JPS62215383A - Apparatus for inspecting microscopic life - Google Patents
Apparatus for inspecting microscopic lifeInfo
- Publication number
- JPS62215383A JPS62215383A JP5888786A JP5888786A JPS62215383A JP S62215383 A JPS62215383 A JP S62215383A JP 5888786 A JP5888786 A JP 5888786A JP 5888786 A JP5888786 A JP 5888786A JP S62215383 A JPS62215383 A JP S62215383A
- Authority
- JP
- Japan
- Prior art keywords
- visual means
- petri dish
- visual
- microscopic
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000007 visual effect Effects 0.000 claims abstract description 131
- 244000005700 microbiome Species 0.000 claims abstract description 43
- 230000007246 mechanism Effects 0.000 claims abstract description 20
- 238000007689 inspection Methods 0.000 claims abstract description 15
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 238000003384 imaging method Methods 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 20
- 230000032258 transport Effects 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 238000005259 measurement Methods 0.000 description 20
- 238000005286 illumination Methods 0.000 description 16
- 239000001963 growth medium Substances 0.000 description 15
- 230000004075 alteration Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、シャーレ培地上に培養される細菌や糸状菌等
の微生物や、プレパラート上に付着される虫卵、魚卵又
は組織培養細胞等の微小生物体(以下、これらを一括し
て微小生物体と記述する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to microorganisms such as bacteria and filamentous fungi that are cultured on Petri dish culture media, insect eggs, fish eggs, tissue culture cells, etc. that are attached to preparations. microorganisms (hereinafter, these are collectively referred to as microorganisms).
)の生育状態や分布状態の検査を自動的に行なう微小生
物体検査装置に関し、更に詳しくは被検体表面全体の微
小生物体の分布状態を検査する概観的な検査と、個々の
微小生物体の形状、大きさ、更には阻止円や最小発育阻
止濃度の計測等を検査する局所的な検査を、共に精度を
犠牲にすることなく行い得る微小生物体検査装置に関す
る。) Microorganism testing equipment that automatically tests the growth status and distribution state of microorganisms. The present invention relates to a microorganism inspection device that can perform local inspection to inspect shape, size, and measurement of inhibition circle and minimum inhibitory concentration without sacrificing accuracy.
従来、シャーレ培地上に培養されたり、又プレパラート
上に付着された微小生物体の分布状態や生育状態を検査
する作業はほとんど人手に頼っている。即ち熟練した研
究者や作業者が検査対象であるシャーレやプレパラート
を裸眼で目視したり、また拡大鏡や顕微鏡等の手段を用
いて観察することによって被検体表面に分布する微小生
物体の数や大きさ、更には形状等を検査していた。しか
しながらこれらの作業は作業者を大変疲労させるばかり
か作業者の熟練度や疲労度によって検査精度が異なるた
め、これらの検査工程が人手に依らず自動的に可能とな
る装置の登場が研究者の間では長らく切望されていたが
最近に至ってこれらの課題に応えんとした自動化装置が
次々と開発されだしている。Conventionally, the work of inspecting the distribution and growth state of microorganisms cultured on a Petri dish medium or attached to a preparation has mostly been done manually. In other words, skilled researchers and workers can determine the number of microorganisms distributed on the surface of the test object by visually observing the test object, such as a petri dish or preparation, with the naked eye or using a magnifying glass or microscope. The size and even shape were inspected. However, these tasks not only cause great fatigue to workers, but also the inspection accuracy varies depending on the skill and fatigue level of the worker. Therefore, researchers are looking for a device that can automatically perform these inspection processes without relying on human hands. Automated devices have long been desired in the industry, but recently automated devices have been developed one after another to meet these challenges.
そしてこれらの装置の構成は、例えば固定配置されたシ
ャーレ等の被検体表面の垂直上方に被検体表面を撮像す
る一つの視覚手段を設け、該視覚手段から出力される情
報を後段に配置されたコンピューターで解析処理し、培
地表面の各微小生物体の大きさや、数、また特定条件に
適合する微小生物体を識別したりするものが一般的であ
る。The configuration of these devices includes, for example, a visual means for capturing an image of the surface of a subject, such as a petri dish, placed vertically above the surface of the subject, and information output from the visual means placed at a later stage. It is common to use a computer to analyze and process the size and number of microorganisms on the surface of the culture medium, as well as to identify microorganisms that meet specific conditions.
これらの装置では視覚手段として、固体撮像素子(以下
、CODと記述する。)や撮像管を用いることが一般的
であるが、CODや撮像管では一度に撮像し得る視野の
大きさく以下、視野サイズと記述する。)と、その分解
能は画素数に根本的に規定されるので、微小生物体の細
部を充分認識できる精度で撮像するとともに同精度で被
検体表面全体を一度に撮像することは不可能である。こ
の不都合を解消する方法の一つとして、視覚手段にズー
ムレンズを取付け、このズームレンズの拡大縮小倍率を
適宜変化させ必要に応じた視野サイズ及び分解能を得る
ことが考えられる。この方法によれば視野サイズは狭小
であるが個々の微小生物体の形状、大きさの検査が高精
度に可能となるいわゆる狭視野での撮像と、分解能は低
いが被検体表面全体の微小生物体分布状態が概観し得る
いわゆる広視野による撮像とが一定の範囲で実現可能と
なる。しかしながらズームレンズで拡大縮小できる範囲
には限界があるばかりか、高倍率のときには収差の影響
も受けるので、レンズ周縁を通過した光は歪曲すること
となり、視野サイズ全域にわたって常に高精度な測定を
なすことは不可能である。These devices generally use a solid-state image sensor (hereinafter referred to as COD) or an image pickup tube as visual means. Describe the size. ), and its resolution is fundamentally determined by the number of pixels, so it is impossible to image the entire surface of the subject at once with the same accuracy while imaging the details of a microscopic organism with enough precision to recognize it. One possible method for solving this inconvenience is to attach a zoom lens to the visual means and change the enlargement/contraction magnification of this zoom lens as appropriate to obtain the field of view size and resolution as required. This method allows imaging in a so-called narrow field of view, which has a narrow field of view but allows inspection of the shape and size of individual microorganisms with high accuracy, and imaging of microorganisms on the entire surface of the object, although the resolution is low. So-called wide-field imaging in which the state of body distribution can be overviewed can be realized within a certain range. However, there is a limit to the range that can be enlarged or reduced with a zoom lens, and at high magnifications, it is also affected by aberrations, so the light that passes through the lens periphery is distorted, making it difficult to always make highly accurate measurements over the entire field of view size. That is impossible.
また、他方広視野のときと狭視野のときなど視野サイズ
の変更にともなってレンズをその都度取り替える方法も
考えられる。この方法では所望の倍率であって収差の少
ない、レンズを設計することは比較的容易であり、この
ようなレンズを使用することにより、視野全域にわたる
高精度な撮像が一応は可能となるのだが、拡大、縮小の
毎に所定のレンズを手作業で取り替える必要があり、反
復作業が原則である微小生物体検査作業においてこれを
なすことは煩雑すぎて現実的ではない。On the other hand, it is also conceivable to replace the lens each time the field of view size changes, such as when the field of view is wide or narrow. With this method, it is relatively easy to design a lens with the desired magnification and few aberrations, and by using such a lens, it is possible to capture highly accurate images over the entire field of view. It is necessary to manually replace a predetermined lens each time the image is enlarged or reduced, and this is too complicated and impractical in microorganism inspection work where repetitive work is the principle.
更に、別の問題として従来においてはシャーレが固定配
置されているため、狭視野の状態で隣設する微小生物体
を撮像せんとすると、視覚手段を移動させる必要があり
シャーレを照明する照明光源と視覚手段との位置関係が
一定せず、測定条件が均一化できない問題もあった。ま
た、従来シャーレはその測定状態の監視や保守の容易性
から外部に露出したテーブル上に載置したり、雑菌混入
防止の要素を加味して、透明ケース等に収容したりして
いるが、このことは他面、外部光線が外乱光として視覚
手段に入射することを意味し、シャーレ上培地の照明条
件に影響を及ぼして測定条件の均一化を妨げる一因とも
なっていることは以外と知られていない。Furthermore, another problem is that conventionally, petri dishes are fixedly placed, so if you want to image adjacent microorganisms in a narrow field of view, it is necessary to move the visual means and the illumination light source that illuminates the petri dish. There was also the problem that the positional relationship with the visual means was not constant and measurement conditions could not be made uniform. In addition, conventionally, petri dishes have been placed on an exposed table to monitor the measurement status and be easy to maintain, or housed in transparent cases to prevent contamination with germs. On the other hand, this means that external light rays enter the visual means as disturbance light, which affects the illumination conditions of the culture medium on the petri dish and is one of the factors that prevents uniformity of measurement conditions. It has not been done.
本発明は、このような状況に鑑みなされたもので、被検
体の上方における垂直同一直線上に異なる倍率のズーム
レンズを取り付けた視覚手段を複数個設け、使用する視
覚手段を適宜選択することによって、広視野と狭視野で
の撮像がともに可能で且ついずれにおいても、収差が極
めて少なく高精度な撮像が可能な微小生物体検査装置に
関し、その要旨とするところは、被検体表面の上方にお
ける垂直同一線上には、被検体表面を撮像する視野の異
なる複数個の視覚手段を配設し、該視覚手段中の任意の
視覚手段によって微小生物体を撮像するときには、他の
視覚手段は前記視覚手段の損傷視野から退避することを
特徴とする点にある。The present invention was developed in view of this situation, and it is possible to provide a plurality of visual means each having zoom lenses of different magnifications attached on the same vertical line above the subject, and to select the visual means to be used as appropriate. , regarding a microorganism inspection device that is capable of imaging in both a wide field of view and a narrow field of view, and that can perform highly accurate imaging with extremely little aberration in both cases. A plurality of visual means having different fields of view for imaging the surface of the subject are arranged on the same line, and when an arbitrary visual means among the visual means is used to image a microorganism, other visual means are It is characterized by retreating from the damaged field of view.
そして本発明にかかる微小生物体検査装置の測定条件の
安定化と測定精度を更に向上せんがために考えられた第
2の発明は、上述の微小生物体検査装置を外部光線の影
響が排除し得るボックス内で構成するとともに、このボ
ックス内外を適宜往復する被検体搬入出用の搬送手段を
設けることにより、外部光線の侵入を防止して被検体の
照明を安定したものとなし、測定条件の均一化をはかり
、もって測定結果の信頼性を高めることを目的とし、そ
の要旨とするところは、外部光を遮断し、且つ前面適所
にシャーレ搬入出用の開口部を設けたボックス内に被検
体を撮像する視覚手段と、シャーレを搬送する搬送手段
を設け、前記視覚手段はシャーレ上方における垂直線上
に複数個配設するとともに、該視覚手段中の任意の視覚
手段を使用するときは、使用中の視覚手段よりも下位の
視覚手段は、前記視覚手段の撮像視野から退避せしめ、
また、搬送手段は、弾性付勢された把持機構を有したX
Yステージより構成され、該搬送手段はシャーレをボッ
クス内外に搬入出するとともに、ボックス内の視覚手段
下方において制御記号にもとづき適宜移動可能としたこ
とを特徴とする点にある。A second invention devised to further stabilize the measurement conditions and improve the measurement accuracy of the microorganism testing device according to the present invention is to eliminate the influence of external light from the microorganism testing device described above. By providing a transport means for carrying in and out of the test object that moves back and forth between the inside and outside of this box, the intrusion of external light can be prevented and the illumination of the test object can be stabilized, allowing for stable illumination of the test object and improving measurement conditions. The purpose is to increase the reliability of the measurement results by uniformizing the results. A plurality of visual means are provided on a vertical line above the petri dish, and when any of the visual means is used, it is possible to A visual means lower than the visual means of is evacuated from the imaging field of the visual means,
Further, the conveying means has an elastically biased gripping mechanism.
It consists of a Y stage, and the conveying means is characterized in that it carries petri dishes into and out of the box, and can be moved as appropriate based on control symbols below the visual means in the box.
このような微小生物体検査装置は、被検体が所定位置に
配置されると、その上方における垂直同一線上に配設さ
れた視覚手段のうち、使用する視覚手段のみを残して他
の視覚手段は撮像の邪魔とならないよう、その撮像視野
から退避する。各視覚手段には異なる倍率のズームレン
ズが装着され、この退避によって、所定の倍率のズーム
レンズが装着された視覚手段だけが被検体表面の垂直上
方位置に残ることになり、その視野を遮るものは何もな
く、照明光源から発せられ被検体表面で反射した光は直
接当該視覚手段に入射することになる。In such a microorganism testing device, when a subject is placed in a predetermined position, only the visual means to be used is left among the visual means arranged on the same vertical line above the subject, and the other visual means are Move away from the imaging field of view so as not to interfere with imaging. Each visual means is equipped with a zoom lens with a different magnification, and by retracting, only the visual means equipped with a zoom lens of a predetermined magnification remains in a position vertically above the surface of the subject, and the field of view is obstructed. There is no light, and the light emitted from the illumination light source and reflected on the surface of the subject directly enters the visual means.
そして他の倍率で微小生物体を観察するときは、前述し
た視覚手段を所定の倍率のズームレンズが装着された視
覚手段と置換すればよい、そしてこの置換はたとえば本
体装置前面パネル上のコントロールキーをマニュアル操
作することによって、あるいは後段に接続されるコンピ
ューターのソフトウェア上によって制御され、制御信号
の伝達があれば具体的な移動は全て自動的になされる。When observing microorganisms at other magnifications, the visual means described above can be replaced with a visual means equipped with a zoom lens of a predetermined magnification. It is controlled by manual operation or by software on a computer connected to the rear stage, and all specific movements are performed automatically if a control signal is transmitted.
各視覚手段に装着されるズームレンズは、広視野用レン
ズと、狭視野用レンズはそれぞれ別個に設けられるので
、個々のズームレンズがカバーする拡大倍率の範囲は、
1つの視覚手段で広視野と狭視野をカバーするときに比
べて遥かに狭くできるため、収差の少ないレンズの設計
、製作が“容易であり、被検体表面の撮像は視野全域に
わたって高精度になすことができるものである。The zoom lenses attached to each visual means have separate wide-field lenses and narrow-field lenses, so the range of magnification covered by each zoom lens is as follows:
Since the field of view can be much narrower than when one visual means covers a wide and narrow field of view, it is easy to design and manufacture a lens with low aberrations, and the imaging of the object surface can be performed with high accuracy over the entire field of view. It is something that can be done.
更に上記の各機構を外部光線の侵入を遮断したボックス
内に収容し、測定条件の安定化と測定結果の信頼性の向
上を目指した第2の発明の作動態様は次の如(である。Furthermore, the operation mode of the second invention, which aims to stabilize the measurement conditions and improve the reliability of the measurement results by housing each of the above-mentioned mechanisms in a box that blocks the intrusion of external light, is as follows.
XYステージに関係づけられた把持機構を開口部を通過
させてボックス外部へ移動させた後、把持機構にシャー
レを把持させる。次いで把持機構はシャーレを把持した
状態で後退し、再び開口部を通ってシャーレをボックス
内へ搬入する。開口部はボックス内のシャーレ配置位置
に外部光線が到達しない位置に設けられるとともに、そ
の大きさもシャーレの通過を許容する範囲内で最小の大
きさとしているので、ボックス内へ導入されたシャーレ
の照明は、以降内部光源によってのみなされ、培地表面
の均一な照明は保証″されることになる。ボックス内で
シャーレはXYステージによって視覚手段の垂直下方に
、その測定箇所が位置されるよう適宜、微調整されるが
、この微調整は視覚手段によって撮像されたモニタ画像
を目視しながら行ったり、あるいは後段に接続されるコ
ンピューターのソフトウェア上で一定の条件にもとすい
て自動的になすことも可能である。視覚手段の選択は前
述したとおりであり、必要に応じて適宜な視覚手段が選
択され、盪像後のシャーレは再びXYステージによって
開口部を通って外部へ搬出される。After the gripping mechanism associated with the XY stage is moved outside the box through the opening, the gripping mechanism is caused to grip the petri dish. Next, the gripping mechanism moves backward while gripping the Petri dish, and carries the Petri dish into the box through the opening again. The opening is located at a position where external light does not reach the petri dish placement position in the box, and its size is the minimum size within the range that allows the petri dish to pass through, so the illumination of the petri dish introduced into the box is From now on, only the internal light source will ensure uniform illumination of the culture medium surface. In the box, the Petri dish will be slightly moved by the XY stage so that its measurement point is positioned vertically below the viewing means. However, this fine adjustment can be done while visually observing the monitor image captured by visual means, or it can be done automatically based on certain conditions on the software of a computer connected to the subsequent stage. The selection of the visual means is as described above, and an appropriate visual means is selected as necessary, and the petri dish after imaging is carried out to the outside through the opening by the XY stage again.
次に本発明の詳細を第1の発明を包含した第2の発明の
実施例にもとづき説明する。尚、以下の説明では被検体
をシャーレ上の微小生物体とした場合について記述する
が、搬送手段を適宜変更することによって被検体をプレ
パラート上の微小生物体とすることも可能であることは
いうまでもない。Next, details of the present invention will be explained based on an embodiment of the second invention that includes the first invention. In the following explanation, we will describe the case where the specimen is a microorganism on a petri dish, but it is also possible to use the specimen as a microorganism on a preparation by appropriately changing the transportation means. Not even.
第1図は本発明の一実施例の各機構の配置を示す説明用
簡略透視図である。FIG. 1 is a simplified explanatory perspective view showing the arrangement of each mechanism in an embodiment of the present invention.
図中Aは視覚手段、Bは搬送手段、Cはシャーレであり
、Dはこれらを外部光線から遮断するボックスである。In the figure, A is a visual means, B is a conveying means, C is a petri dish, and D is a box that shields these from external light.
そして視覚手段A及び搬送手19Bの詳細は更に第2図
、第3図で開示される。本実施例では視覚手段Aとして
は着脱自在なズームレンズを装着したCCDカメラを使
用しているが、ズームレンズを更に高倍率な顕微鏡レン
ズと取り替えることや、CCDを撮像管やその他の視覚
センサーと置き換えることも任意である。Further details of the visual means A and the carrier 19B are disclosed in FIGS. 2 and 3. In this example, a CCD camera equipped with a removable zoom lens is used as the visual means A, but the zoom lens can be replaced with a microscope lens of higher magnification, or the CCD can be replaced with an image pickup tube or other visual sensor. Replacement is also optional.
本実施例では2個の視覚手段を設け、下方に配置された
下位視覚手段A2は、CCD2に個々の微小生物体の生
育状態が観察可能な狭視野用の高倍率ズームレンズ5を
鏡筒6を介して装着するとともに、該レンズ5の光軸上
前方であって、下方に配置されるシャーレCの撮像箇所
の垂直上方位置には反射ミラー7を設けて、シャーレC
から入射する光線をCCD2へ案内し得るよう構成して
いる。他方、上方に位置する上位視覚手段AlはCCD
1にシャーレ表面が一望できる大径の広視野用の低倍率
ズームレンズ3を装着するとともに下位視覚手段A2と
同様低倍率ズームレンズの光軸上前方であってシャーレ
Cの垂直上方位置には、反射ミラー4を設けてシャーレ
Cからの入射光をCCDIに案内し得る構成としている
。即ち、反射ミラー7と反射ミラー4の中心を結ぶ直線
の下方にシャーレCの撮像箇所が配置されていることに
なる。そしてこの反射ミラー7.4は、高倍率ズームレ
ンズ5と低倍率ズームレンズ3の側方に配置された側板
9,8の先端近傍に、回動可能に軸着されるミラーホル
ダー11.10に、ミラー押えlla 。In this embodiment, two visual means are provided, and the lower visual means A2 arranged below has a high magnification zoom lens 5 for a narrow field of view that can observe the growth state of individual microorganisms on the CCD 2, and a lens barrel 6. At the same time, a reflecting mirror 7 is provided in front of the lens 5 on the optical axis and vertically above the imaging point of the petri dish C arranged below.
The structure is such that the light beam incident from the CCD 2 can be guided to the CCD 2. On the other hand, the upper visual means Al located above is a CCD
1 is equipped with a large-diameter, wide-field, low-magnification zoom lens 3 that allows a panoramic view of the surface of the Petri dish C, and, like the lower visual means A2, is located in front of the low-magnification zoom lens on the optical axis and vertically above the Petri dish C. A reflecting mirror 4 is provided to guide incident light from the petri dish C to the CCDI. That is, the imaging location of the petri dish C is placed below the straight line connecting the centers of the reflecting mirrors 7 and 4. This reflective mirror 7.4 is attached to a mirror holder 11.10 that is rotatably pivoted near the tips of side plates 9 and 8 that are arranged on the sides of the high-power zoom lens 5 and the low-power zoom lens 3. , mirror presser foot lla.
10aを用いて固定されている。ミラーホルダー11゜
10の回動はツマミ13.12によって自由になされる
が、通常は一度設定した後は本体装置の移動等がない限
り、再調整されることはなく、半固定状態に維持されて
いる。また高倍率ズームレンズ5及び低倍率ズームレン
ズ3には側部にステッピングモーター15.14を設け
、ベル目7.16を媒介にしてズームレンズ5.3に回
転駆動力を伝達し、それぞれの拡大倍率を制御信号にも
とづいて一定の範囲内で段階的に変化し得る構成となし
、且つズームレンズの回転範囲を限定すべくフォトセン
サー34.33と遮光板36.35を設けてその回転範
囲を規制している。上位視覚手段A1は基台18に固定
設置され、他方下位視覚手段A2は上位視覚手段Alの
使用時には撮像の障害とならぬよう、その撮像視野から
水平方向に退避する必要があるが、この退避機構は例え
ば次のとおりである。10a. The mirror holders 11 and 10 can be rotated freely using the knobs 13 and 12, but normally, once set, they are not readjusted unless the main unit is moved, and are kept in a semi-fixed state. ing. In addition, a stepping motor 15.14 is provided on the side of the high-magnification zoom lens 5 and low-magnification zoom lens 3, and a rotational driving force is transmitted to the zoom lens 5.3 via a bell eye 7.16, thereby increasing the magnification of each. The zoom lens has a configuration in which the magnification can be changed stepwise within a certain range based on a control signal, and a photosensor 34.33 and a light shielding plate 36.35 are provided to limit the rotation range of the zoom lens. It is regulated. The upper visual means A1 is fixedly installed on the base 18, while the lower visual means A2 needs to be retracted horizontally from the imaging field of view when the upper visual means Al is used so as not to interfere with imaging. For example, the mechanism is as follows.
下位視覚手段A2の退避機構は上位視覚手段A1を固定
設置した枠体形状の基台18に内設されており、凸部2
0を有する台座21に凸部20に咬合可能な凹部22を
有する咬合部材23を、ベアリング等を介して下位視覚
手段A2の長さ方向に直交する方向に摺動可能に咬合し
、更に前記咬合部材23に下位視覚手段A2が取り付け
られた基板24を固着して構成している。そして基板2
4上面の一方の片寄った位置には、当て板25を立設す
るとともに該当て板25上方の基台18には適宜なモー
ター19を、その回転軸26が基台18を貫通する状態
で固着し、更に前記回転軸26には先端に押圧突部28
を設けたアーム27を回転軸26と直交状態で取り付け
てカムを構成し、モーター19の回転にしたがって前記
光て板25を押圧することにより基板24とともに下位
視覚手段A2を水平方向に移動し得る構造としている。The evacuation mechanism of the lower visual means A2 is installed inside a frame-shaped base 18 on which the upper visual means A1 is fixedly installed, and the retracting mechanism of the lower visual means A2
An occlusion member 23 having a concave portion 22 that can be engaged with a convex portion 20 is engaged with a pedestal 21 having a diameter of 0 in a slidable manner in a direction perpendicular to the length direction of the lower visual means A2 via a bearing or the like. A substrate 24 to which a lower visual means A2 is attached is fixed to a member 23. and board 2
4. A backing plate 25 is erected at one off-centered position on the top surface, and a suitable motor 19 is fixed to the base 18 above the corresponding plate 25 with its rotating shaft 26 passing through the base 18. Furthermore, the rotating shaft 26 has a pressing protrusion 28 at its tip.
An arm 27 provided with is attached perpendicularly to the rotating shaft 26 to constitute a cam, and by pressing the light plate 25 according to the rotation of the motor 19, the lower visual means A2 can be moved in the horizontal direction together with the board 24. It has a structure.
この移動は基板24の一例に設けられた引張バネ29に
よる付勢方向に抗してなされるもので、終端まで移動し
た基#i24の帰還の為の駆動力はこの引張バネ29の
張力から得ている。そして下位視覚率1iA2の退避の
タイミングはソフトウェア上で制御され、その制御信号
を発する際の情報源の一つとしての下位視覚手段A2の
現在位置の検出は、フォトセンサー31.32と、前記
回転輪26に固着され且つフォトセンサー31.32の
受光部前面を通過可能に設定された遮光板30とから構
成される装置検出機構によりなされ、遮光板30がモー
ター19の回転にともなづて回転して、フォトセンサー
31.32の受光部への光の入射を遮ることにより信号
を検出している。This movement is performed against the biasing direction of a tension spring 29 provided on an example of the substrate 24, and the driving force for returning the group #i24 that has moved to the end is obtained from the tension of this tension spring 29. ing. The timing of retreat of the lower visual rate 1iA2 is controlled by software, and the current position of the lower visual means A2, which is one of the information sources when issuing the control signal, is detected by the photosensors 31, 32 and the rotation This is done by a device detection mechanism consisting of a light shielding plate 30 fixed to the ring 26 and set to be able to pass through the front surface of the light receiving portion of the photosensors 31 and 32, and the light shielding plate 30 rotates as the motor 19 rotates. The signals are detected by blocking the light from entering the light receiving portions of the photosensors 31 and 32.
尚、本実施例では上位視覚手段A1に大口径の低倍率ズ
ームレンズ3を、また下位視覚率V!iA2に高倍率ズ
ームレンズ5を装着しているが、これは退避する側のレ
ンズを小型且つ軽量とした方が退避が容易なためである
が、この上下位置関係は何ら限定されるものではなく、
特に視覚手段を3個以上としたときは適宜設定されれば
よい。また、下位視覚手段A2の退避方法も、精密機械
であるCODカメラ2や高倍率ズームレンズ5に振動を
与えずこれらが安定した状態で円滑に移動部るものであ
るならば他の機構を用いることも防げるものではない。In this embodiment, a large-diameter, low-magnification zoom lens 3 is used as the upper visual means A1, and the lower visual rate V! The iA2 is equipped with a high-magnification zoom lens 5 because it is easier to retract if the lens on the side to be retracted is smaller and lighter, but this vertical positional relationship is not limited in any way. ,
In particular, when there are three or more visual means, it may be set appropriately. In addition, as for the evacuation method of the lower visual means A2, another mechanism may be used if the COD camera 2 and high-power zoom lens 5, which are precision instruments, can be moved smoothly in a stable state without causing vibration. It is not something that can be prevented.
次に、シャーレCの搬送手段であるXYステージB1に
ついて述べると、XYステージB1は、ポ・ンクスD内
の開口部50後方にシャーレCの移送方向に沿って平行
に敷設された2本の軌道52.53と、該軌道52.5
3上を前後に走行する走行部54とから主として構成さ
れ、更に走行部54は前記軌道52゜53に跨った状態
で平行に配設された2本のシャツ)55.55と、該シ
ャツ)55.55を両端で支持し走行部54全体を走行
可能にする脚車部60.61と、該シャフト55.55
が挿通される挿通孔56を有し、且つ前方に把持用のフ
ォーク57.58を有した移動部59とから構成されて
いる。Next, regarding the XY stage B1, which is a means of transporting the petri dish C, the XY stage B1 consists of two tracks laid in parallel along the transport direction of the petri dish C behind the opening 50 in the pond D. 52.53 and the orbit 52.5
The running section 54 mainly consists of a running section 54 that runs back and forth on the tracks 52 and 53, and the running section 54 has two shirts (55. 55.55 at both ends and allows the entire traveling section 54 to travel; and the shaft 55.55.
The movable part 59 has an insertion hole 56 into which it is inserted, and a moving part 59 having gripping forks 57 and 58 on the front side.
脚車部60.61には走行部54が軌道52.53上を
Y方向、即ち前後方向(第3図中では左右方向)に移動
可能なように車輪62を適宜個数設けるとともに、一方
の脚車部61には、軌道53の終端に配設されたステッ
ピングモーター63と始端に設けられたプーリー64間
に張設されるベルト65の片側を係止するベルトハンガ
ー66を設けて、前記ステッピングモーター63の回転
にしたがって、走行部54をY方向に移動可能としてい
る。更に脚車部60にはプーリー67を、他方の脚車部
61にはステッピングモーター68に固着されたプーリ
ー69を設け、両者間にはベルト70を張設するととも
に移動部59にはベルト70の片側を係止するベルトハ
ンガー71を設けて、ステッピングモーター68の回転
にともなって移動部59が、走行部54全体の移動方向
に対して、直交方向、即ちX方向に移動し得る構成とし
ている。また走行部54及び移動部59の移動範囲の始
端と終端位置近傍にはフォトセンサー73a、 73b
、 72.72を設け、且つそれらに対応する走行部5
4側と移動部59側には、始端及び終端位置のときに前
記フォトセンサー73a、73b、72.72の受光部
への光の入射を遮断する遮光板74a、 74b、 7
5.76を設けて移動範囲を規定し、走行部54及び移
動部59が始端及び終端に衝突することを未然に防止し
ている。そして移動部59にはシャーレCを把持するた
めのフォーク57.58を設けているが、フォーク57
.58の内側でありてシャーレC側部に当接する位置に
は挾持凹部77a、?7bを設け、且つフォーク58は
板バネ78を介して移動部59本体に取り付けることに
より、該フォーク57.58がシャーレCを確実に挾持
してボックスD内へ搬送できる構成としている。The caster parts 60.61 are provided with an appropriate number of wheels 62 so that the running part 54 can move on the track 52.53 in the Y direction, that is, in the front-back direction (left-right direction in FIG. 3). The wheel portion 61 is provided with a belt hanger 66 that locks one side of a belt 65 stretched between a stepping motor 63 disposed at the terminal end of the track 53 and a pulley 64 disposed at the starting end. 63, the traveling section 54 is movable in the Y direction. Further, the caster part 60 is provided with a pulley 67, and the other caster part 61 is provided with a pulley 69 fixed to a stepping motor 68. A belt 70 is stretched between the two, and a belt 70 is provided in the moving part 59. A belt hanger 71 that locks one side is provided so that the moving section 59 can move in a direction perpendicular to the moving direction of the entire traveling section 54, that is, in the X direction as the stepping motor 68 rotates. In addition, photo sensors 73a and 73b are installed near the starting and ending positions of the moving range of the traveling section 54 and the moving section 59.
, 72, 72, and a running section 5 corresponding thereto.
On the 4 side and the moving part 59 side, there are light shielding plates 74a, 74b, 7 that block light from entering the light receiving parts of the photosensors 73a, 73b, 72.72 at the start and end positions.
5.76 is provided to define the movement range and prevent the running section 54 and the moving section 59 from colliding with the starting end and the ending end. The moving part 59 is provided with forks 57 and 58 for gripping the petri dish C.
.. A holding recess 77a, ? 7b, and the fork 58 is attached to the main body of the moving part 59 via a plate spring 78, so that the fork 57, 58 can reliably hold the petri dish C and transport it into the box D.
このようにしエポックスD内の所定位置に搬入されたシ
ャーレCには、高専n度な測定をなすためにシャーレ表
面全体にわたる照明が必要となるが、この照明は例えば
第5図に示すようにシャーレCの撮像位置から一定距離
離間した上方位置と、シャーレCが載置されたガラス等
の透光性素材よりなるテーブルの下方位置とに対向して
配置され、上方及び下方ともに直管蛍光灯79を略正方
形状に配置することによって、シャーレCの移動とは無
関係に撮像位置の均一な照明を可能としている。Petri dish C, which has been transported to a predetermined position in Epox D in this way, requires illumination over the entire surface of the Petri dish in order to carry out highly technical measurements. A straight fluorescent lamp 79 is disposed opposite to an upper position a certain distance away from the imaging position of C and a lower position of a table made of a translucent material such as glass on which a petri dish C is placed. By arranging them in a substantially square shape, it is possible to uniformly illuminate the imaging position regardless of the movement of the petri dish C.
そして上方位置の照明及び下方位置の照明は適宜切り換
えることが可能であり、培地や微小生物体の状態等、検
査対象によって照明を透過明視野照明や透過暗視野照明
としたり、また反射照明とすることもできるよう構成さ
れている。The illumination at the upper position and the illumination at the lower position can be switched as appropriate, and the illumination can be transmitted bright field illumination, transmitted dark field illumination, or reflected illumination depending on the inspection target, such as the condition of the culture medium or microorganisms. It is configured so that it can also be used.
そして上記の視覚手段A及び搬送手&Bを外装するボッ
クスDは、視覚手段Aと搬送手段Bを外部光線から遮断
できて、ボックス適所にシャーレを通過さすことができ
る開口部を有するものであれば任意のものが使用可能で
あり、その外装範囲も視覚手段Aと搬送手段Bだけであ
ったり、また他の機構をも共に外装すること等も適宜採
用される。図示したものでは開口部50は初期状態にお
けるXYステージ移動部59のY方向前方であって、そ
の大きさはシャーレの通過を許容する最低限の大きさに
設定することにより、外部光線のボックスD内への侵入
を楔力防止している。The box D enclosing the visual means A and the transporter &B is one that can shield the visual means A and the transporter B from external light and has an opening that allows the petri dish to pass through at an appropriate position in the box. Any one can be used, and the exterior range may be limited to the visual means A and the conveyance means B, or other mechanisms may also be exteriorized as appropriate. In the illustrated example, the opening 50 is located in front of the XY stage moving unit 59 in the Y direction in the initial state, and by setting the opening 50 to the minimum size that allows passage of the Petri dish, a box D of external light rays is formed. Wedge force prevents intrusion into the interior.
このような構成の微小生物体検査装置は次のような作動
態様をとる。例えば装置本体適所に配置されたコントロ
ールキーを操作して検査開始の指令を送ると、この信号
は図示しない制御機構に伝達され、この信号にもとづい
てステッピングモーター63が回転する。この回転はベ
ルト65に伝達され、軌道53に沿って脚車部61を前
方へ牽引することにより走行部54をY方向前方へ走行
させ、遮光1i74 bがフォトセンサー73bへの入
射光を遮断する位置まで前進させた後停止させる。走行
部54の移動によってフォーク57 、58は開口部5
0を通過してシャーレ載置台51まで前進して停止し、
次いで手でフォーク58を外方へ拡開させ、細菌を移植
したシャーレCをその側部がフォーク57.58の挾持
凹部77a、 77bに当接する状態でフォーク57.
58に把持させる。このときフォーク58は内側に向か
ってバネ付勢されていると同時に、その折曲範囲には限
界を設けているので、シャーレCを押圧しすぎることは
なくシャーレCはその側部形状に即して確実に把持され
る。次いで走行部54はフォーク57.58によってシ
ャーレCを把持した状態で開口部50を通過し、ボック
スD内の視覚手段Aの略下部位置までシャーレCを搬送
して停止する。この過程は任意の視覚手段によって撮像
され、常時モニターテレビ等で監視され、その位置設定
は適宜手動または自動によってなされる。視覚手段Aの
略下部位置では、外部光線の侵入はほとんどないのでシ
ャーレCの培地表面の照明はシャーレC上方四方に配置
された蛍光灯79.79・・・のみによってなされ、培
地表面ば外乱光の影響を受けることなく常に均等に照明
されることとなり、測定条件の安定化がはかれる。次に
適宜な視覚手段Aを選択して培地上の微小生物体の生育
状態を撮像するわけであるが、本実施例では各微小生物
体の面積、直径や発育状態など、個々の微小生物体に関
する詳細なデーターが必要なときには下位視覚手段A2
を用い、培地全体にわたる微小生物体の分布状態等を知
りたいときには上位視覚手段AIを用いることとしてい
る。初期位置においては両者は同一の水平位置であって
垂直方向に一定の間隔をおいて配置され、特に両者の反
射ミラー7.4はシャーレC上培地の被撮像位置の上方
の垂直同一直線上に配設されている。そしてたとえば下
位視覚手段A2を使用するときには、そのままの状態で
撮像するが、上位視覚手段A1を用いるときには、図示
しない制御機構からの信号を受けてモーター19を半回
転させ、アーム26先端近傍の突部28によって当て板
25を押圧し、基板24とともに下位視覚手段A2を水
平方向にスライドさせる。このようにして下位視覚手段
A2は上位視覚手段A1の撮像視野から退避するが、下
位視覚手段A2の現在位置はフォトセンサー31.32
と遮光板30によって管理され制御機構に伝達される。The microorganism inspection device having such a configuration operates as follows. For example, when a command to start an inspection is sent by operating a control key placed at a suitable location on the main body of the apparatus, this signal is transmitted to a control mechanism (not shown), and the stepping motor 63 is rotated based on this signal. This rotation is transmitted to the belt 65, which pulls the caster part 61 forward along the track 53, causing the running part 54 to travel forward in the Y direction, and the light shielding unit 1i74b blocks the incident light to the photosensor 73b. Move it forward to the desired position and then stop it. Due to the movement of the running portion 54, the forks 57 and 58 close to the opening 5.
0, advance to the petri dish mounting table 51 and stop,
Next, the fork 58 is expanded outward by hand, and the petri dish C, which has been transplanted with bacteria, is held in the fork 57.
58 to hold it. At this time, the fork 58 is biased inward by a spring and at the same time has a limit to its bending range, so it does not press too much on the Petri dish C and the Petri dish C conforms to its side shape. It can be gripped securely. Next, the traveling section 54 passes through the opening 50 with the Petri dish C gripped by the forks 57 and 58, conveys the Petri dish C to a position substantially below the viewing means A in the box D, and stops. This process is imaged by any visual means and constantly monitored on a monitor television or the like, and the position is set manually or automatically as appropriate. At the substantially lower position of the visual means A, there is almost no intrusion of external light, so the surface of the culture medium in the Petri dish C is illuminated only by the fluorescent lamps 79, 79 placed above the Petri dish C, and the surface of the culture medium is illuminated by ambient light. This ensures uniform illumination at all times without being affected by the effects of light, thereby stabilizing the measurement conditions. Next, an appropriate visual means A is selected to image the growth state of the microorganisms on the culture medium, but in this example, the area, diameter, and growth state of each microorganism are measured. Lower visual means A2 when detailed data about
When we want to know the distribution of microorganisms throughout the culture medium, we use the upper visual means AI. In the initial position, both of them are in the same horizontal position and are arranged at a constant interval in the vertical direction, and in particular, both reflection mirrors 7.4 are on the same vertical straight line above the imaged position of the culture medium on Petri dish C. It is arranged. For example, when using the lower visual means A2, images are taken as they are, but when using the upper visual means A1, the motor 19 is rotated by half a rotation in response to a signal from a control mechanism (not shown), and the projection near the tip of the arm 26 is The pressing plate 25 is pressed by the portion 28, and the lower visual means A2 is slid in the horizontal direction together with the base plate 24. In this way, the lower visual means A2 retreats from the imaging field of view of the upper visual means A1, but the current position of the lower visual means A2 is located at the photo sensor 31.32.
and are managed by the light shielding plate 30 and transmitted to the control mechanism.
上位視覚手段A1による撮像が終了して下位視覚手段A
2を用いるときにはモーター19を再度半回転させて、
引張バネ29の張力によって基板24を初期位置に帰還
させる。この帰還動作はモーター19の回転動作に抑止
された状態でなされるため、下位視覚手段A2に振動に
よる損傷や測定誤差を与えることもない。After the imaging by the upper visual means A1 is completed, the lower visual means A
When using 2, turn the motor 19 half a turn again,
The substrate 24 is returned to the initial position by the tension of the tension spring 29. Since this return operation is performed while being inhibited by the rotational operation of the motor 19, the lower visual means A2 is not damaged by vibrations and measurement errors are not caused.
下位視覚手段A2は拡大倍率が大きい為に、培地表面の
全てを撮像するためには、培地表面を数〜数十の撮像可
能な視野に分割して順次撮像する必要があるが、この各
視野間の移動はシャーレCをXYステージB1で移動す
ることによってなされる。Since the lower visual means A2 has a large magnification, in order to image the entire culture medium surface, it is necessary to divide the culture medium surface into several to tens of imageable visual fields and sequentially capture the images. The movement between them is performed by moving the petri dish C on the XY stage B1.
この視野移動時のシャーレCのY方向(第3図(イ)中
では左右方向)の移動は、前述と同様ステッピングモー
ター63を駆動源としてなされ、他方シャーレCのX方
向く図中では上下方向)の移動は脚車部61に設けられ
たステッピングモーター68の回転をベルト70によっ
て移動部59に伝達してなされる。XYステージB1に
は移動精度が±0.05mm程度のものを用いているの
で、下位視覚手段A2の撮像視野に目的とする微小生物
体を位置させることは容易であり、また視覚手段Aは撮
像視野の変更に際しては移動しないので、照明光源であ
る蛍光灯79.79・・・と視覚手段Aとの位置関係は
変化せず常に一定であり、均−且つ安定した照明状態が
確保される。The movement of the petri dish C in the Y direction (the horizontal direction in FIG. 3(A)) during this field of view movement is performed using the stepping motor 63 as the driving source as described above, and on the other hand, the movement of the petri dish C in the X direction (in the vertical direction in the figure) ) is moved by transmitting the rotation of a stepping motor 68 provided on the caster section 61 to the moving section 59 via a belt 70. Since the XY stage B1 has a movement accuracy of approximately ±0.05 mm, it is easy to position the target microorganism in the imaging field of the lower visual means A2, and the visual means A Since they do not move when the field of view is changed, the positional relationship between the fluorescent lamps 79, 79, .
このように上位視覚手段A1と下位視覚手段A2は必要
に応じて適宜用いられるもので、本実施例ではその切り
換えは制御信号をモーター19に送出するのみでなされ
、且つその移動もフォトセンサー31゜32の管理下で
下位視覚手段A2に衝撃を与えない状態でなされるので
下位視覚手段A2を移動することによる光学的な狂いも
なく、その画像は極めて安定している。In this way, the upper visual means A1 and the lower visual means A2 are used as appropriate, and in this embodiment, switching between them is accomplished by simply sending a control signal to the motor 19, and their movement is also carried out by the photosensor 31°. 32 without giving any impact to the lower visual means A2, there is no optical distortion caused by moving the lower visual means A2, and the image is extremely stable.
そして所定の検査が全て終了すればXYステージB1に
よりシャーレCを開口部50通じてボックスD外部へ搬
出し、シャーレCを次のシャーレと取り替えて上記と同
様の作業を反復すればよい。When all the predetermined inspections are completed, the XY stage B1 carries the Petri dish C out of the box D through the opening 50, replaces the Petri dish C with the next Petri dish, and repeats the same operation as described above.
本発明にかかる微小生物体検査装置は、視野サイズの異
なる視覚手段を複数個配設し、広視野と狭視野を別々の
視覚手段によって撮像する構成としているので、一つの
視覚手段が担当する拡大倍率の幅を狭くすることが可能
で、該視覚手段に用いるレンズの収差を小さくすること
が容易となるため、従来一つの視覚手段と一つのズーム
レンズを用いていたときには困難であったレンズ周辺部
におけるの微小生物体の形状や面積の測定等もできるよ
うになり、撮像視野全域にわたる高精度な撮像が可能と
なる。更に本装置は、内部或いは外部に接続されるコン
ピューターのソフトウェアを変更するだけで、阻止円の
計測や最小発育阻止濃度の計測も可能となり、一台の装
置で微小生物体についての各種の検査ができるものであ
る。また視野サイズの変更にともなってその都度レンズ
を取り替える方法と比べると、手間と時間が大幅に節約
でき、微小生物体検査作業の格段の合理化がはかれる。The microorganism inspection device according to the present invention has a configuration in which a plurality of visual means with different visual field sizes are arranged and images are taken by separate visual means for a wide field of view and a narrow field of view. It is possible to narrow the range of magnification, and it is easy to reduce the aberration of the lens used for the visual means, so it is easy to reduce the aberrations around the lens, which was difficult when conventionally using one visual means and one zoom lens. It is now possible to measure the shape and area of microorganisms in the area, making it possible to capture images with high precision over the entire imaging field of view. Furthermore, this device can measure the inhibition circle and minimum inhibitory concentration by simply changing the software of the computer connected internally or externally, making it possible to perform various tests on microorganisms with a single device. It is possible. Furthermore, compared to the method of replacing the lens each time the field of view size changes, it can significantly save time and effort, and greatly streamline microorganism inspection work.
更に各視覚手段の受光部は撮像時には被検体操像位置の
垂直上方に配置されるので、視覚手段と照明光源との位
置関係は常に一定に保たれ、入射光量や入射角度め相違
等による測定誤差もない。Furthermore, since the light-receiving part of each visual means is placed vertically above the position of the subject's gymnastics image during imaging, the positional relationship between the visual means and the illumination light source is always kept constant, and measurements due to differences in the amount of incident light or the angle of incidence can be avoided. There is no error.
また第2の発明は、視覚手段及びシャーレの搬送手段を
外部光線を遮断したボックス内で構成したので、測定時
における外乱光の影響を完全に排除することができ、培
地表面の均一照明が可能となって測定結果の信頼性を高
めることができる。In addition, in the second invention, since the visual means and the Petri dish transport means are constructed in a box that blocks external light, the influence of ambient light during measurement can be completely eliminated, and the surface of the culture medium can be uniformly illuminated. Therefore, the reliability of the measurement results can be increased.
そして更にXYステージでシャーレを搬送する構成とし
ているので、視覚手段下方においてシャーレ位置を微調
整することが可能となり、視野サイズに応じて分割され
た培地表面を適宜選択することが可能となって、培地表
面全域にわたる高精度な測定が可能となるものである。Furthermore, since the Petri dish is transported by an XY stage, it is possible to finely adjust the Petri dish position below the visual means, and it is possible to appropriately select the divided culture medium surface according to the field of view size. This enables highly accurate measurement over the entire surface of the culture medium.
このように、本発明にかかる微小生物体検査装置を用い
れば、従来熟練した研究者や作業者が行っていた微小生
物体の検査工程が自動化でき、多大の時間と労力が省略
できるばかりでな(、作業者が媒介する雑菌もなくなり
、測定精度の向上が期待できるとともに検査結果の信頼
性も格段に高まる。As described above, by using the microorganism testing device according to the present invention, it is possible to automate the microorganism testing process that was conventionally performed by skilled researchers and workers, and it not only saves a great deal of time and effort. (There will be no germs transmitted by workers, and we can expect an improvement in measurement accuracy, as well as a marked increase in the reliability of test results.
第1図は本発明にかかる微小生物体検査装置の一実施例
における各手段の配置状態を示す説明図、第2図(イ)
は同実施例における下位視覚手段の要部を示す平面図、
第2図(ロ)は同実施例における上位視覚手段と下位視
覚手段との配置状態を示す説明用側面図、第2図(ハ)
は同実施例における上位視覚手段の説明用平面図、第2
図(ニ)は同実施例における下位視覚手段の退避機構を
示す説明用背面図、第3図(イ)は同実施例におけるシ
ャーレの搬送手段の説明用平面図、第3図(ロ)は同搬
送手段の説明用側面図、第4図は同実施例における反射
ミラーの取付は方法を示す説明用斜視図、第5図は同実
施例におけるシャーレの照明方法を示す説明用斜視図で
ある。
A:視覚手段、 B:搬送手段、
C:シャーレ、 D:ボックス、Aに上位視覚手
段、 A2:下位視覚手段、Bt:xyステージ、
L2: CCD。
3;低倍率ズームレンズ、
4.7:反射ミラー、
5:高倍率ズームレンズ、
6:鏡筒、 8,9:側板、
10.11:ミラーホルダー
10a、lla:ミラー押え、
12.13:ツマミ、
14、15ニスチツピングモーター、
16.17:ベルト、 18:基台、
19:モーター、
20;凸部、 21:台座、
22:凹部、 23:咬合部材、24:基板、
25:当て板、26:回転軸、 27
:アーム、28:突部、 29:引張バネ、3
0:遮光板、
31.32.33.34 :フオトセンサー、35.
36:遮光板、 50;開口部、51:シャーレ
載置台、
52.53:軌道、 54:走行部、55:シ
ャフト、 56:挿通孔、57.58:フォーク、
59:移動部、60.61:脚車部、 6
2:車輪、63ニスチツピングモーター、
65:ベルト、 66:ベルトハンガー、67:
プーリー、
68ニスチツピングモーター、
69;プーリー、
70:ベルト、 71:ベルトハンガー、72.
73a、73b: フォトセンサー、74a、 74b
、 75.76=遮光板、77a、77b:挾持凹部、
78:板バネ、79:蛍光灯、
(ニ)
j1211
(ハ)FIG. 1 is an explanatory diagram showing the arrangement of each means in an embodiment of the microorganism testing device according to the present invention, and FIG. 2 (A)
is a plan view showing the main part of the lower visual means in the same embodiment,
FIG. 2(b) is an explanatory side view showing the arrangement of the upper visual means and lower visual means in the same embodiment, and FIG. 2(c)
is an explanatory plan view of the upper visual means in the same embodiment;
Figure (d) is an explanatory rear view showing the evacuation mechanism of the lower visual means in the same embodiment, Figure 3 (a) is an explanatory plan view of the petri dish conveying means in the same embodiment, and Figure 3 (b) is an explanatory rear view showing the evacuation mechanism of the lower visual means in the same embodiment. FIG. 4 is an explanatory side view of the conveying means, FIG. 4 is an explanatory perspective view showing how to attach the reflecting mirror in the same embodiment, and FIG. 5 is an explanatory perspective view showing the method of illuminating the petri dish in the same embodiment. . A: Visual means, B: Transport means, C: Petri dish, D: Box, A is upper visual means, A2: Lower visual means, Bt: xy stage, L2: CCD. 3; low magnification zoom lens, 4.7: reflective mirror, 5: high magnification zoom lens, 6: lens barrel, 8, 9: side plate, 10.11: mirror holder 10a, lla: mirror holder, 12.13: knob , 14, 15 Nis tipping motor, 16.17: Belt, 18: Base, 19: Motor, 20; Convex portion, 21: Pedestal, 22: Recessed portion, 23: Occlusal member, 24: Substrate,
25: Backing plate, 26: Rotating shaft, 27
: Arm, 28: Protrusion, 29: Tension spring, 3
0: Light shielding plate, 31.32.33.34: Photo sensor, 35.
36: Light shielding plate, 50; Opening, 51: Petri dish mounting table, 52.53: Track, 54: Running part, 55: Shaft, 56: Insertion hole, 57.58: Fork,
59: Moving part, 60.61: Caster part, 6
2:Wheel, 63Nippon motor, 65:Belt, 66:Belt hanger, 67:
Pulley, 68 Tipping motor, 69; Pulley, 70: Belt, 71: Belt hanger, 72.
73a, 73b: Photo sensor, 74a, 74b
, 75.76=shading plate, 77a, 77b: clamping recess,
78: Leaf spring, 79: Fluorescent light, (d) j1211 (c)
Claims (1)
微小生物体の生育状態や分布状態を自動的に認識する微
小生物体検査装置において、 被検体表面の上方における垂直同一線上には、撮像視野
の異なる複数個の視覚手段を配設し、該視覚手段中の任
意の視覚手段によって微小生物体を撮像するときには、
他の視覚手段は前記視覚手段の撮像視野から退避するこ
とを特徴とする微小生物体検査装置。 2)最上位の視覚手段を被検体表面の垂直上方に固定配
置し、他の視覚手段は該視覚手段中の任意の視覚手段を
用いるときには、該視覚手段より下方の視覚手段は、適
宜側方へ退避することを特徴とする前記特許請求の範囲
第一項記載の微小生物体検査装置。 3)外部光線を遮断し、且つ前面適所にシャーレ搬入出
用の開口部を設けたボックス内に、被検体表面を撮像す
る視覚手段と、シャーレを搬送する搬送手段を設け、前
記視覚手段はシャーレ上方における垂直同一線上に撮像
視野の異なるものを複数個配設するとともに、該視覚手
段中の任意の視覚手段を使用するときは、使用中の視覚
手段よりも下位の視覚手段は、前記視覚手段の撮像視野
から退避せしめ、また、搬送手段は、弾性付勢された把
持機構を有したXYステージよりなり、該搬送手段はシ
ャーレをボックス内外に搬入出するとともに、ボックス
内の視覚手段下方において制御信号にもとづき適宜移動
可能としたことを特徴とする微小生物体検査装置。[Scope of Claims] 1) In a microorganism testing device that automatically recognizes the growth state and distribution state of microorganisms distributed on the surface layer of a test object such as a petri dish or a preparation, A plurality of visual means having different imaging fields of view are arranged, and when a microscopic organism is imaged by any visual means among the visual means,
A microorganism inspection apparatus characterized in that the other visual means is evacuated from the imaging field of the visual means. 2) When the uppermost visual means is fixedly arranged vertically above the surface of the subject and any of the other visual means are used, the visual means below the visual means can be placed on the side as appropriate. The microorganism testing device according to claim 1, wherein the microorganism testing device is retracted to 3) A visual means for imaging the surface of the subject and a transport means for transporting the petri dish are provided in a box that blocks external light and has an opening at an appropriate place in the front for loading and unloading the petri dish, and the visual means When a plurality of visual means with different imaging fields are arranged on the same vertical line above and any visual means among the visual means is used, the visual means lower than the visual means in use is the same as the visual means mentioned above. The transport means is made up of an XY stage having an elastically biased gripping mechanism, and the transport means transports the Petri dish into and out of the box, and is controlled below the visual means inside the box. A microorganism testing device characterized in that it can be moved appropriately based on a signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5888786A JPS62215383A (en) | 1986-03-17 | 1986-03-17 | Apparatus for inspecting microscopic life |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5888786A JPS62215383A (en) | 1986-03-17 | 1986-03-17 | Apparatus for inspecting microscopic life |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62215383A true JPS62215383A (en) | 1987-09-22 |
JPH0433434B2 JPH0433434B2 (en) | 1992-06-03 |
Family
ID=13097287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5888786A Granted JPS62215383A (en) | 1986-03-17 | 1986-03-17 | Apparatus for inspecting microscopic life |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62215383A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468705A2 (en) * | 1990-07-25 | 1992-01-29 | Hitachi, Ltd. | Method and apparatus for investigating and controlling an object |
JPH08287261A (en) * | 1995-11-27 | 1996-11-01 | Hitachi Ltd | Image recognition system and image recognition control system |
JP2003005079A (en) * | 2001-06-21 | 2003-01-08 | Nikon Corp | Microscopic apparatus |
JP2006507836A (en) * | 2002-11-27 | 2006-03-09 | スリーエム イノベイティブ プロパティズ カンパニー | Loading and discharging system for biological growth plate scanner |
JP2007309819A (en) * | 2006-05-19 | 2007-11-29 | Central Res Inst Of Electric Power Ind | Plankton observation device, plankton observation method, plankton measurement device, plankton measurement method, and plankton measurement program |
US7738689B2 (en) | 2003-09-05 | 2010-06-15 | 3M Innovative Properties Company | Counting biological agents on biological growth plates |
US7865008B2 (en) | 2003-09-04 | 2011-01-04 | 3M Innovative Properties Company | Biological growth plate scanner with automated intake |
US7901933B2 (en) | 2002-11-27 | 2011-03-08 | 3M Innovative Properties Company | Methods of processing a biological growth plate in a biological growth plate scanner |
JP2011180411A (en) * | 2010-03-02 | 2011-09-15 | Yokogawa Electric Corp | Confocal microscopic system |
WO2015133185A1 (en) * | 2014-03-04 | 2015-09-11 | 富士フイルム株式会社 | Device, method, and program for cell image acquisition |
JP2016189939A (en) * | 2015-03-31 | 2016-11-10 | 株式会社コーナン・メディカル | Corneal observation device for transplantation and observation system provided with the same |
JP2017104077A (en) * | 2015-12-11 | 2017-06-15 | 大日本印刷株式会社 | Cell container mounting unit and installation method using the same |
US9933446B2 (en) | 2008-03-04 | 2018-04-03 | 3M Innovative Properties Company | Processing of biological growth media based on measured manufacturing characteristics |
JPWO2021060359A1 (en) * | 2019-09-26 | 2021-04-01 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3582390B2 (en) * | 1999-01-13 | 2004-10-27 | 松下電器産業株式会社 | Automatic search device for fine objects |
-
1986
- 1986-03-17 JP JP5888786A patent/JPS62215383A/en active Granted
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403735A (en) * | 1990-07-25 | 1995-04-04 | Hitachi, Ltd. | Method and apparatus for investigating and controlling an object |
EP0468705A2 (en) * | 1990-07-25 | 1992-01-29 | Hitachi, Ltd. | Method and apparatus for investigating and controlling an object |
JPH08287261A (en) * | 1995-11-27 | 1996-11-01 | Hitachi Ltd | Image recognition system and image recognition control system |
JP4631218B2 (en) * | 2001-06-21 | 2011-02-16 | 株式会社ニコン | Microscope equipment |
JP2003005079A (en) * | 2001-06-21 | 2003-01-08 | Nikon Corp | Microscopic apparatus |
JP2006507836A (en) * | 2002-11-27 | 2006-03-09 | スリーエム イノベイティブ プロパティズ カンパニー | Loading and discharging system for biological growth plate scanner |
US7901933B2 (en) | 2002-11-27 | 2011-03-08 | 3M Innovative Properties Company | Methods of processing a biological growth plate in a biological growth plate scanner |
US7865008B2 (en) | 2003-09-04 | 2011-01-04 | 3M Innovative Properties Company | Biological growth plate scanner with automated intake |
US7738689B2 (en) | 2003-09-05 | 2010-06-15 | 3M Innovative Properties Company | Counting biological agents on biological growth plates |
US7957575B2 (en) | 2003-09-05 | 2011-06-07 | 3M Innovative Properties Company | Counting biological agents on biological growth plates |
JP2007309819A (en) * | 2006-05-19 | 2007-11-29 | Central Res Inst Of Electric Power Ind | Plankton observation device, plankton observation method, plankton measurement device, plankton measurement method, and plankton measurement program |
US9933446B2 (en) | 2008-03-04 | 2018-04-03 | 3M Innovative Properties Company | Processing of biological growth media based on measured manufacturing characteristics |
JP2011180411A (en) * | 2010-03-02 | 2011-09-15 | Yokogawa Electric Corp | Confocal microscopic system |
WO2015133185A1 (en) * | 2014-03-04 | 2015-09-11 | 富士フイルム株式会社 | Device, method, and program for cell image acquisition |
JP2016189939A (en) * | 2015-03-31 | 2016-11-10 | 株式会社コーナン・メディカル | Corneal observation device for transplantation and observation system provided with the same |
JP2017104077A (en) * | 2015-12-11 | 2017-06-15 | 大日本印刷株式会社 | Cell container mounting unit and installation method using the same |
JPWO2021060359A1 (en) * | 2019-09-26 | 2021-04-01 |
Also Published As
Publication number | Publication date |
---|---|
JPH0433434B2 (en) | 1992-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8089622B2 (en) | Device and method for evaluating defects in the edge area of a wafer and use of the device in inspection system for wafers | |
JPS62215383A (en) | Apparatus for inspecting microscopic life | |
CN103765291B (en) | Its method of imaging system, box and use | |
US8817249B2 (en) | Device and method for inspecting moving semiconductor wafers | |
US5105147A (en) | Wafer inspection system | |
CN104020556B (en) | Imaging system and technology | |
KR100634652B1 (en) | PCB inspection device | |
WO2006118152A1 (en) | Visual inspection apparatus, visual inspection method and periphery inspection unit attachable to visual inspection apparatus | |
JPH0150844B2 (en) | ||
JPH0961365A (en) | Surface defect inspecting device | |
TW200908184A (en) | Automatic wafer edge inspection and review system | |
JP2001524205A (en) | Automatic inspection system with brightfield and darkfield illumination | |
JP4993691B2 (en) | Wafer backside inspection equipment | |
US6399957B1 (en) | Method and apparatus for inspecting appearance of objects by irradiating illumination light on the objects | |
CN118033164A (en) | Safety light curtain for disabling rotation of turntable | |
JPH05160232A (en) | Bonding wire inspecting apparatus | |
JP2018146239A (en) | Defect inspection apparatus, and manufacturing method of defect inspection apparatus | |
US20010021240A1 (en) | X-ray spectroscopic analyzer having sample surface observation mechanism | |
CN112098421B (en) | Dark field detection device | |
US20090279080A1 (en) | Device and method for the inspection of defects on the edge region of a wafer | |
JP4331306B2 (en) | Image capture device | |
JP2003021787A (en) | Observation device | |
JP2017053775A (en) | Apparatus for imaging inside of light-transmissive object, and inspection apparatus | |
JPH05118999A (en) | X-ray analyzing device | |
JP2018189475A (en) | Lens checker |