[go: up one dir, main page]

JPS62197754A - Measurement of heat conductivity - Google Patents

Measurement of heat conductivity

Info

Publication number
JPS62197754A
JPS62197754A JP3976386A JP3976386A JPS62197754A JP S62197754 A JPS62197754 A JP S62197754A JP 3976386 A JP3976386 A JP 3976386A JP 3976386 A JP3976386 A JP 3976386A JP S62197754 A JPS62197754 A JP S62197754A
Authority
JP
Japan
Prior art keywords
measured
optical fiber
laser beam
heat conductivity
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3976386A
Other languages
Japanese (ja)
Inventor
Akira Ono
晃 小野
Tetsuya Baba
哲也 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3976386A priority Critical patent/JPS62197754A/en
Publication of JPS62197754A publication Critical patent/JPS62197754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure heat conductivity of an object to be measured at a high accuracy, by a method wherein a beam from a pulse laser is made incident to one end of an optical fiber and emitted from the end thereof to irradiate the object being measured and a rise in the temperature is measured. CONSTITUTION:A laser beam 2a from a pulse laser 1 is focused with a lens 3 to be incident into one end of a step index type optical fiber 4. At this point, the laser beam 2a propagates through the optical fiber 4 while being totally reflected repeatedly many times to become uniform spetially by being distributed evenly. The beam is emitted from the other end of the optical fiber 4, made parallel with a lens 5, adjusted in the beam diameter with a diaphragm to irradiate and heat the surface of the object 7 being measured, A rise in the temperature of the object 7 being measured is measured with a thermometer 8 to determine heat conductivity. This makes spatial energy distribution of a pulse laser beam uniform thereby enabling highly accurate measurement of heat conductivity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、パルスレーザビームの空間エネルギー分布に
係り、パルスレーザと光ファイバーとから溝成された照
射光学系を持つ熱伝導率測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the spatial energy distribution of a pulsed laser beam, and relates to a thermal conductivity measuring method having an irradiation optical system formed of a pulsed laser and an optical fiber.

〔従来技術と問題点〕[Prior art and problems]

定では、パルスレーザビームを直接被測定物体に導いて
照射・加熱していた(例えば、マグリッチ。
In conventional methods, a pulsed laser beam was directly guided to the object to be measured to irradiate and heat it (for example, Maglich.

セザーリャン、ペレッキー編、「熱物性計測法概論、第
1巻、測定技術のレビューJ (1984年)プレーナ
ムプレス、ニューヨーク; Maglic、 Ceza
irli−yan、 Pe1etsky 編r Com
pendium of Thermopbysical
Property Measurement Meth
ods、 Volume 1 、5urveyof M
easurement Techniques J +
 (1984年)。
Cesaryan, Pellecky (ed.) Introduction to Thermophysical Properties Measurement, Volume 1, Review of Measurement Techniques J (1984) Plenum Press, New York; Maglic, Ceza
irli-yan, edited by Pe1etsky Com
pendium of Thermopbisical
Property Measurement Meth
ods, Volume 1, 5urveyof M
easurement Techniques J +
(1984).

Plenum Press、 New Yark、 p
 308.312.313)。ところがパルスレーザビ
ームの空間エネルギー分布は必ずしも一様でなく、その
ために被測定物体の表面が一様に加熱されず、それが熱
伝導率の測定精度を低下させることが問題となっていた
(例えば。
Plenum Press, New Yark, p.
308.312.313). However, the spatial energy distribution of the pulsed laser beam is not necessarily uniform, and as a result, the surface of the object to be measured is not heated uniformly, which poses a problem in that it reduces the measurement accuracy of thermal conductivity (for example, .

前記文献のp320〜326)。p320-326 of said document).

以上の点により、被測定物体を一様な空間エネルギー分
布のパルスレーザビームで照射・加熱できる熱伝導率測
定方法が要望されている。
In view of the above points, there is a need for a thermal conductivity measurement method that can irradiate and heat an object to be measured with a pulsed laser beam having a uniform spatial energy distribution.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、パルスレーザビームの空間二
東ルギー4)4T本−榊Cとすスr、L−1r上f〕測
定精度を向上させる新規な熱伝導率測定方法を提供する
ことを目的とする。
In view of the above points, the present invention provides a novel method for measuring thermal conductivity that improves the measurement accuracy of a pulsed laser beam. The purpose is to

〔発明の構成及び作用〕[Structure and operation of the invention]

この目的は本発明によれば、パルスレーザビームを集光
して光ファイバーの一端に入射させ、他端から出射させ
ることにより達成される。レーザビームを光ファイバー
に入射させると、光ファイバーの中を伝播するビームは
多数回の全反射をくり返し経験するうちに、入射時の空
間的なエネルギーのむらが消失し、平均化されて空間的
一様性のきわめて良いビームが得られる。
This object is achieved according to the invention by focusing a pulsed laser beam into one end of an optical fiber and exiting it from the other end. When a laser beam is introduced into an optical fiber, the beam propagating through the optical fiber undergoes multiple total reflections, and as a result, the spatial energy unevenness at the time of incidence disappears and is averaged out, resulting in spatial uniformity. An extremely good beam can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面によって説明する。第1図は本発明の
実施例で、パルスレーザ1から出たレーザビーム2aを
レンズ3で集光し、ステップインデックス型の光ファイ
バー4の一端に入射させる。
The present invention will be explained below with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which a laser beam 2a emitted from a pulsed laser 1 is focused by a lens 3 and made incident on one end of a step-index type optical fiber 4.

熱伝導率測定には出力エネルギーの大きいパルスレーザ
が必要なので通常マルチモードでレーザを発振させる。
Since thermal conductivity measurement requires a pulsed laser with high output energy, the laser is usually oscillated in multiple modes.

このときレーザを最も注意深く調整シテもレーザビーム
2aの空間エネルギー分布を一様にすることはできない
At this time, even if the laser is adjusted most carefully, the spatial energy distribution of the laser beam 2a cannot be made uniform.

本実施例のように、レーザビームをステップインデック
ス型の光ファイバーに入射させると、光ファイバーの中
を伝播するビームは多数回の全反射を(り返し経験する
うちに、入射時の空間的なエネルギーのむらが消失し、
平均化されて空間的一様性のきわめて良いビームが得ら
れる。
When a laser beam is incident on a step-index optical fiber as in this example, the beam propagating through the optical fiber undergoes multiple total reflections (as it undergoes repeated experiences, the spatial energy unevenness at the time of incidence changes). disappears,
Averaging results in a beam with very good spatial uniformity.

光ファイバー4の他端から出射されるレーザビーム2b
をレンズ5で平行ビームにし、必要に応じて絞り6によ
りビーム径を調節して被測定物体7の表面を照射・加熱
する。このときレーザビーム2Cおよび2dの空間エネ
ルギー分布はきわめて一様性の良いものが得られる。被
測定物体7の裏面の温度上昇は温度計8で測定する。
Laser beam 2b emitted from the other end of optical fiber 4
is converted into a parallel beam by a lens 5, and the beam diameter is adjusted by an aperture 6 as necessary to irradiate and heat the surface of the object to be measured 7. At this time, the spatial energy distribution of the laser beams 2C and 2d can be obtained with extremely good uniformity. The temperature rise on the back surface of the object to be measured 7 is measured with a thermometer 8.

〔発明の効果〕〔Effect of the invention〕

本発明は以上に説明したように、光ファイバーを用いる
ことによって一様な空間エネルギー分布を持ったパルス
レーザビームを発生させ、このビームで薄板状の被測定
物体の表面を照射・加熱するものである。
As explained above, the present invention uses an optical fiber to generate a pulsed laser beam with a uniform spatial energy distribution, and irradiates and heats the surface of a thin plate-shaped object to be measured with this beam. .

この結果、薄板状の被測定物体の中を表面から裏面に向
って流れる熱は一次元的な流れと見なすことができ、−
次元熱流を仮定した解析式を用いて熱伝導率を算出する
ときの正確さを向上させることが可能である。
As a result, the heat flowing inside the thin plate-shaped object to be measured from the front surface to the back surface can be regarded as a one-dimensional flow, and -
It is possible to improve accuracy when calculating thermal conductivity using an analytical formula assuming dimensional heat flow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の一例を示す斜視
図である。 1・・・パルスレーザ、4・・・光ファイ/< −,7
・・・被測定物体、8・・・温度計。 指定代理人 2t) 第1図
FIG. 1 is a perspective view showing an example of an apparatus for carrying out the method of the present invention. 1...Pulse laser, 4...Optical fiber/<-,7
...Object to be measured, 8...Thermometer. Designated agent 2t) Figure 1

Claims (1)

【特許請求の範囲】[Claims] パルスレーザからのビームを集光して光ファイバーの一
端に入射させ、他端から出射されるビームで被測定物体
の表面を照射・加熱し、それによって生ずる被測定物体
の温度上昇を測定することを特徴とする熱伝導率測定方
法。
A beam from a pulsed laser is focused and input into one end of an optical fiber, and the beam emitted from the other end irradiates and heats the surface of the object to be measured, and the resulting temperature rise in the object is measured. Characteristic thermal conductivity measurement method.
JP3976386A 1986-02-25 1986-02-25 Measurement of heat conductivity Pending JPS62197754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3976386A JPS62197754A (en) 1986-02-25 1986-02-25 Measurement of heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3976386A JPS62197754A (en) 1986-02-25 1986-02-25 Measurement of heat conductivity

Publications (1)

Publication Number Publication Date
JPS62197754A true JPS62197754A (en) 1987-09-01

Family

ID=12561980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3976386A Pending JPS62197754A (en) 1986-02-25 1986-02-25 Measurement of heat conductivity

Country Status (1)

Country Link
JP (1) JPS62197754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851221A1 (en) * 1996-12-23 1998-07-01 European Atomic Energy Community (Euratom) Measuring head for use in radiant energy flash measuring of the thermal diffusivity of heterogeneous samples

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922172A (en) * 1975-10-24 1984-02-04 テクトロニツクス・インコ−ポレイテツド Absolute value circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922172A (en) * 1975-10-24 1984-02-04 テクトロニツクス・インコ−ポレイテツド Absolute value circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851221A1 (en) * 1996-12-23 1998-07-01 European Atomic Energy Community (Euratom) Measuring head for use in radiant energy flash measuring of the thermal diffusivity of heterogeneous samples
WO1998028610A1 (en) * 1996-12-23 1998-07-02 Euratom Measuring head for use in radiant energy flash measuring of the thermal diffusivity of samples

Similar Documents

Publication Publication Date Title
US4243327A (en) Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect
US4262198A (en) Broadband optical radiation detector
US7937240B2 (en) Method and device for characterizing, using active pyrometry, a thin-layer material arranged on a substrate
JPS59500385A (en) Methods and means of inspecting the surface quality of solid state materials
Kameda et al. Precise measurement of the temperature of a silicon wafer by an optical-interference contactless thermometer during rapid plasma processing
JPH03189547A (en) Method and device for measuring heat diffusivity
JP2001083113A (en) Method for measuring thermal diffusivity by thermo- reflectance method
JPS62197754A (en) Measurement of heat conductivity
Dreyfus et al. Energy deposition at insulator surfaces below the ultraviolet photoablation threshold
CN104964929A (en) Method for obtaining material thermo-optical coefficient through measuring light spot radius change
Bartell et al. Electron diffraction studies of laser‐pumped molecules. I. Characterization of system and analysis of data
Xie et al. Microscale, bendable thermoreflectance sensor for local measurements of the thermal effusivity of biological fluids and tissues
Triebel et al. Application of the laser-induced deflection (LID) technique for low absorption measurements in bulk materials and coatings
JP2012002758A (en) Measuring method of thermal constant using optical heating method
JPH02204701A (en) Optical system thermal deformation control device and its operating method
US7384191B2 (en) Method and apparatus for measuring spatial temperature distribution of flames
JPH01114727A (en) Radiation temperature measuring instrument
CN112197712B (en) Beam waist radius measuring method and system based on Z scanning
Dong et al. Comparison of photothermal responses under spatial and temporal modulations of CW Gaussian beam excitation: A numerical study
Bartell et al. Electron diffraction studies of laser‐pumped molecules. IV. SF6, experiment and theory
Quoc et al. Phase lock-in thermography for metal walls characterization
JP3126362B2 (en) Method and apparatus for measuring thermal diffusivity
JPS5823892B2 (en) Heat capacity measurement method
JPH0476446A (en) Thermal physical characteristic measuring method
Wang Rear-detection photothermal technique for microscale thermal diffusivity measurement