体をシリサイド層で構成するよシも更
に1〜2桁導電性r高めることができる。
In the completed structure shown in FIG. 1, a tunnel insulator 86 is interposed between the metal layer 7 and the lower silicide layer 8 and the polysilicon layer 5, but the two are in a conductive state due to the flow through the tunnel, and an integral conductive layer is formed. functions as Effective guidance 1!
Since the conductivity r is given by the gold R layer 7, it is not only higher than that of polysilicon, but also can be increased by one to two orders of magnitude even when the entire structure is made of a silicide layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、接合破壊の危険のあるソース・ドレイ
ン領域での薄いシリサイド層形成による低抵抗化に加え
て、ゲート電極配線部ては金8積層によシ更に低抵抗化
全図ることができ、高集積密度ICVCspける動作速
度向上の効果が著しい。
According to the present invention, in addition to lowering the resistance by forming a thin silicide layer in the source/drain regions where there is a risk of junction breakdown, it is possible to further reduce the resistance in the gate electrode wiring part by laminating gold 8. The effect of improving operating speed with high integration density ICVC is remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構造断面図、第2図は本発明実
施例の!!!造工程説明図である。 2 ・・・・ソース・ドレイン領域 8・・・・シリサイド 5 ・・・・ポリシリコン ロ ・・・・トンネル絶縁膜 7 ・・・・金属膜 杢秀gB月実′方七例の構造JIT市うQ口第1図
FIG. 1 is a structural sectional view of an embodiment of the present invention, and FIG. 2 is a structural cross-sectional view of an embodiment of the present invention! ! ! FIG. 2...Source/drain region 8...Silicide 5...Polysilicon...Tunnel insulating film 7...Metal film JIT city UQ mouth diagram 1

Claims (1)

【特許請求の範囲】[Claims] ソース・ドレイン領域(2)表面にはシリサイド層(3
)が形成され、ゲート電極配線はポリシリコン層(5)
とその上のシリサイド層(3)と、該シリサイド層上に
トンネル絶縁膜(6)を介して積層された金属層(7)
の積層体で構成されたことを特徴とする半導体装置。
The silicide layer (3) is on the surface of the source/drain region (2).
) is formed, and the gate electrode wiring is a polysilicon layer (5).
a silicide layer (3) thereon, and a metal layer (7) laminated on the silicide layer via a tunnel insulating film (6).
1. A semiconductor device comprising a laminate of.
JP6122586A 1986-03-19 1986-03-19 Semiconductor device Pending JPS62217668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122586A JPS62217668A (en) 1986-03-19 1986-03-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122586A JPS62217668A (en) 1986-03-19 1986-03-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62217668A true JPS62217668A (en) 1987-09-25

Family

ID=13165052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122586A Pending JPS62217668A (en) 1986-03-19 1986-03-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62217668A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251079A (en) * 2006-03-20 2007-09-27 Renesas Technology Corp Semiconductor device and manufacturing method thereof
JP2011176348A (en) * 2011-04-25 2011-09-08 Renesas Electronics Corp Semiconductor device
JP2013038341A (en) * 2011-08-10 2013-02-21 Toshiba Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251079A (en) * 2006-03-20 2007-09-27 Renesas Technology Corp Semiconductor device and manufacturing method thereof
JP2011176348A (en) * 2011-04-25 2011-09-08 Renesas Electronics Corp Semiconductor device
JP2013038341A (en) * 2011-08-10 2013-02-21 Toshiba Corp Semiconductor device
US8922017B2 (en) 2011-08-10 2014-12-30 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
JPS62217668A (en) Semiconductor device
JP2901788B2 (en) Silicon carbide semiconductor device
JPH02312A (en) Manufacture of semiconductor device
JP2672596B2 (en) Method for manufacturing semiconductor device
JPS613461A (en) Manufacturing method of semiconductor device
JPS6161463A (en) Semiconductor integrated circuit device and its manufacturing method
JPH0560669B2 (en)
JPS62298174A (en) Manufacture of semiconductor integrated circuit device
JPS5823745B2 (en) MOS
JPS60177652A (en) Manufacturing method of semiconductor device
JPS61256719A (en) Manufacture of semiconductor device
JPS5892265A (en) Manufacturing method of semiconductor device
JPS62156874A (en) MOS transistor and its manufacturing method
JPS60214569A (en) Mos type semiconductor device
JPS61212041A (en) Formation of metal silicide electrode and wiring
JPH02283034A (en) Semiconductor device
JPS61148878A (en) Manufacture of electronic device
JPS61220468A (en) semiconductor equipment
JPS63215076A (en) Semiconductor integrated circuit device
JPH01287964A (en) Manufacturing method of semiconductor device
JPS6376424A (en) Manufacturing method of semiconductor device
JPH0231495B2 (en)
JPS61251070A (en) Manufacture of semiconductor device
JPS59210670A (en) Manufacturing method of semiconductor device
JPS6059778A (en) Manufacturing method of semiconductor device