JPS62193273A - Semiconductor memory - Google Patents
Semiconductor memoryInfo
- Publication number
- JPS62193273A JPS62193273A JP61035467A JP3546786A JPS62193273A JP S62193273 A JPS62193273 A JP S62193273A JP 61035467 A JP61035467 A JP 61035467A JP 3546786 A JP3546786 A JP 3546786A JP S62193273 A JPS62193273 A JP S62193273A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- film
- substrate
- mos transistor
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 239000003990 capacitor Substances 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 29
- 239000010703 silicon Substances 0.000 claims abstract description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 abstract description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 6
- 239000012535 impurity Substances 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000005468 ion implantation Methods 0.000 abstract description 2
- 238000001020 plasma etching Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000003860 storage Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000005224 laser annealing Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/403—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
- G11C11/404—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/37—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、1トランジスタ/1キヤパシタのメモリセル
購造をもつ半導体記憶装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor memory device having one transistor/one capacitor memory cell structure.
(従来の技術)
従来、半導体基板に形成される半導体記憶装置として、
−個のキャパシタとm個のMOSトランジスタによりメ
モリセルを構成するMO3型ダイナミックRAfvl(
以下、dRAMと略称する)が知られている。このdR
AMでは、情報の記憶はMOSキャパシタに電荷が蓄積
されているか否かにより行なわれ、情報の読出しはMO
Sキャパシタの電荷をMOSトランジスタを介してビッ
ト線に放出してその電位変化を検出することにより行な
われる。近年の半導体製造技術の進歩、特に微細加工技
術の進歩により、dRAMの大容量化は急速に進んでい
る。dRAMを更に大容量化する上で最も大きい問題は
、メモリセル面積を如何に小さくしてしかもキャパシタ
容量を如何に大きく保かということにある。dRAMの
情報読出しの際の電位変化の大きさはMOSキャパシタ
の蓄積電荷量で決り、動作余裕やソフトエラーに対する
余裕を考えると、最小限必要な電荷量が決まる。(Prior Art) Conventionally, as a semiconductor memory device formed on a semiconductor substrate,
- MO3 type dynamic RAfvl (
(hereinafter abbreviated as dRAM) is known. This dR
In AM, information is stored depending on whether or not charge is accumulated in a MOS capacitor, and information is read out depending on whether or not a charge is accumulated in a MOS capacitor.
This is done by discharging the charge of the S capacitor to the bit line via a MOS transistor and detecting the potential change. Due to recent advances in semiconductor manufacturing technology, particularly advances in microfabrication technology, the capacity of dRAM is rapidly increasing. The biggest problem in increasing the capacity of dRAM is how to reduce the memory cell area while keeping the capacitor capacity large. The magnitude of potential change when reading information from dRAM is determined by the amount of charge accumulated in the MOS capacitor, and the minimum required amount of charge is determined by considering operational margin and soft error margin.
そして蓄積電荷量はMOSキャパシタの容量と印加電圧
で決まり、印加電圧は電源電圧で決まるので、MOSキ
ャパシタ容量をできるだけ大きく確保する必要があるの
である。Since the amount of accumulated charge is determined by the capacitance of the MOS capacitor and the applied voltage, and the applied voltage is determined by the power supply voltage, it is necessary to ensure the MOS capacitor capacity as large as possible.
第6図(a)(b)は従来の一般的なd RA Mの構
成を示す平面図とそのA−A’断面図である。FIGS. 6(a) and 6(b) are a plan view and a sectional view taken along the line AA' of the conventional dRAM.
素子分離されたp型3i基板21にキャパシタ絶縁g!
24を介して第1!I多結晶シリコン膜からなるキャパ
シタ電極23が全ピットに共通に形成されている。キャ
パシタ電極23の窓の部分にゲート絶縁膜24を介して
ゲート電極25が形成され、このゲート電極24をマス
クとしてソース、ドレインとなるn+型層27.28が
拡散形成されている。26はMOSキャパシタの基板側
電極となるn型層である。ゲート電極25は縦方向に隣
接するメモリセルのキャパシタ電極23上を通って連続
的に配設されてこれがワード線となる。一方MOSトラ
ンジスタのソースは横方向にAn配線30により共通接
続され、これがビット線となる。Capacitor insulation g! on p-type 3i substrate 21 with element isolation.
1st through 24! A capacitor electrode 23 made of an I polycrystalline silicon film is formed in common to all pits. A gate electrode 25 is formed in the window portion of the capacitor electrode 23 via a gate insulating film 24, and using this gate electrode 24 as a mask, n+ type layers 27 and 28 which will become a source and a drain are formed by diffusion. 26 is an n-type layer which becomes the substrate side electrode of the MOS capacitor. The gate electrode 25 is disposed continuously over the capacitor electrodes 23 of vertically adjacent memory cells, and serves as a word line. On the other hand, the sources of the MOS transistors are commonly connected in the horizontal direction by an An wiring 30, which becomes a bit line.
2つは層間絶縁膜である。Two are interlayer insulating films.
この様なdRAMにおいて、MOSキャパシタの8伍を
大きくするには、用いるキャパシタ絶縁膜の厚みを薄く
するか、誘電率を大きくするか、又は面積を大きくする
ことが必要である。しかしキャパシタ絶縁膜を薄くする
ことは信頼性上限界がある。誘電率を大きくすることは
例えば、酸化DI(Si021りに代わって窒化膜等を
用いることが考えられるが、これも主として信頼性上問
題があり実用的でない。そうすると必要な容量を一確保
するためには、MOSキャパシタの面積を大きく確保す
ることが必要となり、これがメモリセル面積を小さくし
てdRAMの高集積化を達成する上で大きな障害になっ
ている。In order to increase the size of the MOS capacitor in such a dRAM, it is necessary to reduce the thickness, increase the dielectric constant, or increase the area of the capacitor insulating film used. However, making the capacitor insulating film thinner has a limit in terms of reliability. To increase the dielectric constant, for example, it is possible to use a nitride film instead of DI oxide (Si021), but this also has problems mainly with reliability and is not practical. In order to achieve this, it is necessary to secure a large area for the MOS capacitor, and this is a major obstacle in reducing the memory cell area and achieving high integration of dRAM.
メモリセルの占有面積を大きくすることなく、MOSキ
ャパシタの8伍を大きくする構造として、基板のMOS
キャパシタ領域に溝を掘り、この溝の側壁を利用してM
OSキャパシタを形成する、所謂溝拙りキャパシタが
提案されている。これは、従来基板の平面のみを用いて
いたのに対し、溝を形成してその側壁をも利用しようと
するもので、有力な方法として注目される。As a structure that increases the size of the MOS capacitor without increasing the area occupied by the memory cell, the MOS capacitor on the substrate
Dig a groove in the capacitor area and use the sidewalls of this groove to
A so-called grooved capacitor forming an OS capacitor has been proposed. This method is attracting attention as a promising method because it attempts to form a groove and utilize its sidewalls, whereas conventional methods only use the flat surface of the substrate.
(発明が解決しようとする問題点)
従来提案されているamリキャバシタのメモリセルでは
、基板側が記憶ノードとなり、基板上に形成されるキャ
パシタ電極がいわゆるセルプレートとして全ビットに共
通の基準電位(通常接地電位)に設定される。この点は
、平面型キャパシタの場合と異ならない。この構造では
、α線の入射により基板中で発生した電荷が記憶ノード
に流入して記憶情報が消失するというソフ!・エラーの
問題は解決されない。従って耐ソフトエラーを十分なも
のとするためには、溝の深さを十分に深くしてキャパシ
タ面積を大きくしなければならず、製造技術上限界が生
じる。(Problems to be Solved by the Invention) In the memory cells of conventionally proposed am rechargers, the substrate side serves as a storage node, and the capacitor electrode formed on the substrate serves as a so-called cell plate at a reference potential common to all bits (usually ground potential). This point is no different from the case of a planar capacitor. In this structure, charges generated in the substrate due to the incidence of alpha rays flow into the storage node, causing the storage information to disappear!・The error problem is not resolved. Therefore, in order to provide sufficient resistance to soft errors, the depth of the groove must be sufficiently deep to increase the area of the capacitor, which creates a limit in terms of manufacturing technology.
本発明は上記した点に鑑みなされたもので、ソフトエラ
ーに対して非常に強い溝掘りキャパシタ構造をもち、従
って余り深い溝を必要とせず製造が容易な半導体記憶@
置を提供することを目的とする。The present invention has been made in view of the above points, and has a grooved capacitor structure that is extremely resistant to soft errors, and therefore does not require very deep grooves and is easy to manufacture.
The purpose is to provide a
[発明の構成]
・ (問題点を解決するための手段)
本発明による半導体記憶装置では、記憶ノードどなるキ
ャパシタ電極およびMOSトランジスタが半導体基板上
に絶縁膜を介して形成される。[Structure of the Invention] - (Means for Solving the Problems) In the semiconductor memory device according to the present invention, a storage node, a capacitor electrode, and a MOS transistor are formed on a semiconductor substrate with an insulating film interposed therebetween.
即ちキャパシタは、半導体基板に形成された溝にキャパ
シタ絶縁膜を介して記憶ノードとなるキャパシタ電極を
埋め込み、且つ基板を共通電極として構成される。また
MOSトランジスタは、前記キャパシタ1f極と連続的
に基板上に絶縁膜を介して形成された半導体層に形成さ
れる。That is, a capacitor is constructed by embedding a capacitor electrode serving as a storage node in a groove formed in a semiconductor substrate via a capacitor insulating film, and using the substrate as a common electrode. Further, the MOS transistor is formed in a semiconductor layer formed continuously with the capacitor 1f pole on the substrate with an insulating film interposed therebetween.
(作用)
本発明の構成とすれば、情報電荷蓄積部である記憶ノー
ドおよびMOS I−ランジスタが全て半導体基板から
絶縁膜により分離されているため、基板中でα線入射に
より発生した電荷が記憶ノードに流入することなく、外
部からの影響を受は難くなっている。このため、必要な
蓄積電荷量が少なくて済み、基板に形成するキャパシタ
用の溝を浅くすることができる。従って従来の溝把りキ
ャパシタ構造に比べて製造も容易である。また記憶ノー
ドとなるキャパシタftff1は基板上に堆積した半導
体膜をパターン形成して得られるから、絶縁膜による確
実な素子分離が行なわれ、従ってメモリセルの微細化、
大容量化が可能である。(Function) According to the structure of the present invention, since the storage node and the MOS I-transistor, which are information charge storage sections, are all separated from the semiconductor substrate by an insulating film, the charges generated in the substrate due to the incidence of α rays are stored. It does not flow into the node, making it difficult to be influenced by external sources. Therefore, the amount of accumulated charge required is small, and the groove for the capacitor formed in the substrate can be made shallow. Therefore, it is easier to manufacture than the conventional groove grip capacitor structure. In addition, since the capacitor ftff1, which serves as a storage node, is obtained by patterning a semiconductor film deposited on a substrate, reliable element isolation by an insulating film is performed, and therefore, miniaturization of memory cells and
Larger capacity is possible.
(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
第1図(a)(b)は−実施例のd RA Mを示す平
面図とそのA−A’ 断面図である。p型シリコン基板
1のキャパシタ形成領域に満2が形成され、この基板1
上にキャパシタ絶縁膜およびN・10Sトランジスタを
M板から分離する分M絶縁膜となる熱酸化膜3を介して
シリコン膜4が少数個、長方形の島状に配列形成されて
いる。各シリコン膜4の溝2に埋め込まれている部分が
n+型のキャパシタ電ti5となっている。また各島状
シリコン膜4のキャパシタ電極5に隣接した位置にn4
’型のソース領域81 、おなじくn+型のドレイン領
1a82.ゲート絶縁膜6、ゲート電極7からなるM
OS )−ランジスタが形成されている。グー1〜電極
7は第1図(a)に示されるように、各島状シリコン膜
4を一方向に横切るように連続的に配設され、これがワ
ード線となる。こうして素子形成された基°板上にCV
D絶縁[19を介してA2配線10が形成されている。FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along line AA' of the dRAM of the embodiment. 2 is formed in the capacitor formation region of the p-type silicon substrate 1, and this substrate 1
A small number of silicon films 4 are arranged in a rectangular island shape on top, with a thermal oxide film 3 serving as an M insulating film separating the capacitor insulating film and the N·10S transistor from the M plate. The portion of each silicon film 4 buried in the trench 2 serves as an n+ type capacitor voltage ti5. Also, n4 is placed adjacent to the capacitor electrode 5 of each island-like silicon film 4.
' type source region 81, similarly n+ type drain region 1a82. M consisting of a gate insulating film 6 and a gate electrode 7
OS) - transistors are formed. As shown in FIG. 1(a), the electrodes 1 to 7 are continuously disposed so as to cross each island-like silicon film 4 in one direction, and these serve as word lines. CV on the substrate with elements formed in this way
A2 wiring 10 is formed via D insulation [19].
A2配線10はコンタクトホール11を介してMOSト
ランジスタのドレイン領域82に接続され、ワード線と
交差する方向に連続的に配設されて、これがビット線と
なっている。The A2 wiring 10 is connected to the drain region 82 of the MOS transistor through the contact hole 11, and is continuously arranged in a direction intersecting the word line, and serves as a bit line.
第2図(a)〜(e)はこの様なdRAMの製造工程を
示す工程断面図である。これを用いて製造工程を説明す
ると、先ず(a)に示すように、p型シリコン基板1に
、反応性イオンエツチング法を用いてキャパシタ形成用
の溝2を複数個所定配置で形成する。次に(b)に示す
ように、キャパシタ絶縁膜として、またMOSトランジ
スタを基板から分離する分離用絶縁膜として用いられる
100人程度の熱酸化膜3を形成し、この後基板全面に
多結晶シリコン膜4を堆積する。次に(C)に示すよう
に、シリコン膜4を公知のPEP工程を経てエツチング
して、互いに分離された実数の長方形状の島領域にパタ
ーン形成する。各島状シリコン膜は第1図(a)に示さ
れるように、二つの溝2にまたがるようにパターニング
される。この後、レーザ・アニールを施して、各シリコ
ン膜4を単結晶化する。各シリコンF14の溝2に埋め
込まれている部分には不純物をドープしてn+型層とし
、これを記憶ノードとしてのキャパシタ電極5とする。FIGS. 2(a) to 2(e) are process cross-sectional views showing the manufacturing process of such a dRAM. To explain the manufacturing process using this, first, as shown in (a), a plurality of grooves 2 for forming capacitors are formed in a predetermined arrangement in a p-type silicon substrate 1 by using a reactive ion etching method. Next, as shown in (b), a thermal oxide film 3 of about 100 layers is formed to be used as a capacitor insulating film and as an isolation insulating film to separate the MOS transistor from the substrate. Deposit film 4. Next, as shown in (C), the silicon film 4 is etched through a known PEP process to form patterns into real rectangular island regions separated from each other. Each island-like silicon film is patterned so as to span two grooves 2, as shown in FIG. 1(a). Thereafter, each silicon film 4 is made into a single crystal by laser annealing. The portion of each silicon F14 buried in the groove 2 is doped with impurities to form an n+ type layer, and this is used as the capacitor electrode 5 as a storage node.
この後、(d)に示すように、各シリコン膜4に熱酸化
膜からなるゲート絶縁pIA6を形成して第2の多結晶
シリコン膜を堆積し、これをパターン形成してゲート電
極7を形成する。続いてイオン注入により、n+型のソ
ース領域81゜ドレイン領1a82を形成する。グー1
−電橘7は各島状シリコン膜を横切って連続的に配設さ
れてワード線となる。最後に(e)に示すように、全面
にCVD絶縁膜9を堆積し、これにコンタク1−ホール
11を開けて、ビット線となるA2配線10を形成する
。After that, as shown in (d), a gate insulating pIA6 made of a thermal oxide film is formed on each silicon film 4, a second polycrystalline silicon film is deposited, and this is patterned to form a gate electrode 7. do. Subsequently, an n+ type source region 81.degree. drain region 1a82 is formed by ion implantation. goo 1
- The electric wires 7 are continuously arranged across each island-like silicon film to form a word line. Finally, as shown in (e), a CVD insulating film 9 is deposited on the entire surface, and a contact 1-hole 11 is opened in this to form an A2 wiring 10 that will become a bit line.
この実施例の構造では、基(反1が全メモリセルに共通
の基準電極として用いられる。そして情報電荷はMOS
トランジスタを介して各溝2内に埋め込まれたキャパシ
タ電極5に蓄積される。従つτα線等の入射により基板
1内で電荷が発生してもこれがメモリセルの記憶ノード
であるキャパシタ電極5に流入することはないから、ソ
フトエラーに対して非常に耐性の強いdRAMとなる。In the structure of this embodiment, the group (1) is used as a reference electrode common to all memory cells, and the information charge is transferred to the MOS
It is accumulated in the capacitor electrode 5 embedded in each groove 2 via the transistor. Therefore, even if charges are generated within the substrate 1 due to the incidence of τα rays, etc., this will not flow into the capacitor electrode 5, which is the storage node of the memory cell, resulting in a dRAM that is highly resistant to soft errors. .
また従来と同程度の耐性でよいとすれば、キャパシタの
満2の深さを浅くすることができるから、製造技術的に
も有利である。また隣接するメモリセル間は絶縁膜によ
り完全に分離されているため、II積重電荷隣接するメ
モリセルに漏れることもなく、セル間分離は確実になる
。この結果、メ零リセルの占有面積を十分に小さくして
、大容量のdRAMを得ることができる。Furthermore, if the same level of resistance as the conventional one is sufficient, the depth of the capacitor can be made shallower, which is advantageous in terms of manufacturing technology. In addition, since adjacent memory cells are completely isolated by the insulating film, the II accumulated charge does not leak to adjacent memory cells, and cell isolation is ensured. As a result, the area occupied by the memory cell can be made sufficiently small, and a large capacity dRAM can be obtained.
上記実施例では、基板上のシリコン膜は完全に基板と分
離されるが、レーザ・アニールにより多結晶シリコン膜
を単結晶化する場合、多結晶シリコン膜の一部が単結晶
シリコン基板に一部接触していた方がよい。この接触部
が結晶成長の核となるからである。素子特性に影響を与
えない範囲でこの様な考慮を払った実11i!!例を以
下に説明する。In the above example, the silicon film on the substrate is completely separated from the substrate, but when a polycrystalline silicon film is made into a single crystal by laser annealing, a portion of the polycrystalline silicon film is partially attached to the single crystal silicon substrate. Better to stay in touch. This is because this contact portion becomes a nucleus for crystal growth. Real 11i has been designed with such considerations in mind as long as it does not affect the device characteristics! ! An example is explained below.
第3図はそのような実tN例のdRAMの第1図(b)
に対応する部分の断面図である。第1図と対応する部分
には第1図と同一符号を付して詳細な説明は省略する。Figure 3 shows Figure 1 (b) of such an example of dRAM.
FIG. Portions corresponding to those in FIG. 1 are designated by the same reference numerals as in FIG. 1, and detailed description thereof will be omitted.
図から明らかなようにこの実施例では、MOSトランジ
スタのゲート電極7下の部分でシリコン膜4の堆積前に
酸化膜3に孔12を開けておき、この部分でシリコンI
IW4を基板1に接続させたものである。As is clear from the figure, in this embodiment, a hole 12 is opened in the oxide film 3 before depositing the silicon film 4 under the gate electrode 7 of the MOS transistor, and the silicon I
The IW4 is connected to the substrate 1.
この実施例によれば、シリコン114はレーザ・アニー
ルにより良質の単結晶になり易く、従って特性の優れた
スイッチングMOSトランジスタが得られる。ゲート電
極7下でシリコン膜4が基板1と接触していることは、
素子特性に何等悪影響はなく、むしろMOSトランジス
タの基板領域がフローティングでなく基板1と共に固定
電位にできるため、特性の安定化が図られるという利点
が得られる。According to this embodiment, the silicon 114 can be easily made into a high-quality single crystal by laser annealing, and therefore a switching MOS transistor with excellent characteristics can be obtained. The fact that the silicon film 4 is in contact with the substrate 1 under the gate electrode 7 means that
There is no adverse effect on the device characteristics; rather, since the substrate region of the MOS transistor is not floating but can be at a fixed potential together with the substrate 1, the advantage is that the characteristics can be stabilized.
第4図は更に他の実施例のdRAMである。この実施例
の第3図と異なる点は、MOSトランジスタのドレイン
領域82の下に孔13を開けていることである。この場
合、ドレイン領[8zの下の基板1表面にn型1ii1
4が形成されることになる。FIG. 4 shows a dRAM of yet another embodiment. This embodiment differs from FIG. 3 in that a hole 13 is formed below the drain region 82 of the MOS transistor. In this case, n-type 1ii1 is formed on the surface of the substrate 1 under the drain region [8z
4 will be formed.
この実施例によっても第3図の実施例と同様の効果が得
られる。This embodiment also provides the same effects as the embodiment shown in FIG.
本発明の構造は、溝に埋め込まれるキャパシタ電橋部分
とMOSトランジスタ形成用のシリコン躾部分を2段階
に分けて形成してもよい。 。In the structure of the present invention, the capacitor bridge portion embedded in the trench and the silicon bridge portion for forming the MOS transistor may be formed in two stages. .
第5図(a)(b)はそのような実施例のdRAMの製
造工程を説明するための断面図である。FIGS. 5(a) and 5(b) are cross-sectional views for explaining the manufacturing process of the dRAM of such an embodiment.
即ち第5図(a)に示すように、先の実施例と同様にし
て基板1に満2を形成し、酸化1!J3を形成した後、
溝2にのみ高濃度に不純物を含むnゝ型シリコン膜41
を埋込み形成する。続いて第5図(b)に示すように、
全面にシリコン膜42を堆積する。この後は先の実施例
と同様の工程でdRAMを製造することができる。 こ
の実施例によれば、溝に埋め込まれるキャパシタ電極を
十分に低抵抗とすることができる。That is, as shown in FIG. 5(a), 1! After forming J3,
N-type silicon film 41 containing impurities at a high concentration only in groove 2
Embedded and formed. Next, as shown in Figure 5(b),
A silicon film 42 is deposited over the entire surface. After this, the dRAM can be manufactured using the same steps as in the previous embodiment. According to this embodiment, the resistance of the capacitor electrode embedded in the groove can be made sufficiently low.
その他、本発明はその趣旨を逸脱しない範囲で種々変形
して実施することができる。In addition, the present invention can be implemented with various modifications without departing from the spirit thereof.
[発明の効果]
以上述べたように本発明によれば、ソフトエラーに対し
て非常に強く、製造が簡単で大容量化を図ったdRAM
を実現することができる。[Effects of the Invention] As described above, the present invention provides a dRAM that is highly resistant to soft errors, easy to manufacture, and has a large capacity.
can be realized.
第1図(a)(b)は本発明の一実施例のdRAMを示
す平面図とそのA−A’ 断面図、第2図(a)〜(e
)はその製造工程を示す断面図、第3図および第4図は
他の実施例のdRAMを示す断面図、第5図(a)(b
)は更に他の実施例のdRA〜1の製造工程を示す断面
図、第6図(a)(b)は従来のdRAMの一例を示す
平面図とそのA−A’ 断面図である。
1・・・p型シリコン基板、2・・・溝、3・・・熱酸
化3Q(キャパシタ絶縁膜)、4・・・シリコン膜、
5・・・n1型キヤパシタ電極、6・・・ゲート絶縁膜
、7・・・ゲート電橋、81・・・n”型ソース領域、
82・・・n+型トドレイン領域9・・・CvD絶縁
膜、10・・・A℃配線、11・・・コンタクトホール
、12.13・・・孔、14・・・n型層。
第2図
第3図
第4図FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view taken along line A-A' of the dRAM according to an embodiment of the present invention, and FIGS. 2(a) to (e)
) is a sectional view showing the manufacturing process, FIGS. 3 and 4 are sectional views showing dRAM of other embodiments, and FIGS.
) is a cross-sectional view showing the manufacturing process of dRA-1 of another embodiment, and FIGS. 6(a) and 6(b) are a plan view and an AA' cross-sectional view showing an example of a conventional dRAM. 1... P-type silicon substrate, 2... Groove, 3... Thermal oxidation 3Q (capacitor insulating film), 4... Silicon film,
5... N1 type capacitor electrode, 6... Gate insulating film, 7... Gate bridge, 81... N'' type source region,
82...n+ type drain region 9...CvD insulating film, 10...A°C wiring, 11...contact hole, 12.13...hole, 14...n type layer. Figure 2 Figure 3 Figure 4
Claims (4)
ランジスタからなるメモリセルを集積形成してなる半導
体記憶装置において、前記キャパシタは、前記基板に形
成された溝内にキャパシタ絶縁膜を介してキャパシタ電
極が埋め込まれて、前記基板を共通電極として構成され
、前記MOSトランジスタは、前記キャパシタ電極と連
続して形成された、その全部又は主要部が前記基板とは
絶縁膜により分離された半導体膜に形成されていること
を特徴とする半導体記憶装置。(1) In a semiconductor memory device in which a memory cell consisting of one capacitor and one MOS transistor is integrated on a semiconductor substrate, the capacitor is connected to a capacitor electrode through a capacitor insulating film in a groove formed in the substrate. is embedded, and the MOS transistor is formed in a semiconductor film that is formed continuously with the capacitor electrode and whose entire or main part is separated from the substrate by an insulating film. A semiconductor memory device characterized by:
ンジスタ領域の半導体膜は一体形成されたシリコン膜で
あり、前記キャパシタ絶縁膜とMOSトランジスタ領域
の半導体膜下の絶縁膜とは同時に形成された熱酸化膜で
ある特許請求の範囲第1項記載の半導体記憶装置。(2) The capacitor electrode and the semiconductor film in the MOS transistor region continuous thereto are a silicon film formed integrally, and the capacitor insulating film and the insulating film under the semiconductor film in the MOS transistor region are thermally oxidized and formed at the same time. The semiconductor memory device according to claim 1, which is a film.
ンジスタ領域の半導体膜は一体形成されたシリコン膜で
あり、前記キャパシタ絶縁膜とMOSトランジスタ領域
の半導体膜下の絶縁膜とは同時に形成された熱酸化膜で
あって、MOSトランジスタ領域の半導体膜下の熱酸化
膜に孔が開けられてこの部分で半導体膜が基板と接続さ
れている特許請求の範囲第1項記載の半導体記憶装置。(3) The capacitor electrode and the semiconductor film in the MOS transistor region continuous thereto are a silicon film formed integrally, and the capacitor insulating film and the insulating film under the semiconductor film in the MOS transistor region are thermally oxidized and formed at the same time. 2. The semiconductor memory device according to claim 1, wherein a hole is formed in the thermal oxide film under the semiconductor film in the MOS transistor region, and the semiconductor film is connected to the substrate at this portion.
リコン膜により前記溝に埋込み形成され、前記MOSト
ランジスタ領域の半導体膜は前記第1のシリコン膜と重
なる第2のシリコン膜により形成されたものである特許
請求の範囲第1項記載の半導体記憶装置。(4) At least a portion of the capacitor electrode is formed by filling the groove with a first silicon film, and the semiconductor film in the MOS transistor region is formed of a second silicon film overlapping with the first silicon film. A semiconductor memory device according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61035467A JP2671899B2 (en) | 1986-02-20 | 1986-02-20 | Semiconductor storage device |
DE19863640363 DE3640363A1 (en) | 1986-02-20 | 1986-11-26 | Dynamic MOS random-access memory |
KR1019870001400A KR910002038B1 (en) | 1986-02-20 | 1987-02-19 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61035467A JP2671899B2 (en) | 1986-02-20 | 1986-02-20 | Semiconductor storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62193273A true JPS62193273A (en) | 1987-08-25 |
JP2671899B2 JP2671899B2 (en) | 1997-11-05 |
Family
ID=12442584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61035467A Expired - Lifetime JP2671899B2 (en) | 1986-02-20 | 1986-02-20 | Semiconductor storage device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2671899B2 (en) |
KR (1) | KR910002038B1 (en) |
DE (1) | DE3640363A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329968A (en) * | 1986-07-23 | 1988-02-08 | Nec Corp | Semiconducotr memory cell |
JPS6376364A (en) * | 1986-09-18 | 1988-04-06 | Canon Inc | Semiconductor memory device and its manufacturing method |
JPH06216338A (en) * | 1992-11-27 | 1994-08-05 | Internatl Business Mach Corp <Ibm> | Semiconductor memory cell and its preparation |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2606857B2 (en) * | 1987-12-10 | 1997-05-07 | 株式会社日立製作所 | Method for manufacturing semiconductor memory device |
US5032890A (en) * | 1988-01-30 | 1991-07-16 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit with dummy patterns |
JP2743391B2 (en) * | 1988-08-25 | 1998-04-22 | ソニー株式会社 | Method for manufacturing semiconductor memory |
JPH07109876B2 (en) * | 1988-09-09 | 1995-11-22 | 株式会社東芝 | Method of manufacturing semiconductor memory device |
US5528062A (en) * | 1992-06-17 | 1996-06-18 | International Business Machines Corporation | High-density DRAM structure on soi |
JP3959125B2 (en) * | 1994-09-14 | 2007-08-15 | 株式会社東芝 | Semiconductor device |
DE10256973B4 (en) | 2002-12-05 | 2006-09-28 | Infineon Technologies Ag | Integrated semiconductor memory with a selection transistor formed on a web |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60136366A (en) * | 1983-12-26 | 1985-07-19 | Hitachi Ltd | Semiconductor integrated circuit device |
JPS60189964A (en) * | 1984-03-12 | 1985-09-27 | Hitachi Ltd | semiconductor memory |
JPS6235668A (en) * | 1985-08-09 | 1987-02-16 | Nec Corp | Semiconductor memory device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3128014A1 (en) * | 1981-07-15 | 1983-02-03 | Siemens AG, 1000 Berlin und 8000 München | ARRANGEMENT FOR REDUCING THE SENSITIVITY OF INTEGRATED SEMICONDUCTOR MEMORY AGAINST ALPHA RADIATION |
EP0168528B1 (en) * | 1984-04-25 | 1989-03-08 | Siemens Aktiengesellschaft | One-transistor memory cell for high-density integrated dynamic semiconductor memories, and method for manufacturing the same |
-
1986
- 1986-02-20 JP JP61035467A patent/JP2671899B2/en not_active Expired - Lifetime
- 1986-11-26 DE DE19863640363 patent/DE3640363A1/en active Granted
-
1987
- 1987-02-19 KR KR1019870001400A patent/KR910002038B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60136366A (en) * | 1983-12-26 | 1985-07-19 | Hitachi Ltd | Semiconductor integrated circuit device |
JPS60189964A (en) * | 1984-03-12 | 1985-09-27 | Hitachi Ltd | semiconductor memory |
JPS6235668A (en) * | 1985-08-09 | 1987-02-16 | Nec Corp | Semiconductor memory device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6329968A (en) * | 1986-07-23 | 1988-02-08 | Nec Corp | Semiconducotr memory cell |
JPS6376364A (en) * | 1986-09-18 | 1988-04-06 | Canon Inc | Semiconductor memory device and its manufacturing method |
JPH06216338A (en) * | 1992-11-27 | 1994-08-05 | Internatl Business Mach Corp <Ibm> | Semiconductor memory cell and its preparation |
Also Published As
Publication number | Publication date |
---|---|
DE3640363C2 (en) | 1992-02-13 |
JP2671899B2 (en) | 1997-11-05 |
DE3640363A1 (en) | 1987-08-27 |
KR910002038B1 (en) | 1991-03-30 |
KR870008317A (en) | 1987-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4970564A (en) | Semiconductor memory device having stacked capacitor cells | |
JP2735193B2 (en) | Nonvolatile semiconductor device and method of manufacturing the same | |
JP2655859B2 (en) | Semiconductor storage device | |
US4646118A (en) | Semiconductor memory device | |
JPH0294471A (en) | Semiconductor storage device and its manufacturing method | |
JPH07130871A (en) | Semiconductor memory device | |
JPS62286270A (en) | Semiconductor memory | |
JPS62193273A (en) | Semiconductor memory | |
US4921815A (en) | Method of producing a semiconductor memory device having trench capacitors | |
JPS61107762A (en) | Method for manufacturing semiconductor memory device | |
JPS6155258B2 (en) | ||
JPH0640573B2 (en) | Semiconductor integrated circuit device | |
JPH0750772B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS63281457A (en) | Semiconductor memory | |
JPH0719848B2 (en) | Memory cell array | |
JPH02198170A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPS60149160A (en) | High efficiency dynamic random access memory and method of producing same | |
JPS60128658A (en) | Semiconductor memory device | |
US5227319A (en) | Method of manufacturing a semiconductor device | |
JP2739965B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP2760979B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JPS63226955A (en) | Manufacture of capacitive element | |
JP2659991B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP3177038B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP2943268B2 (en) | Semiconductor memory and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |