JPS62211914A - Device for vapor growth of semiconductor thin film - Google Patents
Device for vapor growth of semiconductor thin filmInfo
- Publication number
- JPS62211914A JPS62211914A JP5355286A JP5355286A JPS62211914A JP S62211914 A JPS62211914 A JP S62211914A JP 5355286 A JP5355286 A JP 5355286A JP 5355286 A JP5355286 A JP 5355286A JP S62211914 A JPS62211914 A JP S62211914A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- thin film
- semiconductor thin
- holes
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims description 23
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 238000001947 vapour-phase growth Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 18
- 239000000758 substrate Substances 0.000 description 9
- 239000007795 chemical reaction product Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体薄膜気相成長装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor thin film vapor phase growth apparatus.
(従来の技術)
従来の半導体薄膜気相成長用の反応炉を第8図(A)、
(B)、(C)に示す。第8図(A)において基板lは
カーボンサセプタ2−1−におかれ外部よりRFコイル
3により、高周波誘導加熱され所定の温度に保たれてい
る。反応管4−L部のガス導入口23より、キャリアガ
スと共に導入された原料ガス5は基板付近で熱分解等の
反応をおこし、基板1」二に薄膜を堆積する。反応終了
後のガスは排気口6より掴気される。薄膜の均一性をあ
げるために成長中はカーボンサセプタ2を回転シャフト
7で回転させる。8は冷却水である。(Prior Art) A conventional reactor for vapor phase epitaxy of semiconductor thin films is shown in Fig. 8(A).
Shown in (B) and (C). In FIG. 8(A), a substrate 1 is placed in a carbon susceptor 2-1- and is heated by high-frequency induction from the outside by an RF coil 3 and maintained at a predetermined temperature. The raw material gas 5 introduced together with the carrier gas through the gas inlet 23 of the reaction tube 4-L section causes a reaction such as thermal decomposition near the substrate, thereby depositing a thin film on the substrate 1''2. After the reaction is completed, the gas is captured through the exhaust port 6. To improve the uniformity of the thin film, the carbon susceptor 2 is rotated by a rotating shaft 7 during growth. 8 is cooling water.
また第8図(B)はGaAs、GaAJIAs等の化合
物半導体薄膜の気相成長装置を示す。Further, FIG. 8(B) shows a vapor phase growth apparatus for compound semiconductor thin films such as GaAs and GaAJIAs.
GaAs、GaA文As等の薄膜気相成長装置では、反
応管を空気にさらすと!膜の特性が劣化するので、これ
を防止するため図示のように反応管の下部に基板交換用
の前室9を設ける。図は成長中の状態を示している。基
板交換時には回転シャフト7を下げ、ゲートバルブ10
を閉じ、反応管4と前室9を遮断して、基板交換用の窓
から行う。成長中は第8図(A)と同様であるが、回転
シャフト7の途中にし拳へい板11を設けて反応終了後
のガスが前室9へ流れこんで反応生成物が前室に付着す
るのを防止する構造になっている。In thin film vapor phase growth equipment for GaAs, GaAs, etc., if the reaction tube is exposed to air! To prevent this from deteriorating the properties of the membrane, a front chamber 9 for substrate exchange is provided at the bottom of the reaction tube as shown in the figure. The figure shows the state during growth. When replacing the board, lower the rotating shaft 7 and remove the gate valve 10.
is closed, the reaction tube 4 and the front chamber 9 are shut off, and the substrate exchange is performed through the window for substrate exchange. During growth, it is the same as in FIG. 8(A), but a fist plate 11 is provided in the middle of the rotating shaft 7, so that the gas after the reaction is completed flows into the front chamber 9, and the reaction products adhere to the front chamber. The structure is designed to prevent
なお12は基板交換用窓フランジである。Note that 12 is a window flange for board replacement.
次に第8図(C)は大量生産用の装置であり、キャップ
13aを有し角錐台状のカーボンサセプタ13が用いら
れ、そのカーボンサセプタ13の各側面に基板lが設置
できるようになっている。Next, FIG. 8(C) shows an apparatus for mass production, in which a truncated pyramid-shaped carbon susceptor 13 having a cap 13a is used, and a substrate l can be installed on each side of the carbon susceptor 13. There is.
機能的には第8図(B)と同様である。なおこの場合反
応管径が大きくなるので、図示のように排気口6を複数
設け、ガスの流れが均一となるようにすることが好まし
い。図中では排気口は2つとなっている。第8図(D)
は第8図(C)の反応管の横断面図である。第8図(A
)、(B)または(C)において同符号は同じものを示
す。It is functionally similar to FIG. 8(B). In this case, since the diameter of the reaction tube becomes large, it is preferable to provide a plurality of exhaust ports 6 as shown in the figure to ensure a uniform gas flow. In the figure, there are two exhaust ports. Figure 8 (D)
is a cross-sectional view of the reaction tube of FIG. 8(C). Figure 8 (A
), (B) or (C), the same symbols indicate the same thing.
第8図(A)〜(D)において(ア)、(イ)は反応管
内のガス流を示す。In FIGS. 8(A) to 8(D), (a) and (b) show gas flows within the reaction tube.
(発明が解決しようとする問題点)
しかし第8図(A)、(B)の装置では反応管4の排気
口側(ア)と反対側(イ)のガス速度は(ア)側で大き
くなり(イ)側で小さくなる。このため(イ)側でガス
の巻き上りが見られ、反応管内壁のサセプタ2上流部に
反応生成物が付着する。一方第8図(C)では排気口6
と排気口6の中間(イ)の部分(第8図(D)参照)で
上記と同じことがいえる。反応管に付着した生成物は極
めて不安定に付着しているため成長中に基板1上へ落下
し薄膜の表面欠陥の原因となる。これを防止するにはガ
ス流量を増加させればよいが、原料収率の低下がみられ
経済性が損なわれる。また、排気口の数を増加させるこ
とも考えられるが、構造上の制約のためこの方法は困難
が伴なう。(Problem to be solved by the invention) However, in the apparatuses shown in FIGS. 8(A) and (B), the gas velocity on the exhaust port side (A) of the reaction tube 4 and the opposite side (B) is large on the side (A). It becomes smaller on the side (A). For this reason, gas swirling is observed on the (a) side, and reaction products adhere to the upstream portion of the susceptor 2 on the inner wall of the reaction tube. On the other hand, in Fig. 8(C), the exhaust port 6
The same thing can be said for the middle (A) portion of the exhaust port 6 (see FIG. 8(D)). Since the products adhering to the reaction tube are extremely unstable, they fall onto the substrate 1 during growth, causing surface defects in the thin film. Although this can be prevented by increasing the gas flow rate, the yield of raw materials decreases, which impairs economic efficiency. It is also possible to increase the number of exhaust ports, but this method is difficult due to structural constraints.
(問題点を解決するための手段)
本発明はこのような半導体薄膜気相成長装置の欠点に鑑
みなされたものであり、これらの従来の半導体薄膜気相
成長装置の欠点を解消するものである。(Means for Solving the Problems) The present invention has been made in view of the drawbacks of such semiconductor thin film vapor phase growth apparatuses, and is intended to eliminate these drawbacks of conventional semiconductor thin film vapor phase growth apparatuses. .
すなわち本発明は、薄膜気相成長装置において、排気口
を設けた円筒部の内側に円筒状じゃへい部を設け、該し
帝へい部に透孔を排気口の数の2倍数あけることにより
、均一排気することを特徴とする半導体薄膜気相成長装
置を提供するものである。That is, the present invention provides a thin film vapor phase growth apparatus, by providing a cylindrical jacket part inside a cylindrical part provided with an exhaust port, and opening twice the number of through holes in the jacket part as the number of exhaust ports. The present invention provides a semiconductor thin film vapor phase growth apparatus characterized by uniform exhaustion.
(実施例) 次に本発明を図示の実施例に従って説明する。(Example) Next, the present invention will be explained according to illustrated embodiments.
第1図は従来の半導体薄膜気相成長装置のうち前室を有
さない型(第8図(A)参照)に対応する本発明の実施
例の要部断面図であり、排気口取り付は用円筒部14の
内側にじゃへい用円筒部15を設けて閉空間21ができ
る構造となっている。しゃへい用円筒部15には排気口
の内径と同等の口径を有する透孔が排気口の数の2倍数
あけられている。第2図(A)は第1図のA−A ’線
断面図であり、第2図(B)、(C)は他例の実施例で
ある。同図から明らかなように、し牛へい円筒部15の
透孔15aの位置は排気口6の間にくるよう(排気口が
2個以上の場合)、もしくは透孔15aの間に排気口6
がくるよう(排気口が1個の場合)に配置される。第2
図において(A)、(B)、(C)は各々排気口l、2
.3個の場合である。第2図中にガスの流れを矢印で示
すが、し壱へい用円筒部15の透孔15aに分割されて
排気されることから、あたかも排気口が2倍になったの
と等価となり、反応管中のガスの流れは均一となる。こ
の結果、ガス速度の遅い部分でのガスの巻き上げは抑制
される。FIG. 1 is a sectional view of a main part of an embodiment of the present invention corresponding to a conventional semiconductor thin film vapor phase growth apparatus that does not have a front chamber (see FIG. 8(A)). The structure is such that a blocking cylindrical part 15 is provided inside the cylindrical part 14 to create a closed space 21. The shielding cylindrical portion 15 has twice the number of through holes as the number of exhaust ports, each having a diameter equivalent to the inner diameter of the exhaust ports. FIG. 2(A) is a sectional view taken along the line AA' in FIG. 1, and FIGS. 2(B) and 2(C) are other embodiments. As is clear from the figure, the position of the through hole 15a of the cylindrical portion 15 is such that it is located between the exhaust ports 6 (if there are two or more exhaust ports), or the exhaust port 15a is located between the through holes 15a.
(if there is one exhaust port). Second
In the figure, (A), (B), and (C) are exhaust ports 1 and 2, respectively.
.. This is the case of three pieces. The flow of gas is shown by arrows in Figure 2, but since it is divided and exhausted through the through holes 15a of the cylindrical part 15, it is equivalent to doubling the number of exhaust ports, and the reaction takes place. The flow of gas in the tube becomes uniform. As a result, gas swirling up in areas where the gas velocity is low is suppressed.
実際に第1図のようにじゃへい用円筒の内径を反応管径
に一致させた構造において以下のパラメータを用いた場
合、サセプタ上流側の反応管内壁への反応生成物の付着
が防止でき、薄膜の表面欠陥は減少した。In fact, when the following parameters are used in a structure in which the inner diameter of the blocking cylinder matches the diameter of the reaction tube as shown in Figure 1, it is possible to prevent reaction products from adhering to the inner wall of the reaction tube on the upstream side of the susceptor. The surface defects of the thin film were reduced.
以下に第1図の装置における反応管径と排気口数とじヤ
へい用円筒部の透孔の孔径との関係を例示する。The relationship between the diameter of the reaction tube, the number of exhaust ports, and the diameter of the through hole in the cylindrical part for the barrier in the apparatus shown in FIG. 1 will be illustrated below.
反応管径(璽層)排気口数(個)し◆へい穴径(腸鵬)
第3図は本発明の他例の要部断面図であり、第1図のし
牛へい用円筒部15に代えてろうと状しゃへい体16を
用い、その基部16aの内径を反応管より小さくした例
である。透孔は基部16aに設けられる。この実施例に
よればろうと状としてシャフト周辺から排気することに
よりガスの流れの均一性が一層向上する。Reaction tube diameter (glazed layer), number of exhaust ports (pieces), and hole diameter (diaphragm)
FIG. 3 is a sectional view of a main part of another example of the present invention, in which a funnel-shaped shield 16 is used in place of the cylindrical portion 15 for cow shielding shown in FIG. 1, and the inner diameter of the base 16a is smaller than that of the reaction tube. This is an example. A through hole is provided in the base 16a. According to this embodiment, the uniformity of the gas flow is further improved by discharging the gas from around the shaft in a funnel shape.
これらの点景外は第2図の実施例と同様であり、同図と
同符号は同じものを意味する。Components other than the scenery are the same as those in the embodiment shown in FIG. 2, and the same reference numerals as in FIG. 2 mean the same things.
第4図は第8図(B)、(C)のように前室9を有する
半導体薄膜気相成長装置における実施例を示す要部断面
図であり、17がしやへい用円筒部である。FIG. 4 is a sectional view of a main part showing an embodiment of a semiconductor thin film vapor phase growth apparatus having a front chamber 9 as shown in FIGS. .
また第5図はしゃへい用円筒部18と反応生成物の前室
への付着を防止するしやへい板11を用いて閉空間21
をつくっている。しやへい板11は回転シャフト7に固
定されている。In addition, FIG. 5 shows a closed space 21 using a shielding cylindrical part 18 and a shielding plate 11 for preventing reaction products from adhering to the front chamber.
is making. The shield plate 11 is fixed to the rotating shaft 7.
第4.5図ともし僧へい用円筒部17.18の透孔の配
置等は第2図と同様である。FIG. 4.5 The arrangement of the through holes in the cylindrical part 17, 18 for the shield and the like are the same as in FIG. 2.
第6図はさらに本発明の半導体薄膜気相成長装置の他例
を示す要部断面図であり、しゃへい用円筒部19の内側
にさらに同様のしやへい用円筒部20を設けたものであ
る。第7図に第6図の装置のA−A ’線断面図を示す
。この場合しゃへい用円筒部20の透孔20aの数は先
と同様にしやへい用円筒19の透孔19aの数の2倍と
する0図中21.22は閉空間を示す。FIG. 6 is a sectional view of a main part showing another example of the semiconductor thin film vapor phase growth apparatus of the present invention, in which a similar shielding cylindrical part 20 is further provided inside the shielding cylindrical part 19. . FIG. 7 shows a sectional view taken along line A-A' of the device shown in FIG. 6. In this case, the number of through holes 20a in the shielding cylinder 20 is twice the number of through holes 19a in the shielding cylinder 19 as before. 21.22 in the figure indicates a closed space.
第6図及び第7図において、−1−述した以外は前記第
1〜5図について述べたものと同様である。In FIGS. 6 and 7, the points other than those mentioned above are the same as those described with respect to FIGS. 1 to 5 above.
(発明の効果)
しゃへい用円筒部に排気口の2倍の数の透孔をあけ、分
割して排気することにより、反応管中のガスの流れが均
一となり、ガスの巻き上げを抑制することができる。こ
の結果反応生成物のサセプタ」1流側への付着がなくな
り、薄膜の表面欠陥がなくなる。したがって本発明装置
によれば、原料収率の低下を招くことなく高品質の半導
体薄膜を成長させることができる。(Effect of the invention) By making twice as many holes as the exhaust ports in the shielding cylindrical part and discharging the reactor separately, the flow of gas in the reaction tube becomes uniform, and gas swirling can be suppressed. can. As a result, adhesion of reaction products to the susceptor's first flow side is eliminated, and surface defects in the thin film are eliminated. Therefore, according to the apparatus of the present invention, a high quality semiconductor thin film can be grown without reducing the raw material yield.
第1図は本発明の半導体の薄膜気相成長装置の実施例の
要部断面図、第2図(A)は第1図のA−A’線断面図
、同図(B)、(C)は他例の断面図である。
第3〜第6図は本発明装置の他例の要部断面図であり、
第7図は第6図のA−A’線断面図である。
第8図(A)、(B)、(C)は従来の半導体薄膜気相
成長装置の断面図であり、第8図CD)は第8図(C)
の反応管の横断面図を示す。
符号の説明
1・・・基板
2・・・サセプタ
4・・・反応管
5・・・原料ガス
6・・・排気口
ア・・・回転シャフト
9・・・前室
11・・・しゃへい板
13・・・サセプタ
14・・・排気口取り付は用円筒部
15・・・し壱へい用円筒部
15a・・・透孔
第 1 図
第 3 図
第 2 図
(A) (B)(C)
第 4 図
第 5 図FIG. 1 is a cross-sectional view of essential parts of an embodiment of the semiconductor thin film vapor phase growth apparatus of the present invention, FIG. 2 (A) is a cross-sectional view taken along the line AA' in FIG. ) is a sectional view of another example. 3 to 6 are sectional views of main parts of other examples of the device of the present invention,
FIG. 7 is a sectional view taken along the line AA' in FIG. 6. Figures 8(A), (B), and (C) are cross-sectional views of a conventional semiconductor thin film vapor phase growth apparatus, and Figure 8(CD) is a cross-sectional view of a conventional semiconductor thin film vapor phase growth apparatus.
1 shows a cross-sectional view of a reaction tube. Explanation of symbols 1... Substrate 2... Susceptor 4... Reaction tube 5... Raw material gas 6... Exhaust port a... Rotating shaft 9... Front chamber 11... Shield plate 13 ...Susceptor 14...Cylindrical part 15 for mounting the exhaust port...Cylindrical part 15a...Through hole No. 1 Fig. 3 Fig. 2 Fig. 2 (A) (B) (C) Figure 4 Figure 5
Claims (1)
側に円筒状しゃへい部を設け、該しゃへい部に透孔を排
気口の数の2倍数あけることにより、均一排気すること
を特徴とする半導体薄膜気相成長装置。The thin film vapor phase growth apparatus is characterized in that a cylindrical shield part is provided inside a cylindrical part provided with an exhaust port, and the shield part is provided with through holes twice the number of exhaust ports to uniformly exhaust the air. Semiconductor thin film vapor phase growth equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5355286A JPH0779088B2 (en) | 1986-03-13 | 1986-03-13 | Semiconductor thin film vapor phase growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5355286A JPH0779088B2 (en) | 1986-03-13 | 1986-03-13 | Semiconductor thin film vapor phase growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62211914A true JPS62211914A (en) | 1987-09-17 |
JPH0779088B2 JPH0779088B2 (en) | 1995-08-23 |
Family
ID=12945959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5355286A Expired - Lifetime JPH0779088B2 (en) | 1986-03-13 | 1986-03-13 | Semiconductor thin film vapor phase growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0779088B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4992044A (en) * | 1989-06-28 | 1991-02-12 | Digital Equipment Corporation | Reactant exhaust system for a thermal processing furnace |
WO2005010227A2 (en) * | 2003-07-15 | 2005-02-03 | Elite Optoelectronics, Inc. | Chemical vapor deposition reactor |
US6887315B2 (en) * | 2001-06-26 | 2005-05-03 | Jusung Engineering Co., Ltd. | Vacuum plate having a symmetrical air-load block |
JP2007067213A (en) * | 2005-08-31 | 2007-03-15 | Mitsubishi Electric Corp | Vapor-phase epitaxy device |
US7641939B2 (en) | 2003-07-15 | 2010-01-05 | Bridgelux, Inc. | Chemical vapor deposition reactor having multiple inlets |
US8216419B2 (en) | 2008-03-28 | 2012-07-10 | Bridgelux, Inc. | Drilled CVD shower head |
US8506754B2 (en) | 2007-04-26 | 2013-08-13 | Toshiba Techno Center Inc. | Cross flow CVD reactor |
US8668775B2 (en) | 2007-10-31 | 2014-03-11 | Toshiba Techno Center Inc. | Machine CVD shower head |
CN116575012A (en) * | 2023-05-16 | 2023-08-11 | 无锡金源半导体科技有限公司 | Deposition chamber and thin film deposition equipment having the deposition chamber |
-
1986
- 1986-03-13 JP JP5355286A patent/JPH0779088B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4992044A (en) * | 1989-06-28 | 1991-02-12 | Digital Equipment Corporation | Reactant exhaust system for a thermal processing furnace |
US6887315B2 (en) * | 2001-06-26 | 2005-05-03 | Jusung Engineering Co., Ltd. | Vacuum plate having a symmetrical air-load block |
GB2419896B (en) * | 2003-07-15 | 2007-09-05 | Elite Optoelectronics Inc | Chemical vapor deposition reactor |
WO2005010227A3 (en) * | 2003-07-15 | 2005-06-09 | Heng Liu | Chemical vapor deposition reactor |
GB2419896A (en) * | 2003-07-15 | 2006-05-10 | Elite Optoelectronics Inc | Chemical vapor deposition reactor |
WO2005010227A2 (en) * | 2003-07-15 | 2005-02-03 | Elite Optoelectronics, Inc. | Chemical vapor deposition reactor |
US7641939B2 (en) | 2003-07-15 | 2010-01-05 | Bridgelux, Inc. | Chemical vapor deposition reactor having multiple inlets |
US8216375B2 (en) | 2005-02-23 | 2012-07-10 | Bridgelux, Inc. | Slab cross flow CVD reactor |
JP2007067213A (en) * | 2005-08-31 | 2007-03-15 | Mitsubishi Electric Corp | Vapor-phase epitaxy device |
US8506754B2 (en) | 2007-04-26 | 2013-08-13 | Toshiba Techno Center Inc. | Cross flow CVD reactor |
US8668775B2 (en) | 2007-10-31 | 2014-03-11 | Toshiba Techno Center Inc. | Machine CVD shower head |
US8216419B2 (en) | 2008-03-28 | 2012-07-10 | Bridgelux, Inc. | Drilled CVD shower head |
CN116575012A (en) * | 2023-05-16 | 2023-08-11 | 无锡金源半导体科技有限公司 | Deposition chamber and thin film deposition equipment having the deposition chamber |
Also Published As
Publication number | Publication date |
---|---|
JPH0779088B2 (en) | 1995-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3925566B2 (en) | Thin film forming equipment | |
JPH09330884A (en) | Epitaxial growth device | |
JPS62211914A (en) | Device for vapor growth of semiconductor thin film | |
JP3414475B2 (en) | Crystal growth equipment | |
EP0164928A2 (en) | Vertical hot wall CVD reactor | |
JPH0568096B2 (en) | ||
JPS6070176A (en) | Evaporating cylinder for solid source | |
JPS59207622A (en) | Semiconductor thin film vapor phase growth apparatus | |
JPH0246558B2 (en) | ||
JP2536406B2 (en) | Semiconductor manufacturing equipment | |
JP2733535B2 (en) | Semiconductor thin film vapor deposition equipment | |
JPS62252931A (en) | Vapor growth apparatus for compound semiconductor | |
JPH0773099B2 (en) | Semiconductor vapor deposition equipment | |
JPS6252200A (en) | Device for gaseous-phase epitaxial growth | |
JPS607378B2 (en) | CVD equipment | |
JPH06283444A (en) | Vapor phase growth equipment | |
JPS62244123A (en) | Vapor growth device | |
JPH01291421A (en) | Vapor growth apparatus | |
JPS6153197A (en) | Crystal growth device | |
JPH1145858A (en) | Compound semiconductor vapor growth equipment and its method | |
JPH0744156B2 (en) | Semiconductor thin film vapor phase growth equipment | |
JPH0235814Y2 (en) | ||
JPH0778771A (en) | Semiconductor thin film vapor growth method and device | |
JPH039077B2 (en) | ||
JPH03173419A (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |