JPH02283034A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH02283034A JPH02283034A JP10346589A JP10346589A JPH02283034A JP H02283034 A JPH02283034 A JP H02283034A JP 10346589 A JP10346589 A JP 10346589A JP 10346589 A JP10346589 A JP 10346589A JP H02283034 A JPH02283034 A JP H02283034A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- insulating film
- source
- silicide layer
- interlayer insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 27
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000010410 layer Substances 0.000 claims abstract description 22
- 239000011229 interlayer Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000003870 refractory metal Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 abstract description 9
- 238000002844 melting Methods 0.000 abstract description 7
- 230000008018 melting Effects 0.000 abstract description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229920005591 polysilicon Polymers 0.000 abstract 1
- 239000010408 film Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、半導体装置、詳しくは同装置のMOSトラン
ジスタ配線に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and more particularly to a MOS transistor wiring of the device.
(従来の技術)
従来のこの種の半導体装置について、第3図および第4
図により説明する。(Prior art) Regarding a conventional semiconductor device of this type, FIGS.
This will be explained using figures.
半導体基板31表面に、フィールド絶縁膜32が形成さ
れる。フィールド絶縁膜32は、選択酸化による熱酸化
膜で形成され〔第3図(a)〕、活性領域33にMOS
トランジスタが形成される。MOSトランジスタは、活
性領域33にゲート酸化膜34が形成され、多結晶シリ
コン膜が形成され、ゲート電極35が形成され、サイド
ウオールスペーサ36が形成され〔第3図(b)〕、ゲ
ート電極35をマスクとし、ソース、ドレイン領域37
が形成される〔第3図(c)〕。また、MOSトランジ
スタのゲート、ソース。A field insulating film 32 is formed on the surface of the semiconductor substrate 31 . The field insulating film 32 is formed of a thermal oxide film by selective oxidation [FIG. 3(a)], and the active region 33 has a MOS
A transistor is formed. In the MOS transistor, a gate oxide film 34 is formed in an active region 33, a polycrystalline silicon film is formed, a gate electrode 35 is formed, a sidewall spacer 36 is formed [FIG. 3(b)], and a gate electrode 35 is formed. with the source and drain regions 37 as a mask.
is formed [Fig. 3(c)]. Also, the gate and source of a MOS transistor.
ドレイン表面には、自己整合的にシリサイド層が形成さ
れる。第4図に示すように、自己整合的に形成されるシ
リサイド層39は、MOSトランジスタの上部に金属薄
膜38を形成し〔第4図(a)〕、熱処理を行い、金属
薄膜とシリコンが接触する部分にシリサイド層を形成し
〔第4図(b)〕、フィールド絶縁VX32とサイドウ
オールスペーサ36上部の未反応の金属薄膜を除去する
ことにより形成される〔第4図(C)〕。MOSトラン
ジスタのゲート、ソース、ドレインを自己整合的にシリ
サイド化することにより、それぞれが低抵抗化され、半
導体回路素子が高速化される。A silicide layer is formed on the drain surface in a self-aligned manner. As shown in FIG. 4, the silicide layer 39 is formed in a self-aligned manner by forming a metal thin film 38 on top of the MOS transistor [FIG. 4(a)], and performing heat treatment to bring the metal thin film and silicon into contact. This is done by forming a silicide layer on the exposed portion [FIG. 4(b)], and removing the unreacted metal thin film on the field insulating VX 32 and the sidewall spacer 36 [FIG. 4(C)]. By siliciding the gate, source, and drain of a MOS transistor in a self-aligned manner, the resistance of each of them is reduced, and the speed of the semiconductor circuit element is increased.
(発明が解決しようとする課題)
前記の構造において、素子の′I!1細化に伴い、ソー
ス、ドレイン拡散層が浅くなった場合、自己整合的に形
成されたシリサイド層の厚みは、ソース。(Problem to be Solved by the Invention) In the above structure, the 'I!' of the element. When the source and drain diffusion layers become shallower due to miniaturization, the thickness of the silicide layer formed in a self-aligned manner is the same as that of the source.
ドレイン拡散層の深さに応じ薄くする必要がある。It is necessary to make it thinner depending on the depth of the drain diffusion layer.
自己整合的に形成されるシリサイド層は、ゲート上部、
ソース上部、ドレイン上部とも同時に形成されるため、
その厚みはすべて同程度のものとなる。従って、素子の
微細化に伴い、ソース、ドレイン拡散層が浅くなった場
合、ゲート上部のシリサイド層も薄くなり、ゲートに関
してシリサイド化による低抵抗化の効果が十分に期待で
きない抵抗値に上がってしまい、半導体回路素子の高速
化が望めない。本発明は、素子の微細化に伴い、ゲート
、ソース、ドレインを自己整合的にシリサイド化された
MOSトランジスタのゲートの抵抗をさらに低抵抗化す
ることを目的とする。The silicide layer formed in a self-aligned manner forms the upper part of the gate,
Since the upper part of the source and the upper part of the drain are formed at the same time,
All the thicknesses are about the same. Therefore, when the source and drain diffusion layers become shallower due to miniaturization of devices, the silicide layer above the gate also becomes thinner, and the resistance value of the gate increases to such a level that the effect of lowering resistance due to silicide cannot be fully expected. , speeding up of semiconductor circuit elements cannot be expected. An object of the present invention is to further reduce the resistance of the gate of a MOS transistor in which the gate, source, and drain are silicided in a self-aligned manner as elements become smaller.
(課題を解決するための手段)
上記課題を解決するために1本発明は、半導体基板表面
に作り込まれた半導体回路中に、ゲート。(Means for Solving the Problems) In order to solve the above problems, one aspect of the present invention is to provide a gate in a semiconductor circuit formed on the surface of a semiconductor substrate.
ソース、ドレインを自己整合的にシリサイド化されたM
OSトランジスタを従来の技術により形成し、ソース、
ドレインの低抵抗化を図り、さらに。The source and drain are self-aligned silicided M
An OS transistor is formed using conventional technology, and the source,
In addition, we have lowered the resistance of the drain.
層間絶縁膜で被い、平坦化を行い、ゲート上部のみを層
間絶a膜から露出させ、その上部に高融点金属シリサイ
ドを堆積したMOSトランジスタゲート構造をもつ半導
体装置である。This is a semiconductor device having a MOS transistor gate structure covered with an interlayer insulating film, planarized, only the upper part of the gate is exposed from the interlayer insulating film, and high melting point metal silicide is deposited on the upper part of the gate.
(作 用)
上記の構造によって、ソース、ドレインの拡散層の深さ
により律速される。ゲート上部のシリサイド層のさらに
上部に層間絶縁膜堆積後、平坦化を行い、グー1〜上部
のシリサイド層のみを層間絶縁膜から露出させ、高融点
全屈シリサイド層を形成することにより、ゲート配線抵
抗をさらに低くすることができ、半導体回路素子の高速
化が図られる。(Function) With the above structure, the rate is determined by the depth of the source and drain diffusion layers. After depositing an interlayer insulating film on top of the silicide layer on the top of the gate, planarization is performed to expose only the silicide layer from the top 1 to the upper silicide layer from the interlayer insulating film to form a high-melting point total bending silicide layer, thereby forming a gate wiring. The resistance can be further lowered, and the speed of the semiconductor circuit element can be increased.
(実施例)
以下、本発明の一実施例について図面を参照しながら説
明する。第1図および第2図(a)、 (b)は。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Figures 1 and 2 (a) and (b) are.
それぞれMOSトランジスタの断面図および平面図とそ
の側断面図である。図中、1は例えばP型シリコン基板
、2はフィールド絶縁膜、3は平坦化された層間絶縁膜
、4はサイドウオールスペーサ、5は多結晶シリコンゲ
ート、6は自己整合的に形成された多結晶シリコンゲー
ト上部のシリサイド層、7はゲート酸化膜、8は高融点
金属シリサイドゲート、9は自己整合的にシリサイド化
されたソース、ドレイン領域である。1A and 1B are a cross-sectional view, a plan view, and a side cross-sectional view of a MOS transistor, respectively. In the figure, 1 is, for example, a P-type silicon substrate, 2 is a field insulating film, 3 is a planarized interlayer insulating film, 4 is a sidewall spacer, 5 is a polycrystalline silicon gate, and 6 is a polycrystalline silicon gate formed in a self-aligned manner. A silicide layer above the crystalline silicon gate, 7 a gate oxide film, 8 a refractory metal silicide gate, and 9 source and drain regions silicided in a self-aligned manner.
本発明は、P型シリコン基板にかかわらず、N型シリコ
ン基板にも運用でき、また、CMOSトランジスタ回路
にも運用できる。The present invention can be applied not only to P-type silicon substrates but also to N-type silicon substrates, and also to CMOS transistor circuits.
(発明の効果)
以上説明してきたように1本発明にかかる半導体装置は
、自己整合的にその上部にシリサイド層を形成した多結
晶シリコンゲートのさらにその上に高融点金属シリサイ
ドを堆積することにより、ゲート電極配線の抵抗を下げ
、半導体回路素子の高速化を図る効果がある。(Effects of the Invention) As explained above, a semiconductor device according to the present invention is produced by depositing a high melting point metal silicide on a polycrystalline silicon gate on which a silicide layer is formed in a self-aligned manner. This has the effect of lowering the resistance of the gate electrode wiring and increasing the speed of the semiconductor circuit element.
第1図および第2図(a)、(b)はそれぞれ本発明に
かかる半導体装置のMOSトランジスタの断面図および
平面図とその側断面図、第3図はMOSトランジスタの
簡単な製法を示した図、第4図は自己整合的シリサイド
層形成方法を示した図である。
1・・・半導体基板(P型シリコン基板)、 2・・
・フィールド絶縁膜、 3・・平坦化された層間絶縁
膜、 4・・・サイドウオールスペーサ、 5・・・ゲ
ート電極(多結晶シリコン)。
6・・自己整合的に形成されたシリサイド層。
7・・・ゲート酸化膜、 8・・・高融点金属シリサイ
ドゲート、 9・・・ソース、ドレイン領域。
特許出願人 松下電子工業株式会社
第
図
ギ#俸E坂
フィー7レド卆を灼し万灸
:!f3’u(ヒa%” jt7; v y’a m
Hitザイドウ博−ルスヘ゛−ナ
ケ゛−ト(多粘品シリン)
句巴竺台怖つに形成これT(う
ケ゛−ト置化月爽
4b抛た、75&シソブイトチ゛ニト
ソブイト奢
第
図
(b)
32°゛ フィールドめ曳糸(膜
33 沼性情城
(C)
As j\
tna:+1, 2(a) and 2(b) are a cross-sectional view, a plan view, and a side sectional view thereof, respectively, of a MOS transistor of a semiconductor device according to the present invention, and FIG. 3 shows a simple manufacturing method of the MOS transistor. FIG. 4 is a diagram showing a method for forming a self-aligned silicide layer. 1... Semiconductor substrate (P-type silicon substrate), 2...
- Field insulating film, 3... Flattened interlayer insulating film, 4... Side wall spacer, 5... Gate electrode (polycrystalline silicon). 6. Silicide layer formed in a self-aligned manner. 7... Gate oxide film, 8... High melting point metal silicide gate, 9... Source, drain region. Patent applicant: Matsushita Electronics Co., Ltd. f3'u(hia%"jt7; v y'a m
Hit Zydou Expo-Russ Kate (Multi-viscous Sirin) Formed in a frightening way. b) 32°゛ Field string (membrane 33 Numa-seijojo (C) As j\ tna:+
Claims (1)
域にMOSトランジスタが形成され、MOSトランジス
タのゲート、ソース、ドレイン表面には自己整合的にシ
リサイド層が形成され、ソース、ドレインは層間絶縁膜
で被われて平坦化されており、ゲート上部のみは層間絶
縁膜から露出しており、その上部に高融点金属シリサイ
ドが堆積されていることを特徴とする半導体装置。A field insulating film is formed on the surface of the semiconductor substrate, a MOS transistor is formed in the active region, a silicide layer is formed in a self-aligned manner on the gate, source, and drain surfaces of the MOS transistor, and the source and drain are covered with an interlayer insulating film. 1. A semiconductor device characterized in that the gate is flattened, only the upper part of the gate is exposed from the interlayer insulating film, and a refractory metal silicide is deposited on the upper part of the gate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10346589A JPH02283034A (en) | 1989-04-25 | 1989-04-25 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10346589A JPH02283034A (en) | 1989-04-25 | 1989-04-25 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02283034A true JPH02283034A (en) | 1990-11-20 |
Family
ID=14354765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10346589A Pending JPH02283034A (en) | 1989-04-25 | 1989-04-25 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02283034A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268330A (en) * | 1992-12-11 | 1993-12-07 | International Business Machines Corporation | Process for improving sheet resistance of an integrated circuit device gate |
WO1999053535A1 (en) * | 1998-04-14 | 1999-10-21 | Advanced Micro Devices, Inc. | Method for selectively forming a silicide after a planarization step |
-
1989
- 1989-04-25 JP JP10346589A patent/JPH02283034A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268330A (en) * | 1992-12-11 | 1993-12-07 | International Business Machines Corporation | Process for improving sheet resistance of an integrated circuit device gate |
WO1999053535A1 (en) * | 1998-04-14 | 1999-10-21 | Advanced Micro Devices, Inc. | Method for selectively forming a silicide after a planarization step |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02273934A (en) | Semiconductor element and manufacture thereof | |
JP2675713B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02283034A (en) | Semiconductor device | |
JP2842842B2 (en) | MOS type semiconductor device and method of manufacturing the same | |
JPH0254536A (en) | Semiconductor device and manufacture thereof | |
JPH0669207A (en) | Semiconductor device | |
JP3196241B2 (en) | Method for manufacturing semiconductor device | |
JP2695812B2 (en) | Semiconductor device | |
JP2005005510A (en) | Semiconductor device and manufacturing method thereof | |
JP3110054B2 (en) | Semiconductor device and manufacturing method thereof | |
US20070145492A1 (en) | Semiconductor device and method of manufacture | |
JP2752222B2 (en) | MOS type semiconductor device and method of manufacturing the same | |
JPH02121336A (en) | Semiconductor device and its manufacture | |
KR100552859B1 (en) | Manufacturing Method of Semiconductor Device | |
KR970005729B1 (en) | Manufacturing Method of Semiconductor Device | |
KR100230734B1 (en) | Semiconductor device and manufacturing method thereof | |
JP2006080218A (en) | Semiconductor device manufacturing method and semiconductor device | |
JPH01106468A (en) | Semiconductor device and manufacture thereof | |
JP2005129562A (en) | Semiconductor device manufacturing method and semiconductor device | |
JPS61247073A (en) | Manufacture of semiconductor device | |
JPH0247871A (en) | Manufacture of semiconductor device | |
JP2001024187A (en) | Manufacture of semiconductor device | |
JPS62298174A (en) | Manufacture of semiconductor integrated circuit device | |
JPS62281351A (en) | Manufacture of semiconductor device | |
JPH0247870A (en) | Manufacture of semiconductor device |