[go: up one dir, main page]

JPS62182705A - Endoscope device - Google Patents

Endoscope device

Info

Publication number
JPS62182705A
JPS62182705A JP62013311A JP1331187A JPS62182705A JP S62182705 A JPS62182705 A JP S62182705A JP 62013311 A JP62013311 A JP 62013311A JP 1331187 A JP1331187 A JP 1331187A JP S62182705 A JPS62182705 A JP S62182705A
Authority
JP
Japan
Prior art keywords
light
image
red
wavelength
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62013311A
Other languages
Japanese (ja)
Other versions
JPH059007B2 (en
Inventor
Shunpei Tanaka
俊平 田中
Hidetoshi Yamada
秀俊 山田
Masahiro Hirata
平田 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62013311A priority Critical patent/JPS62182705A/en
Publication of JPS62182705A publication Critical patent/JPS62182705A/en
Publication of JPH059007B2 publication Critical patent/JPH059007B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To quickly and easily distinguish an affected part and a normal part from each other by extracting an image signal in a wavelength area where the affected part in a living body is identified from the normal part. CONSTITUTION:A rotary filter 22 is equally divided into three parts 40-42, and the part 40 permits the light having 700-800nm wavelength (red) to pass through, and the part 41 permits the light having 800-900nm wavelength (infrared area) to pass through, and the part 42 permits the light having 600-700nm wavelength (orange) to pass through. A signal switching circuit 28 is driven synchronously with rotation of this filter 22, and the image signal obtained by the light transmitted through the red part 40 is supplied to a green channel through a green output terminal 28G and is projected as a green image on a monitor cathode-ray tube 34, and the image signal obtained by the light transmitted through the infrared area part 41 is allowed to pass a red output terminal 28R and is displayed as a red image, and the image signal obtained by the light transmitted through the orange part 42 is allowed to pass a blue output terminal 28B and is displayed as a blue image.

Description

【発明の詳細な説明】 本発明は生体体腔内または機械的構成部品等の空洞内を
観察するために使用する内視鏡装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an endoscope device used for observing the inside of a living body cavity or a cavity such as a mechanical component.

従来このような内視鏡においては、光学式ファイバ東に
より被観察体の像を生体体腔外或いは空洞外に導き出し
、光学式ファイバの出射端面に結像された光学像を、接
眼レンズ系を介して観察している。また他の方法として
、上記光学式ファイバの代わりに内視鏡の鞘の先端装置
に固体撮像装置を設置し、この固体撮像装置の受光面に
結像された光学像を電気信号に変換しリード線により生
体体腔外或いは空洞外に導き出し、必要な信号処理を行
った後TVモニター上に表出しようとする試みも提案さ
れている。
Conventionally, in such endoscopes, an image of the object to be observed is led out of the living body cavity or cavity through an optical fiber east, and an optical image formed on the output end face of the optical fiber is transmitted through an eyepiece system. I am observing. Another method is to install a solid-state imaging device at the tip of the endoscope sheath instead of the optical fiber described above, and convert the optical image formed on the light-receiving surface of the solid-state imaging device into an electrical signal. It has also been proposed to lead the signal out of the body cavity or cavity using a wire and display it on a TV monitor after performing necessary signal processing.

上述された内視鏡においては、被観察体から得られる情
報は可視光波長領域に固定されている。
In the endoscope described above, the information obtained from the object to be observed is fixed to the visible light wavelength region.

すなわち、前者は光学的に直接肉眼で像を見るので当然
可視光波長領域外のbのは観察できないし、後者の場合
固体撮像装置は赤外波長j)n域にも感光するので赤外
波長領域の像情報は検出可能であるが、像をカラー化す
る場合赤外波長領域の像情報は色バランスをとる上で邪
魔になる。そこで、色の忠実性を上げる目的で、普通は
赤外線カットフィルタ等で赤外波長領域の照明光は被観
察体に照射しないようにするか、あるいは、照射しても
固体撮像装置受光面には達しないようなフィルタを設け
る必要がある。
In other words, in the former case, the image is viewed optically directly with the naked eye, so it is naturally impossible to observe b outside the visible wavelength range, and in the latter case, the solid-state imaging device is also sensitive to the infrared wavelength j)n range, so it cannot be observed in the infrared wavelength range. Image information in the region can be detected, but when colorizing the image, image information in the infrared wavelength region becomes a hindrance to achieving color balance. Therefore, in order to improve color fidelity, it is common practice to use an infrared cut filter or the like to prevent illumination light in the infrared wavelength range from irradiating the object to be observed, or even if it is irradiated, the light receiving surface of the solid-state image sensor is It is necessary to provide a filter to prevent this from occurring.

このような内視鏡で被観察体の像を観察する場合、特に
生体内では患部と正常部とを見わけるのに微妙な色調の
差を検知しなければならない。一般にその差を検知(認
知)するには高度な知識と経験が必要とされ、その上検
知するまでに長時間を要し、また検知の間中注意力も集
中していなければならなかった。
When observing an image of an object to be observed using such an endoscope, it is necessary to detect subtle differences in color tone to distinguish between an affected area and a normal area, especially in a living body. Generally, detecting (recognizing) the difference requires a high degree of knowledge and experience, and it takes a long time to detect it, and requires concentrated attention during the detection.

本発明は、上述のような欠点をなくし、患部と正常部の
識別を迅速かつ容易に行うことができるようにすること
を目的とするもので、ある。生体内の患部と正常部の観
察について、内視鏡装置の識別能力を増す方法として、
本発明では赤外線照射によって得られる不可視情報を可
視情報に変換する方法を採る。一般に知られているよう
に、固体撮像装置は近赤外領域で高感度である。また照
明用光源も一般には可視波長領域よりも赤外波長領域で
多くのエネルギーを放射することが知られている。とこ
ろで、被観察体から反射される光量は、生体内では可視
光波長領域の赤色(長波長)側で多いことは血液が赤色
をしていることからも予想できる。さらに近赤外光で反
射率が大きくなることも発表されている。これらのこと
から、生体内での赤外光から得られる情報は、生体内で
の特徴抽出に役立つ可能性は充分にある。このように赤
外光で得られた画像情報はTVモニター上で特定の波長
の色で表示する。異なった赤外波長領域の画像だけをT
Vモニター上に(赤)、(緑)、(青)で表示してもよ
いし、可視光波長領域(例えば赤色像)で得られたもの
と、赤外波長領域で得られたものとを同時に表示するよ
うにしてもよい。要するに、生体内の患部を正常部と特
徴づけられる波長領域での像信号の抽出を可能にするこ
とが重要である。
The present invention aims to eliminate the above-mentioned drawbacks and to enable quick and easy identification of affected areas and normal areas. As a method to increase the discriminative ability of endoscopic equipment for observation of affected and normal parts in vivo,
The present invention employs a method of converting invisible information obtained by infrared irradiation into visible information. As is generally known, solid-state imaging devices have high sensitivity in the near-infrared region. It is also known that illumination light sources generally emit more energy in the infrared wavelength region than in the visible wavelength region. By the way, it can be predicted that the amount of light reflected from an object to be observed is large in the red (long wavelength) side of the visible light wavelength region in a living body because blood is red in color. It has also been announced that the reflectance increases with near-infrared light. For these reasons, there is a good possibility that information obtained from infrared light in a living body is useful for extracting features in a living body. Image information obtained using infrared light in this way is displayed on a TV monitor in colors of specific wavelengths. Only images in different infrared wavelength regions are
It is also possible to display (red), (green), and (blue) on the V monitor, or to display images obtained in the visible wavelength region (for example, a red image) and those obtained in the infrared wavelength region. They may be displayed simultaneously. In short, it is important to be able to extract image signals in a wavelength range that characterizes an affected area within a living body as a normal area.

本発明の内視鏡装置は、少なくとも1つの赤外波長領域
の光と、少なくとも一つのこの赤外波長領域とは異なる
波長領域の光とで時系列的に被観察体を照明する手段と
、 被観察体の内部に挿入される部分の先端に設けられ、被
観察体からの光を受けて結像面に被観察体像を形成する
光学系と、 この光学系の結像面装置に配置され、被観察体の光学像
を電気信号に変換する固体撮像装置と、この固体撮像装
置から出力される上記各波長領域の光による被観察体像
を表わす電気信号を記憶する複数のフレームメモリと、 これら複数のフレームメモリから選択的に読出した電気
信号を受けて画像の表示を行う手段とを具えることを特
徴とするものである。
The endoscope apparatus of the present invention includes means for illuminating an object to be observed in time series with at least one light in an infrared wavelength range and at least one light in a wavelength range different from the infrared wavelength range; An optical system that is installed at the tip of the part that is inserted into the object to be observed and that receives light from the object to form an image of the object on an imaging plane; a solid-state imaging device that converts an optical image of an object to be observed into an electrical signal; and a plurality of frame memories that store electrical signals representing images of the object to be observed by light in each of the wavelength ranges output from the solid-state imaging device. , and means for displaying an image in response to electrical signals selectively read out from the plurality of frame memories.

次に図面にしたがって本発明の詳細な説明する。Next, the present invention will be explained in detail according to the drawings.

第1図ΔおよびBは人体Va器の反射スペクトルを示す
。第1図Aは胃のスペクトルで、はとんど400nm−
1200nmの波長まで平らであり、その反射率は数1
0%である。一方策1図Bは血液のスペクトルで、40
0nm〜1200nmまで数%から100%近くまで変
化している。両者を比較すると、特に赤外波長領域(8
00nm〜1200nm)でその差が大きいことがわか
る。
FIG. 1 Δ and B show the reflection spectra of the human body Va. Figure 1A shows the spectrum of the stomach, which is approximately 400 nm-
It is flat up to a wavelength of 1200 nm, and its reflectance is several 1
It is 0%. On the other hand, Figure 1B shows the spectrum of blood, which is 40
It varies from several % to nearly 100% from 0 nm to 1200 nm. Comparing the two, we find that especially in the infrared wavelength region (8
It can be seen that the difference is large between 00 nm and 1200 nm).

例えば、胃の中に血液に似たような組織あるいは血液を
多量に含んだようなものが存在し、その存在を認知しよ
うとした場合、近赤外波長領域で比較した方がその差が
はっきりし、その効果が著しいことは明らかである。
For example, if there is tissue resembling blood or something that contains a large amount of blood in the stomach, and you are trying to recognize its existence, the difference will be clearer if you compare it in the near-infrared wavelength region. However, it is clear that the effect is significant.

現状の光学的内視鏡では、人間の比視感度(40,0n
m〜700 nm)の波長領域でのみしか観察して判断
することができない。一方CCDの感度領域は400n
mから1200nmに及んでおり、近赤外波長領域の情
報を得るのに充分である。また、一般の光源に用いられ
る光源ランプは、可視光よりむしろ近赤外波長領域の波
長のエネルギーを多量に放射している。近赤外波長領域
の波長で被観察体を照射することは、一般に用いられる
赤外光カットフィルタの分光特性をより長波長側に移す
だけでよく、その技術的困難性はない。
Current optical endoscopes have a human specific luminous efficiency (40,0n).
It is possible to make a judgment by observing only in the wavelength range (m to 700 nm). On the other hand, the sensitivity range of CCD is 400n
m to 1200 nm, which is sufficient to obtain information in the near-infrared wavelength region. Furthermore, light source lamps used as general light sources emit a large amount of energy in the near-infrared wavelength region rather than visible light. Irradiating an object to be observed with wavelengths in the near-infrared wavelength region requires only shifting the spectral characteristics of commonly used infrared cut filters to longer wavelengths, and there is no technical difficulty.

第2図は本発明による内視鏡装置の一例の体腔内に挿入
される部分の先端を示す。本例は直視型であり、光源(
第3図参照)からの光を光導体1で内部に導き、照明用
ガラス窓2を通して被観察物体を照明する。被観察物体
からの反射光を撮像用ガラス窓3を経て取り入れ、結像
レン女4によりCCD、BBD等の自己走査型2次元固
体撮像装置5の受光面に結像させる。この固体撮像装置
5は多数の感光累子を平面的に配列したものである。そ
の出力信号をリード線束6を経て外部へ導出する。この
リード線束6には外部の発振器(第3図参照)から固体
撮像装置5を動作させるためのクロック信号を供給する
リード線をも含むものである。
FIG. 2 shows the distal end of a portion of an example of the endoscopic device according to the present invention that is inserted into a body cavity. This example is a direct view type, and the light source (
3) is guided inside by a light guide 1 and illuminates the object to be observed through a glass window 2 for illumination. Reflected light from an object to be observed is taken in through an imaging glass window 3, and is imaged by an imaging lens 4 on a light receiving surface of a self-scanning two-dimensional solid-state imaging device 5 such as a CCD or BBD. This solid-state imaging device 5 has a large number of photosensitive elements arranged in a plane. The output signal is led out through the lead wire bundle 6. This lead wire bundle 6 also includes lead wires for supplying a clock signal for operating the solid-state imaging device 5 from an external oscillator (see FIG. 3).

光導体1およびリード線束6を鞘7内に挿入する。また
レンズ4および固体撮像装置5は外匣8内に配置し、こ
れを鞘7の先端に配置する。
The light guide 1 and the lead wire bundle 6 are inserted into the sheath 7. Further, the lens 4 and the solid-state imaging device 5 are placed inside an outer case 8, which is placed at the tip of the sheath 7.

第3図△は外部に配置される部分の一実施例の構成を示
す。j1肖7の端部から突出する光導体1の入射端面1
aと対向して光源21を配置する。光源21は赤外線お
よび可視光線を放射するもので、ここから出た光線は回
転フィルタ22を通して光導体1の入射端面laに入射
し、被観察体への照明光とされる。なお光導体1のコア
は、一般に多成分のガラスでは近赤外波長領域で減衰ず
ので、近赤外波長領域でも減衰しない石英等を心材に用
いたファイバを束ねたハ゛ンドルを使用するのが望まし
い。回転フィルタ22はモータ20により所定速度で定
速回転させるように配置する。受光素子24および色切
換信号回路25を以てスイッチングパルス発生回路を構
成し、回転フィルタ22の回転角によって変化する通過
波長領域を検出して、固体撮像装置5の駆動パルスおよ
び固体撮像装置5から冑・られる像信号等を回転フィル
タ22の回転と同期させる。すなわち、ハーフミラ−2
3で反射した光を受光素子24に入射させ、この受光素
子24の出力を色切換信号回路25に供給する。色切換
信号回路25は電流増幅器およびレベル検出回路を以て
構成し、受光素子24の出力電流信号を電圧信号に変換
し、レベル検出回路で、青、緑および赤色のそれぞれの
タイミング信号を作る。更にこのような色切換信号回路
の電流増幅器の出力を微分し、レベルを揃えて発振回路
27のトリガ信号とする。信号切換回路28は、撮像装
置5からリード線束6を経て外部に導出される画像信号
を増幅器26を経て受信し、光導体1に入射する光の色
の種類に同期して各別の出力端子28B、28.Gおよ
び28Rに供給する動作を行うものである。この信号切
換回路28には半導体アナログスイッチ等の高速動作の
スイッチを用いる。発振回路27では色切換回路25か
らのトリガ信号を受け、撮像装置5の走査信号およびモ
ニター用ブラウン管34の水平偏向回路32および垂直
偏向回ii!833への同期信号を供給する。水平偏向
回路32はモニター用フラウン管34の青、禄および赤
の各ビームを水平方向に振らせるための出力」19幅器
てt+’a成し、垂直偏向回路33はこれらのビームを
垂直方向に振らせる出力増幅器で構成する。
FIG. 3 △ shows the configuration of an embodiment of the externally arranged portion. Input end surface 1 of light guide 1 protruding from the end of j1 port 7
A light source 21 is placed facing a. The light source 21 emits infrared rays and visible rays, and the rays emitted from the light source pass through a rotating filter 22 and enter the entrance end surface la of the light guide 1, thereby illuminating the object to be observed. For the core of the light guide 1, since multi-component glass generally does not attenuate in the near-infrared wavelength region, it is preferable to use a handle made of fibers whose core material is made of quartz or the like, which does not attenuate even in the near-infrared wavelength region. . The rotary filter 22 is arranged so as to be rotated at a constant speed by the motor 20 at a predetermined speed. The light-receiving element 24 and the color switching signal circuit 25 constitute a switching pulse generation circuit, which detects a passing wavelength region that changes depending on the rotation angle of the rotary filter 22, and generates a driving pulse of the solid-state imaging device 5 and a color change signal from the solid-state imaging device 5. The image signals and the like that are generated are synchronized with the rotation of the rotary filter 22. That is, half mirror 2
The light reflected by the light receiving element 3 is incident on the light receiving element 24, and the output of the light receiving element 24 is supplied to the color switching signal circuit 25. The color switching signal circuit 25 includes a current amplifier and a level detection circuit, converts the output current signal of the light receiving element 24 into a voltage signal, and uses a level detection circuit to generate timing signals for blue, green, and red, respectively. Furthermore, the output of the current amplifier of such a color switching signal circuit is differentiated, and the levels are made uniform to be used as a trigger signal for the oscillation circuit 27. The signal switching circuit 28 receives the image signal led out from the imaging device 5 via the lead wire bundle 6 via the amplifier 26, and outputs it to each different output terminal in synchronization with the color type of light incident on the light guide 1. 28B, 28. It performs the operation of supplying to G and 28R. This signal switching circuit 28 uses a high-speed operating switch such as a semiconductor analog switch. The oscillation circuit 27 receives the trigger signal from the color switching circuit 25 and outputs the scanning signal of the imaging device 5 and the horizontal deflection circuit 32 and vertical deflection circuit ii! of the monitor cathode ray tube 34. 833. The horizontal deflection circuit 32 outputs the blue, red and red beams of the monitor fluoroun tube 34 in the horizontal direction, and the vertical deflection circuit 33 outputs these beams in the vertical direction. It consists of an output amplifier that swings the

信号切換回路28の出力端子28G、28Rおよび28
Bからの各出力を、フレームメモリ38a、38b、3
8cに記憶し、これらフレームメモリから選択的に読出
した信号をモニター用ブラウン管34の緑格子、赤格子
および青格子を動作させるのに充分な電圧となるように
、緑色増幅器29、赤色増幅器30および青色増幅器3
1にそれぞれ供給する。
Output terminals 28G, 28R and 28 of the signal switching circuit 28
Each output from frame memory 38a, 38b, 3
The green amplifier 29, red amplifier 30 and blue amplifier 3
1, respectively.

第3図Bは外部に配置される部分のさらに他の実施例の
構成を示す図で、6′は固体撮像装置からの信号線、3
5は増幅器、36はA/D変換器、37は回転フィルタ
22と同期して切換わるスイッチング回路、38a、3
8bおよび38cは各波長領域の情報を収納するメモリ
、39はTVモニターに表示するに必要なTV信号処理
回路である。本例では、3波長領域の情報を時系列的に
順次各波長領域に割当てられたメモ!J38a、38b
および38cに書込み、読出すときは同時に読出して、
TVモニターに適合した1言号処理を行う。
FIG. 3B is a diagram showing the configuration of still another embodiment of the externally arranged portion, in which 6' is a signal line from the solid-state imaging device;
5 is an amplifier, 36 is an A/D converter, 37 is a switching circuit that switches in synchronization with the rotary filter 22, 38a, 3
8b and 38c are memories for storing information in each wavelength range, and 39 is a TV signal processing circuit necessary for displaying on a TV monitor. In this example, information on three wavelength regions is assigned to each wavelength region in chronological order as a memo! J38a, 38b
When writing and reading to and 38c, read at the same time,
Performs single word processing suitable for TV monitors.

メモリ38a、38bおよび38Cにはリフレッシュ機
能をもたせ、何回も同じ信号を読み出させる。また各メ
モ’J38a、38bおよび38Cはそれぞれ複数のメ
モリから成り、読み出しながら書き込むこともできる。
Memories 38a, 38b, and 38C are provided with a refresh function to read out the same signal many times. Each memo 'J38a, 38b, and 38C is composed of a plurality of memories, and can be written while being read.

第4図は回転フィルタ22を示す。回転フィルタ22は
3つの部分40.41および42に等分され、例えば、
部分40は700nm〜300nm(赤色)、部分41
は800nm 〜900nm(赤外領域)、部分42は
600nm〜700nm(橙色)のそれぞれの波長の光
を透過するものとする。このようなフィルタ22の回転
と同期して信号切換回転23を駆動し、例えば赤色部分
40を透過した光により得られる像信号を緑色出力端子
28Gを介して緑色チャンネルに供給し、モニタ用ブラ
ウン管34上で緑色像として映出させ、赤外領域部分4
1を透過した光により得られる像信号を赤色出力端子2
8Rを経て赤色像として表示し、橙色部分42を透過し
た光で得られる像信号を青色出力端子28Bを経て青色
像とじて表示することができる。この場合多照明光波長
領域から1与られた像信号は、必ずしもモニター用ブラ
ウン管34上で同じか似たような色で表示させる必要は
なく、例えば部分40に対応する出力を赤色に、部分4
1のそれは青色に、部分42のそれは緑色にそれぞれ表
示することは当然考えられる。またその組合せは多数あ
るが、患部と正常部との識別が最もし易いように、これ
らの組合せを行えば良い。
FIG. 4 shows the rotating filter 22. FIG. The rotating filter 22 is equally divided into three parts 40, 41 and 42, e.g.
Part 40 is 700 nm to 300 nm (red), part 41
800 nm to 900 nm (infrared region), and the portion 42 transmits light having wavelengths of 600 nm to 700 nm (orange color). The signal switching rotation 23 is driven in synchronization with the rotation of the filter 22, and, for example, an image signal obtained by the light transmitted through the red portion 40 is supplied to the green channel via the green output terminal 28G, and the image signal is supplied to the monitor cathode ray tube 34. The image is projected as a green image on the top, and the infrared region part 4
The image signal obtained by the light transmitted through 1 is sent to the red output terminal 2.
8R, it can be displayed as a red image, and the image signal obtained by the light transmitted through the orange portion 42 can be displayed as a blue image through the blue output terminal 28B. In this case, the image signals given from the multiple illumination light wavelength ranges do not necessarily need to be displayed in the same or similar colors on the monitor cathode ray tube 34; for example, the output corresponding to the portion 40 is displayed in red,
It is naturally possible to display the portion 1 in blue and the portion 42 in green. Although there are many combinations, these combinations may be used in such a way that it is easiest to distinguish between the affected area and the normal area.

本発明に用いる回転フィルタ22の各部分は、表1の如
く種々の波長領域を設定し得る。しかしながら、波長領
域の組合せはこれに限られるものではない。なお、本実
施例においては、入射端面1aを円形状としたが、スリ
ットa又は長方形状であってもよい。
Each part of the rotating filter 22 used in the present invention can be set to various wavelength ranges as shown in Table 1. However, the combination of wavelength regions is not limited to this. In this embodiment, the incident end surface 1a is circular, but it may be formed into a slit a or a rectangular shape.

表1 第5図は生体体腔内の正常部と患部についての反射曲線
図で、正常部の反射曲線をA、患部の反射曲線をBで示
す。いま11.β2およびl、の各波長領域を通す分光
フィルタを用いて分光し、これら各波長領域の光によっ
て固体撮像装置から得られる電気信号を、例えばそれぞ
れR(赤色)、G(緑色)およびB(青色)の電気信号
に同期させて画像表示すると、正常部については反射曲
線Aがほぼ平坦な軌跡を描くためR,GおよびBの反射
率が一定となり、その結果混色されて白色となる。しか
し患部についてみると、反射曲線Bの如き軌跡を描き波
長領域β1.12及び13における各反射率をα、βお
よびγとするとαR+βG+γBの割合で混色されるた
め、正常な白色の表示装置に色のついた患部の部分が明
瞭に色が出て表示される。可視域ではたとえ従来のよう
な可視域のR,GおよびBのフィルタを通したとしても
反射曲線へと反射曲線Bはほとんど同じなため、正常部
と異常部の差を表示装置で識別することは困難である。
Table 1 FIG. 5 is a reflection curve diagram of a normal part and an affected part in a living body cavity. The reflection curve of the normal part is shown as A, and the reflection curve of the affected part is shown as B. Now 11. A spectral filter that passes through the β2 and l wavelength regions is used to perform spectroscopy, and the electrical signals obtained from the solid-state imaging device using the light in these wavelength regions are, for example, R (red), G (green), and B (blue), respectively. ) When an image is displayed in synchronization with the electrical signal of ), the reflection curve A of the normal part draws a substantially flat trajectory, so the reflectance of R, G, and B is constant, and as a result, the colors are mixed and become white. However, when looking at the affected area, if we draw a locus like reflection curve B and let α, β, and γ represent the reflectance in the wavelength range β1.12 and 13, the colors will be mixed at the ratio of αR + βG + γB, so that the normal white display device will be colored. The affected area marked with is clearly displayed in color. In the visible range, even if it passes through a conventional visible range R, G, and B filter, the reflection curve B is almost the same as the reflection curve B, so the difference between the normal part and the abnormal part can be identified with a display device. It is difficult.

本発明は上述した例にのみ限定されるものではな(、幾
多の変更、変形が可能である。上述した例では3個の波
長領域の像を得る例について説明したが、これに限定さ
れるものではない。波長領域を数多くとることによって
さらに多くの情報を得ることもできる。この場合、現在
普及しているTVモニターではR(赤色)、G(緑色)
、B(青色)の3原色を発光し、その混合によって4重
々の色調の像を表示しているので、これらの混合によっ
て3色以上の色像を表示してもよい。ずなわら、各波長
領域ごとの像を一度フレームメモリに蓄えておいて順次
切換えて、メモリからの像信号を3波長領域づつ読み出
して、3原色にTVモニター上で表示することも考えら
れる。
The present invention is not limited to the above-mentioned example (many changes and modifications are possible). In the above-mentioned example, an example was explained in which images of three wavelength regions are obtained, but the present invention is not limited to this. It is not a matter of fact. Even more information can be obtained by taking many wavelength regions. In this case, currently popular TV monitors display R (red) and G (green).
, B (blue), and a four-tone image is displayed by mixing them, so a color image of three or more colors may be displayed by mixing these colors. However, it is also conceivable to store images for each wavelength region once in a frame memory and to sequentially switch over the images, read out the image signals from the memory in three wavelength regions at a time, and display them in the three primary colors on a TV monitor.

以上詳述したように、本発明の内視鏡装置によれば、3
色分解フィルタを回転させることにより時系列的に順次
被写体色像に対応した原色像信号を得る場合において、
欠点とされていた色分解−信号伝送一色合成の過程にお
ける色バランスの忠実性を高めることができる。ずなわ
ら、従来上記欠点の原因とされていた ■ 固体撮像米子の青感度の不良性、 ■ 照明光の色温度を理想状態にすることの困難性、 ■ 信号伝送路、信号処理回路での歪の不完全排除性、 ■ 光合成の段階におけるCRTの各原色発光スペクト
ルの理想状態への未到達性 等について、これら諸種の原因を取り除くことができ、
生体内部の患部と正常部の識別を容易かつ迅速に行うこ
とができ、加えて、従来に増して正確な検知を期待する
こ七ができる効果を有するものである1゜
As detailed above, according to the endoscope device of the present invention, three
In the case where primary color image signals corresponding to the subject color images are sequentially obtained in time series by rotating the color separation filters,
It is possible to improve the fidelity of color balance in the process of color separation-signal transmission and one-color synthesis, which has been considered a drawback. However, the causes of the above-mentioned shortcomings have been ■ Poor blue sensitivity of solid-state imaging Yonago, ■ Difficulty in setting the color temperature of illumination light to an ideal state, ■ Problems in signal transmission paths and signal processing circuits. It is possible to eliminate various causes such as incomplete elimination of distortion, and failure to reach the ideal state of each primary color emission spectrum of CRT during the photosynthesis stage.
It has the effect of making it possible to easily and quickly distinguish between affected parts and normal parts inside a living body, and in addition, it is expected to provide more accurate detection than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ΔおよびBは人体臓器の反射スペクトルの状態を
示す図、 第2図は本発明による内視鏡装置の一例の体腔内に挿入
される部分の先端を示す断面図、第3図AおよびBはそ
れぞれ本発明の内視鏡装置の外部に配置される部分の構
成を示す図、第4図は本発明の内視鏡装置に使用する回
転フィルタを示す図、 第5図は生体体腔内の正常部と患部についての反射曲線
を示す図である。 1・・・光導体      2・・・照明用ガラス窓3
・・・撮像用ガラス窓  4・・・結像レンズ5.5a
、5b・・・固体撮像装置 6・・・リード線束 6′・・・固体撮像装置からの信号線 7・・梢        8・・・外匣9・・・レンズ
を通過した光 10・・・ペンタプリズム 11・・・グイクロイック
面12・・・赤外波長領域光 13・・・ミラー面14
・・・光透過性ブロック 20・・・モータ     21・・・光源22・・・
回転フィルタ  22a・・・光学フィルタ23・・・
ハーフミラ−24・・・受光素子25・・・色切換信号
回路 26・・・増幅器27・・・発振回路    2
8・・・信号切換回路28R・・・赤色出力端子 28G・・・緑色出力端子 28B・・・青色出力端子 29・・・緑色増幅器   30・・・赤色増幅器31
・・・青色増幅器   32・・・水平偏向回路33・
・・垂直偏向回路 34・・・モニター用ブラウン管 35・・・増幅器36・・・A/D変換器37・・スイ
ッチング回路 38 a、 38 b、38 c・−・情報収納メモリ
39・・・TV信号処理回路 第1図 400   EJOOf2θθ 坂畏(rrrn) ;l又友(πm) 第2図 手  続  補  正  書 昭和62年 2月23日 特許庁長官  黒  1) 明  雄  殿−発明の名
称 内視鏡装置 補正をする者 事件との関係  特許出願人
Fig. 1 Δ and B are diagrams showing the state of the reflection spectrum of human organs; Fig. 2 is a sectional view showing the tip of the part inserted into the body cavity of an example of the endoscope device according to the present invention; Fig. 3 A and B are diagrams showing the configuration of the parts disposed outside the endoscope device of the present invention, FIG. 4 is a diagram showing a rotary filter used in the endoscope device of the present invention, and FIG. 5 is a living body cavity. FIG. 4 is a diagram showing reflection curves for a normal part and an affected part of the body. 1... Light guide 2... Glass window for lighting 3
...Imaging glass window 4...Imaging lens 5.5a
, 5b...Solid-state imaging device 6...Lead wire bundle 6'...Signal line 7 from the solid-state imaging device...Top 8...Outer casing 9...Light passing through the lens 10...Penta Prism 11... Guicroic surface 12... Infrared wavelength region light 13... Mirror surface 14
...Light transmitting block 20...Motor 21...Light source 22...
Rotating filter 22a... Optical filter 23...
Half mirror 24... Light receiving element 25... Color switching signal circuit 26... Amplifier 27... Oscillation circuit 2
8...Signal switching circuit 28R...Red output terminal 28G...Green output terminal 28B...Blue output terminal 29...Green amplifier 30...Red amplifier 31
...Blue amplifier 32...Horizontal deflection circuit 33.
...Vertical deflection circuit 34...Monitor cathode ray tube 35...Amplifier 36...A/D converter 37...Switching circuit 38 a, 38 b, 38 c...Information storage memory 39...TV Signal processing circuit Fig. 1 400 EJOOof2θθ Sakahi (rrrn) ; l Matato (πm) Fig. 2 Procedures Amendment Written February 23, 1981 Commissioner of the Patent Office Kuro 1) Mr. Akio - Invention title Relationship with the case of the person who corrects the mirror device Patent applicant

Claims (1)

【特許請求の範囲】 1、少なくとも1つの赤外波長領域の光と、少なくとも
一つのこの赤外波長領域とは異なる波長領域の光とで時
系列的に被観察体を照明する手段と、 被観察体の内部に挿入される部分の先端に 設けられ、被観察体からの光を受けて結像面に被観察体
像を形成する光学系と、 この光学系の結像面装置に配置され、被観 察体の光学像を電気信号に変換する固体撮像装置と、 この固体撮像装置から出力される上記各波 長領域の光による被観察体像を表わす電気信号を記憶す
る複数のフレームメモリと、 これら複数のフレームメモリから選択的に 読出した電気信号を受けて画像の表示を行う手段とを具
えることを特徴とする内視鏡装置。
[Scope of Claims] 1. A means for illuminating an object to be observed in time series with at least one light in an infrared wavelength region and at least one light in a wavelength region different from the infrared wavelength region; An optical system is provided at the tip of the part to be inserted into the object to be observed, and receives light from the object to be observed to form an image of the object on the imaging plane. , a solid-state imaging device that converts an optical image of an object to be observed into an electrical signal; a plurality of frame memories that store electrical signals representing images of the object to be observed by light in each of the wavelength ranges outputted from the solid-state imaging device; An endoscope apparatus comprising means for receiving electrical signals selectively read from the plurality of frame memories and displaying an image.
JP62013311A 1987-01-24 1987-01-24 Endoscope device Granted JPS62182705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013311A JPS62182705A (en) 1987-01-24 1987-01-24 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013311A JPS62182705A (en) 1987-01-24 1987-01-24 Endoscope device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7850779A Division JPS563033A (en) 1979-06-21 1979-06-21 Endoscope device

Publications (2)

Publication Number Publication Date
JPS62182705A true JPS62182705A (en) 1987-08-11
JPH059007B2 JPH059007B2 (en) 1993-02-03

Family

ID=11829625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013311A Granted JPS62182705A (en) 1987-01-24 1987-01-24 Endoscope device

Country Status (1)

Country Link
JP (1) JPS62182705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476827A (en) * 1987-09-18 1989-03-22 Fuji Photo Optical Co Ltd Electronic endoscopic apparatus
JPH01308531A (en) * 1988-02-08 1989-12-13 Olympus Optical Co Ltd Endoscopic apparatus
WO2004015381A1 (en) * 2002-08-09 2004-02-19 Hamamatsu Photonics K.K. System for measuring chromaticity in visible and invisible regions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5165962A (en) * 1974-12-04 1976-06-08 Olympus Optical Co
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment
JPS5336885U (en) * 1976-09-06 1978-03-31

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5165962A (en) * 1974-12-04 1976-06-08 Olympus Optical Co
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment
JPS5336885U (en) * 1976-09-06 1978-03-31

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476827A (en) * 1987-09-18 1989-03-22 Fuji Photo Optical Co Ltd Electronic endoscopic apparatus
JPH01308531A (en) * 1988-02-08 1989-12-13 Olympus Optical Co Ltd Endoscopic apparatus
WO2004015381A1 (en) * 2002-08-09 2004-02-19 Hamamatsu Photonics K.K. System for measuring chromaticity in visible and invisible regions

Also Published As

Publication number Publication date
JPH059007B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
US4663657A (en) Image pickup apparatus for endoscopes
US5105269A (en) Imaging apparatus and endoscope apparatus with selectable wavelength ranges
US5255087A (en) Imaging apparatus and endoscope apparatus using the same
JPH0785135B2 (en) Endoscope device
US20020026098A1 (en) Video endoscope system
JP3501388B2 (en) Video processor of electronic endoscope for fluorescence diagnosis
US20040225222A1 (en) Real-time contemporaneous multimodal imaging and spectroscopy uses thereof
JPH029804B2 (en)
JPS63234941A (en) Image pickup apparatus
JPH0879581A (en) Visual mirror with intensified image
JP2655571B2 (en) Imaging device
JPH08140928A (en) Electronic endoscope system for fluorescence diagnosis
JPH0578011B2 (en)
JP2003061909A (en) Light source and electronic endoscope
JPS62174716A (en) Endoscope device
JP2641654B2 (en) Endoscope device
CN105142492B (en) Endoscopic system
JP2641653B2 (en) Endoscope device
JPS62174715A (en) Endoscope device
JPS62182705A (en) Endoscope device
JPS62174713A (en) Endoscope device
JPS62174712A (en) Endoscope device
JPH09248281A (en) Endoscope spectrometer
JPS62174714A (en) Endoscope device
JPH0324848B2 (en)