JPS62197754A - Measurement of heat conductivity - Google Patents
Measurement of heat conductivityInfo
- Publication number
- JPS62197754A JPS62197754A JP3976386A JP3976386A JPS62197754A JP S62197754 A JPS62197754 A JP S62197754A JP 3976386 A JP3976386 A JP 3976386A JP 3976386 A JP3976386 A JP 3976386A JP S62197754 A JPS62197754 A JP S62197754A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- optical fiber
- laser beam
- heat conductivity
- pulse laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title abstract description 7
- 239000013307 optical fiber Substances 0.000 claims abstract description 15
- 238000000691 measurement method Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 6
- 230000001902 propagating effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、パルスレーザビームの空間エネルギー分布に
係り、パルスレーザと光ファイバーとから溝成された照
射光学系を持つ熱伝導率測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the spatial energy distribution of a pulsed laser beam, and relates to a thermal conductivity measuring method having an irradiation optical system formed of a pulsed laser and an optical fiber.
定では、パルスレーザビームを直接被測定物体に導いて
照射・加熱していた(例えば、マグリッチ。In conventional methods, a pulsed laser beam was directly guided to the object to be measured to irradiate and heat it (for example, Maglich.
セザーリャン、ペレッキー編、「熱物性計測法概論、第
1巻、測定技術のレビューJ (1984年)プレーナ
ムプレス、ニューヨーク; Maglic、 Ceza
irli−yan、 Pe1etsky 編r Com
pendium of Thermopbysical
Property Measurement Meth
ods、 Volume 1 、5urveyof M
easurement Techniques J +
(1984年)。Cesaryan, Pellecky (ed.) Introduction to Thermophysical Properties Measurement, Volume 1, Review of Measurement Techniques J (1984) Plenum Press, New York; Maglic, Ceza
irli-yan, edited by Pe1etsky Com
pendium of Thermopbisical
Property Measurement Meth
ods, Volume 1, 5urveyof M
easurement Techniques J +
(1984).
Plenum Press、 New Yark、 p
308.312.313)。ところがパルスレーザビ
ームの空間エネルギー分布は必ずしも一様でなく、その
ために被測定物体の表面が一様に加熱されず、それが熱
伝導率の測定精度を低下させることが問題となっていた
(例えば。Plenum Press, New Yark, p.
308.312.313). However, the spatial energy distribution of the pulsed laser beam is not necessarily uniform, and as a result, the surface of the object to be measured is not heated uniformly, which poses a problem in that it reduces the measurement accuracy of thermal conductivity (for example, .
前記文献のp320〜326)。p320-326 of said document).
以上の点により、被測定物体を一様な空間エネルギー分
布のパルスレーザビームで照射・加熱できる熱伝導率測
定方法が要望されている。In view of the above points, there is a need for a thermal conductivity measurement method that can irradiate and heat an object to be measured with a pulsed laser beam having a uniform spatial energy distribution.
本発明は上記の点に鑑み、パルスレーザビームの空間二
東ルギー4)4T本−榊Cとすスr、L−1r上f〕測
定精度を向上させる新規な熱伝導率測定方法を提供する
ことを目的とする。In view of the above points, the present invention provides a novel method for measuring thermal conductivity that improves the measurement accuracy of a pulsed laser beam. The purpose is to
この目的は本発明によれば、パルスレーザビームを集光
して光ファイバーの一端に入射させ、他端から出射させ
ることにより達成される。レーザビームを光ファイバー
に入射させると、光ファイバーの中を伝播するビームは
多数回の全反射をくり返し経験するうちに、入射時の空
間的なエネルギーのむらが消失し、平均化されて空間的
一様性のきわめて良いビームが得られる。This object is achieved according to the invention by focusing a pulsed laser beam into one end of an optical fiber and exiting it from the other end. When a laser beam is introduced into an optical fiber, the beam propagating through the optical fiber undergoes multiple total reflections, and as a result, the spatial energy unevenness at the time of incidence disappears and is averaged out, resulting in spatial uniformity. An extremely good beam can be obtained.
以下本発明を図面によって説明する。第1図は本発明の
実施例で、パルスレーザ1から出たレーザビーム2aを
レンズ3で集光し、ステップインデックス型の光ファイ
バー4の一端に入射させる。The present invention will be explained below with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which a laser beam 2a emitted from a pulsed laser 1 is focused by a lens 3 and made incident on one end of a step-index type optical fiber 4.
熱伝導率測定には出力エネルギーの大きいパルスレーザ
が必要なので通常マルチモードでレーザを発振させる。Since thermal conductivity measurement requires a pulsed laser with high output energy, the laser is usually oscillated in multiple modes.
このときレーザを最も注意深く調整シテもレーザビーム
2aの空間エネルギー分布を一様にすることはできない
。At this time, even if the laser is adjusted most carefully, the spatial energy distribution of the laser beam 2a cannot be made uniform.
本実施例のように、レーザビームをステップインデック
ス型の光ファイバーに入射させると、光ファイバーの中
を伝播するビームは多数回の全反射を(り返し経験する
うちに、入射時の空間的なエネルギーのむらが消失し、
平均化されて空間的一様性のきわめて良いビームが得ら
れる。When a laser beam is incident on a step-index optical fiber as in this example, the beam propagating through the optical fiber undergoes multiple total reflections (as it undergoes repeated experiences, the spatial energy unevenness at the time of incidence changes). disappears,
Averaging results in a beam with very good spatial uniformity.
光ファイバー4の他端から出射されるレーザビーム2b
をレンズ5で平行ビームにし、必要に応じて絞り6によ
りビーム径を調節して被測定物体7の表面を照射・加熱
する。このときレーザビーム2Cおよび2dの空間エネ
ルギー分布はきわめて一様性の良いものが得られる。被
測定物体7の裏面の温度上昇は温度計8で測定する。Laser beam 2b emitted from the other end of optical fiber 4
is converted into a parallel beam by a lens 5, and the beam diameter is adjusted by an aperture 6 as necessary to irradiate and heat the surface of the object to be measured 7. At this time, the spatial energy distribution of the laser beams 2C and 2d can be obtained with extremely good uniformity. The temperature rise on the back surface of the object to be measured 7 is measured with a thermometer 8.
本発明は以上に説明したように、光ファイバーを用いる
ことによって一様な空間エネルギー分布を持ったパルス
レーザビームを発生させ、このビームで薄板状の被測定
物体の表面を照射・加熱するものである。As explained above, the present invention uses an optical fiber to generate a pulsed laser beam with a uniform spatial energy distribution, and irradiates and heats the surface of a thin plate-shaped object to be measured with this beam. .
この結果、薄板状の被測定物体の中を表面から裏面に向
って流れる熱は一次元的な流れと見なすことができ、−
次元熱流を仮定した解析式を用いて熱伝導率を算出する
ときの正確さを向上させることが可能である。As a result, the heat flowing inside the thin plate-shaped object to be measured from the front surface to the back surface can be regarded as a one-dimensional flow, and -
It is possible to improve accuracy when calculating thermal conductivity using an analytical formula assuming dimensional heat flow.
第1図は本発明の方法を実施する装置の一例を示す斜視
図である。
1・・・パルスレーザ、4・・・光ファイ/< −,7
・・・被測定物体、8・・・温度計。
指定代理人
2t)
第1図FIG. 1 is a perspective view showing an example of an apparatus for carrying out the method of the present invention. 1...Pulse laser, 4...Optical fiber/<-,7
...Object to be measured, 8...Thermometer. Designated agent 2t) Figure 1
Claims (1)
端に入射させ、他端から出射されるビームで被測定物体
の表面を照射・加熱し、それによって生ずる被測定物体
の温度上昇を測定することを特徴とする熱伝導率測定方
法。A beam from a pulsed laser is focused and input into one end of an optical fiber, and the beam emitted from the other end irradiates and heats the surface of the object to be measured, and the resulting temperature rise in the object is measured. Characteristic thermal conductivity measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3976386A JPS62197754A (en) | 1986-02-25 | 1986-02-25 | Measurement of heat conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3976386A JPS62197754A (en) | 1986-02-25 | 1986-02-25 | Measurement of heat conductivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62197754A true JPS62197754A (en) | 1987-09-01 |
Family
ID=12561980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3976386A Pending JPS62197754A (en) | 1986-02-25 | 1986-02-25 | Measurement of heat conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62197754A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0851221A1 (en) * | 1996-12-23 | 1998-07-01 | European Atomic Energy Community (Euratom) | Measuring head for use in radiant energy flash measuring of the thermal diffusivity of heterogeneous samples |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5922172A (en) * | 1975-10-24 | 1984-02-04 | テクトロニツクス・インコ−ポレイテツド | Absolute value circuit |
-
1986
- 1986-02-25 JP JP3976386A patent/JPS62197754A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5922172A (en) * | 1975-10-24 | 1984-02-04 | テクトロニツクス・インコ−ポレイテツド | Absolute value circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0851221A1 (en) * | 1996-12-23 | 1998-07-01 | European Atomic Energy Community (Euratom) | Measuring head for use in radiant energy flash measuring of the thermal diffusivity of heterogeneous samples |
WO1998028610A1 (en) * | 1996-12-23 | 1998-07-02 | Euratom | Measuring head for use in radiant energy flash measuring of the thermal diffusivity of samples |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4243327A (en) | Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect | |
US4262198A (en) | Broadband optical radiation detector | |
US7937240B2 (en) | Method and device for characterizing, using active pyrometry, a thin-layer material arranged on a substrate | |
JPS59500385A (en) | Methods and means of inspecting the surface quality of solid state materials | |
Kameda et al. | Precise measurement of the temperature of a silicon wafer by an optical-interference contactless thermometer during rapid plasma processing | |
JPH03189547A (en) | Method and device for measuring heat diffusivity | |
JP2001083113A (en) | Method for measuring thermal diffusivity by thermo- reflectance method | |
JPS62197754A (en) | Measurement of heat conductivity | |
Dreyfus et al. | Energy deposition at insulator surfaces below the ultraviolet photoablation threshold | |
CN104964929A (en) | Method for obtaining material thermo-optical coefficient through measuring light spot radius change | |
Bartell et al. | Electron diffraction studies of laser‐pumped molecules. I. Characterization of system and analysis of data | |
Xie et al. | Microscale, bendable thermoreflectance sensor for local measurements of the thermal effusivity of biological fluids and tissues | |
Triebel et al. | Application of the laser-induced deflection (LID) technique for low absorption measurements in bulk materials and coatings | |
JP2012002758A (en) | Measuring method of thermal constant using optical heating method | |
JPH02204701A (en) | Optical system thermal deformation control device and its operating method | |
US7384191B2 (en) | Method and apparatus for measuring spatial temperature distribution of flames | |
JPH01114727A (en) | Radiation temperature measuring instrument | |
CN112197712B (en) | Beam waist radius measuring method and system based on Z scanning | |
Dong et al. | Comparison of photothermal responses under spatial and temporal modulations of CW Gaussian beam excitation: A numerical study | |
Bartell et al. | Electron diffraction studies of laser‐pumped molecules. IV. SF6, experiment and theory | |
Quoc et al. | Phase lock-in thermography for metal walls characterization | |
JP3126362B2 (en) | Method and apparatus for measuring thermal diffusivity | |
JPS5823892B2 (en) | Heat capacity measurement method | |
JPH0476446A (en) | Thermal physical characteristic measuring method | |
Wang | Rear-detection photothermal technique for microscale thermal diffusivity measurement |