[go: up one dir, main page]

JPS62174716A - Endoscope device - Google Patents

Endoscope device

Info

Publication number
JPS62174716A
JPS62174716A JP62013312A JP1331287A JPS62174716A JP S62174716 A JPS62174716 A JP S62174716A JP 62013312 A JP62013312 A JP 62013312A JP 1331287 A JP1331287 A JP 1331287A JP S62174716 A JPS62174716 A JP S62174716A
Authority
JP
Japan
Prior art keywords
light
image
solid
observed
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62013312A
Other languages
Japanese (ja)
Other versions
JPH059008B2 (en
Inventor
Shunpei Tanaka
俊平 田中
Hidetoshi Yamada
秀俊 山田
Masahiro Hirata
平田 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62013312A priority Critical patent/JPS62174716A/en
Publication of JPS62174716A publication Critical patent/JPS62174716A/en
Publication of JPH059008B2 publication Critical patent/JPH059008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To speedily and easily discriminate an affected part and normal parts by providing a means which lights a body to be observed with infrared wavelength range light and visible wavelength range light, an optical system and a solid-state image pickup device, and a means which separates light on the transmission surface of the device. CONSTITUTION:The body to be observed is lighted with rays of light in the infrared ray range and visible ray range and an image signal is sent to a switching circuit 52 through an image forming lens 4 and the solid-state image pickup device 5 at the tip part of an endoscope. Filter parts 45a-45c having wavelength selectivity are checkerboarded on the light receiving surface of the device 5, a wavelength range of 600-900nm is divided into three, and rays of light of the three primary colors which are transmitted them are processed to display an image on a monitor. TV. The normal parts and abnormal part of the patient have a difference in the reflection factor of wavelength light, so they are discriminated speedily and easily on the monitor TV.

Description

【発明の詳細な説明】 本発明は生体体腔内または機械的構成部品等の空洞内を
観察するために使用する内視鏡装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an endoscope device used for observing the inside of a living body cavity or a cavity such as a mechanical component.

従来このような内視鏡においては、光学式ファイバ東に
より被観察体の像を生体体腔外或いは空洞外に導き出し
、光学式ファイバの出射端面に結像された光学像を、接
眼レンズ系を介して観察している。また他の方法として
、上記光学式ファイバの代わりに内視鏡の鞘の先端位置
に固体撮像装置を設置し、この固体撮像装置の受光面に
結像された光学像を電気信号に変換しリード線により主
体体腔外或いは空洞外に導き出し、必要な信号処理を行
った後TVモニター上に表出しようとする試みも提案さ
れている。
Conventionally, in such endoscopes, an image of the object to be observed is led out of the living body cavity or cavity through an optical fiber east, and an optical image formed on the output end face of the optical fiber is transmitted through an eyepiece system. I am observing. Another method is to install a solid-state imaging device at the tip of the endoscope sheath instead of the optical fiber described above, and convert the optical image formed on the light-receiving surface of this solid-state imaging device into an electrical signal. It has also been proposed to lead the signal out of the subject's body cavity or cavity using a wire, perform necessary signal processing, and then display it on a TV monitor.

上述された内視鏡においては、被観察体からILFられ
る情報は可視光波長領域にlX12定されている。
In the endoscope described above, the information received from the object to be observed by ILF is fixed in the visible light wavelength region.

すなわら、前者は光学的に直1ご肉眼で像を見ろので当
然可視光波長領域外のものは観察できないし、後者の場
合固体撮像装置は赤外波長領域にも感光するので赤外波
長領域の像情報は検出可能であるが、像をカラー化する
場合赤外波長領域の像情報は色バランスをとる上で邪魔
になる。そこで、色の忠実性を上げる目的で、普通は赤
外線カットフィルタ等で赤外波長領域の!明光は被観察
体に照射しないようにするか、あるいは、照射しても固
体撮像装置受光面には達しないようなフィルタを設ける
必要がある。
In other words, in the former case, the image is optically viewed directly with the naked eye, so of course it is impossible to observe anything outside the visible wavelength range, while in the latter case, solid-state imaging devices are also sensitive to infrared wavelengths, so infrared wavelengths cannot be observed. Image information in the region can be detected, but when colorizing the image, image information in the infrared wavelength region becomes a hindrance to achieving color balance. Therefore, in order to improve color fidelity, infrared cut filters are usually used to reduce the infrared wavelength range. It is necessary to prevent bright light from irradiating the object to be observed, or to provide a filter that prevents bright light from reaching the light-receiving surface of the solid-state imaging device even if it is irradiated.

このような内視鏡で被観察体の像を観察する場合、特に
生体内では患部と正常部とを見わけるのに微妙な色調の
差を検知しなければならない。一般にその差を検知(認
知)するには高度な知識と経験が必要とされ、その上検
知するまでに長時間を要し、また検知の間中注意力も集
中していなければならなかった。
When observing an image of an object to be observed using such an endoscope, it is necessary to detect subtle differences in color tone to distinguish between an affected area and a normal area, especially in a living body. Generally, detecting (recognizing) the difference requires a high degree of knowledge and experience, and it takes a long time to detect it, and requires concentrated attention during the detection.

本発明は、上述のような欠点をなくし、患部と正常部の
識別を迅速かつ容易に行うことができるようにすること
を目的とする“ものである。生体内の患部と正常部の観
察について、内視鏡装置の識別能力を増す方法として、
本発明では赤外線照射によって得られる不可視情報を可
視情報に変換する方法を採る。一般に知られているよう
に、固体撮像装置は近赤外領域で高感度である。また照
明用光源も一般には可視波長領域よりも赤外波長領域で
多くのエネルギーを放射することが知られている。とこ
ろで、被観察体から反射される光量は、生体内では可視
光波長領域の赤色(長波長)側で多いことは血液が赤色
をしていることからも予想できる。さらに近赤外光で反
射率が大きくなることも発表されている。これらのこと
から、生体内での赤外光から得られる情報は、生体内で
の特徴抽出に役立つ可能性は充分にある。このように赤
外光で得られた画像情報はTVモニター上で特定の波長
の色で表示する。異なった赤外波長領域の画像だけをT
Vモニター上に(赤)、(緑)、(青)で表示してもよ
、いし、可視光波長領域(例えば赤色像)で得られたも
のと、赤外波長領域で得られたものとを同時に表示する
ようにしてもよい。要するに、生体内の患部を正常部と
特徴づけられる波長領域での像信号の抽出を可能にする
ことが重要である。
The present invention aims to eliminate the above-mentioned drawbacks and to make it possible to quickly and easily distinguish between affected areas and normal areas. Regarding observation of affected areas and normal areas in a living body. , as a method to increase the identification ability of endoscopic devices.
The present invention employs a method of converting invisible information obtained by infrared irradiation into visible information. As is generally known, solid-state imaging devices have high sensitivity in the near-infrared region. It is also known that illumination light sources generally emit more energy in the infrared wavelength region than in the visible wavelength region. By the way, it can be predicted that the amount of light reflected from an object to be observed is large in the red (long wavelength) side of the visible light wavelength region in a living body because blood is red in color. It has also been announced that the reflectance increases with near-infrared light. For these reasons, there is a good possibility that information obtained from infrared light in a living body is useful for extracting features in a living body. Image information obtained using infrared light in this way is displayed on a TV monitor in colors of specific wavelengths. Only images in different infrared wavelength regions are
It may be displayed in (red), (green), and (blue) on the V monitor, or it may be displayed in (red), (green), (blue), or it may be displayed in the visible wavelength region (for example, red image) and in the infrared wavelength region. may be displayed simultaneously. In short, it is important to be able to extract image signals in a wavelength range that characterizes an affected area within a living body as a normal area.

本発明の内視鏡装置は、少なくとも1つの赤外波長領域
の光と、少なくとも1つの、この赤外波長領域とは異な
る波長領域の光で被観察体を同時に照明する手段と、 被観察体の内部に挿入される部分の先端に設けられ、被
観察体からの光を受けて結像面に被観察体像を形成する
光学系と、 この光学系の結像面位置に配置され、被観察体像を電気
信号に変換する固体撮像装置と、前記光学系と固体撮像
装置との間に配置され、上記各波長領域の光を分離する
フィルタと、前記固体撮像装置から出力される上記各波
長領域の光による被観察体像を表わす電気信号をそれぞ
れ記憶する複数のフレームメモリと、これら複数のフレ
ームメモリから選択的に読出した電気信号を受けて画像
の表示を行う手段とを具えることを特徴とするものであ
る。
The endoscope apparatus of the present invention includes means for simultaneously illuminating an object to be observed with at least one light in an infrared wavelength region and at least one light in a wavelength region different from the infrared wavelength region; An optical system is installed at the tip of the part to be inserted into the inside of the camera, and receives light from the object to be observed to form an image of the object on the imaging plane. a solid-state imaging device that converts an observed object image into an electrical signal; a filter disposed between the optical system and the solid-state imaging device that separates light in each of the wavelength regions; A plurality of frame memories each storing electrical signals representing images of an object to be observed using light in a wavelength range, and means for displaying an image in response to electrical signals selectively read out from the plurality of frame memories. It is characterized by:

次に図面にしたがって本発明の詳細な説明する。Next, the present invention will be explained in detail according to the drawings.

第1図AおよびBは人体臓器の反射スペクトルを示す。Figures 1A and 1B show reflection spectra of human organs.

第11fflAは胃のスペクトルで、はとんど400n
m〜1200nmの波長まで平らであり、その反射率は
数10%である。一方策1図Bは血液のスペクトルで、
400nm〜1200nmまで数%から100%近くま
で変化している。両者を比較すると、特に赤外波長領域
(800nm〜1200nm)でその差が大きいことが
わかる。
The 11th fflA is the gastric spectrum, and is mostly 400n
It is flat up to a wavelength of m to 1200 nm, and its reflectance is several 10%. On the other hand, Figure B is the spectrum of blood.
From 400 nm to 1200 nm, it varies from a few % to nearly 100%. Comparing the two, it can be seen that the difference is particularly large in the infrared wavelength region (800 nm to 1200 nm).

例えば、胃の中に血液に似たような組織あるいは血液を
多重に含んだようなものが存在し、その存在を認知しよ
うとした場合、近赤外波長領域で比較した方がその差が
はっきりし、その効果が著しいことは明らかである。
For example, if there is tissue that resembles blood or something that contains multiple blood layers in the stomach, and you are trying to recognize its existence, the difference will be clearer if you compare it in the near-infrared wavelength region. However, it is clear that the effect is significant.

現状の光学的内視鏡では、人間の比視感度(400nm
〜700 nm)の波長領域でのみしか観察して判断す
ることができない。一方CCDの感度領域は400nm
から1200nmに及んでおり、近赤外波長領域の情報
を得るのに充分である。
Current optical endoscopes have a human specific luminous efficiency (400 nm).
It is possible to make a judgment by observing only in the wavelength range (~700 nm). On the other hand, the sensitivity range of CCD is 400nm
This ranges from 1200 nm to 1200 nm, which is sufficient to obtain information in the near-infrared wavelength region.

また、一般の光源に用いられる光源ランプは、可視光よ
りむしろ近赤外波長領域の波長のエネルギーを多量に放
射している。近赤外波長領域の波長で被観察体を照射す
ることは、一般に用いられる赤外光カットフィルタの分
光特性をより長波長側に移すだけでよく、その技術的困
難性はない。
Furthermore, light source lamps used as general light sources emit a large amount of energy in the near-infrared wavelength region rather than visible light. Irradiating an object to be observed with wavelengths in the near-infrared wavelength region requires only shifting the spectral characteristics of commonly used infrared cut filters to longer wavelengths, and there is no technical difficulty.

第2図は本発明者等が開発した内視鏡装置の一例の体腔
内に挿入される部分の先端を示す。本例は直視型であり
、光源(第3図参照)からの光を光導体lで内部に導き
、照明用ガラス窓2を通して被観察物体を照明する。被
観察物体からの反射光を撮像用ガラス窓3を経て取り入
れ、結像レンズ4によりCCD、BBD等の自己走査型
2次元固体撮像装置5の受光面に結像させる。この固体
撮像装置5は多数の感光素子を平面的に配列したもので
ある。その出力信号をリード線束6を経て外部へ導出す
る。このリード線束6には外部の発振器(第3図参照〉
から固体撮像装置5を動作させるためのクロック信号を
供給するリード線をも含むものである。固体撮像装置5
の前方には後述するフィルタ45を配置する。
FIG. 2 shows the distal end of the portion inserted into the body cavity of an example of an endoscope device developed by the present inventors. This example is a direct viewing type, in which light from a light source (see FIG. 3) is guided into the interior by a light guide 1, and the object to be observed is illuminated through a glass window 2 for illumination. Reflected light from an object to be observed is taken in through an imaging glass window 3, and is imaged by an imaging lens 4 on a light receiving surface of a self-scanning two-dimensional solid-state imaging device 5 such as a CCD or BBD. This solid-state imaging device 5 has a large number of photosensitive elements arranged in a plane. The output signal is led out through the lead wire bundle 6. This lead wire bundle 6 is connected to an external oscillator (see Figure 3).
It also includes a lead wire for supplying a clock signal for operating the solid-state imaging device 5 from the solid-state imaging device 5 . Solid-state imaging device 5
A filter 45, which will be described later, is placed in front of the filter.

光導体1およびリード線束6を鞘7内に挿入する。また
レンズ4および固体撮像装置5は外匣8内に配置し、こ
れを稍7の先端に配置する。
The light guide 1 and the lead wire bundle 6 are inserted into the sheath 7. Further, the lens 4 and the solid-state imaging device 5 are placed inside the outer case 8, which is placed at the tip of the stem 7.

第3図Aは外部に配置される部分の一実施例の構成を示
す。鞘7の端部から突出する光導体1の入射端面1aと
対向して光源21を配置する。光#i21は赤外線およ
び可視光線を放射するもので、ここから出た光線は光導
体Iの入射端面1aに入射し、被観察体への照明光とさ
れる。なお光導体1のコアは、一般に多成分のガラスで
は近赤外波長領域で減衰すので、近赤外波長領域でも減
衰しない石英等を心材に用いたファイバを束ねたバンド
ルを使用するのが望ましい。電流増幅器およびレベル検
出回路を以て構成した色切換信号回路25を設け、フィ
ルタ45の青、緑および赤外のそれぞれのタイミング信
号を作る。更にこのような色切換信号回路の電流増幅器
の出力を微分し、レベルを揃えて発振回路27のトリガ
信号とする。
FIG. 3A shows the construction of one embodiment of the externally arranged part. A light source 21 is arranged opposite to the entrance end face 1a of the light guide 1 which projects from the end of the sheath 7. Light #i21 emits infrared rays and visible rays, and the rays emitted therefrom enter the incident end face 1a of the light guide I and are used as illumination light for the object to be observed. Since the core of the light guide 1 is generally made of multi-component glass, it is attenuated in the near-infrared wavelength region, so it is desirable to use a bundle of fibers whose core material is made of quartz or the like, which does not attenuate even in the near-infrared wavelength region. . A color switching signal circuit 25 comprising a current amplifier and a level detection circuit is provided to generate timing signals for each of the blue, green and infrared filters 45. Furthermore, the output of the current amplifier of such a color switching signal circuit is differentiated, and the levels are made uniform to be used as a trigger signal for the oscillation circuit 27.

信号切換回路28は、撮像装置5からリード線束6を経
て外部に導出される画像信号を増幅器26を経て受信し
、光導体1に入射する光の色の種類に同期して各別の出
力端子288.28Gおよび28Rに供給する動作を行
うものである。この信号切換回路28には半導体アナロ
グスイッチ等の高速動作のスイッチを用いる。発振回路
27では色切換回路25からのトリガ信号を受け、撮像
装置5の走査信号およびモニター用ブラウン管34の水
平偏向回路32および垂直偏向回路33への同期信号を
供給する。水平偏向回路32はモニター用ブラウン管3
4の青、緑および赤の各ビームを水平方向に振らせるた
めの出力増幅器で構成し、垂直偏向回路33はこれらの
ビームを垂直方向に振らせる出力増幅器で構成する。
The signal switching circuit 28 receives the image signal led out from the imaging device 5 via the lead wire bundle 6 via the amplifier 26, and outputs it to each different output terminal in synchronization with the color type of light incident on the light guide 1. 288.28G and 28R. This signal switching circuit 28 uses a high-speed operating switch such as a semiconductor analog switch. The oscillation circuit 27 receives the trigger signal from the color switching circuit 25 and supplies a scanning signal for the imaging device 5 and a synchronization signal to the horizontal deflection circuit 32 and vertical deflection circuit 33 of the monitor cathode ray tube 34. The horizontal deflection circuit 32 is a monitor cathode ray tube 3.
The vertical deflection circuit 33 is composed of an output amplifier for deflecting each of the blue, green and red beams of 4 in the horizontal direction, and the vertical deflection circuit 33 is composed of an output amplifier for deflecting these beams in the vertical direction.

信号切換回路28の出力端子28G、28Rおよび28
Bからの各出力をそれぞれフレームメモリ38a、38
b、38cに記憶する。これらフレームメモリから読出
した信号をモニター用ブラウン管34の緑格子、赤格子
および青格子を動作させるのに充分な電圧となるように
、緑色増幅器29、赤色増幅器30および青色増幅2B
31にそれぞれ供給する。
Output terminals 28G, 28R and 28 of the signal switching circuit 28
Each output from B is sent to frame memories 38a and 38, respectively.
b, 38c. The green amplifier 29, the red amplifier 30 and the blue amplifier 2B are set so that the signals read from these frame memories have sufficient voltage to operate the green, red and blue gratings of the monitor cathode ray tube 34.
31 respectively.

第3図Bは外部に配置される部分のさらに池の実施例の
構成を示す図で、6′は固体撮像装置からの信号線、3
5は増幅器、36はA/D変換器、37は色切換信号回
路25からの信号によって肪換わるスイッチング回路、
38a、38bおよび38Cは各波長領域の情報を収納
するメモリ、39はTVモニターに表示するに必要なT
V信号処理回路である。本例では、3波長領域の情報を
時系列的に順次多波長領域に割当てられたメモリ33a
、38bおよび38Cに書込み、読出ずときは同時に読
出して、TVモニターに適合した信号処理理を行う。メ
モ!J38a、38bおよび38Cにはリフレッシュ機
能をもたせ、何回も同じ信号を読み出させる。また各メ
モ!J38a、38bおよび38Cはそれぞれ腹数のメ
モリから成り、読み出しながら訂き込むこともてきる。
FIG. 3B is a diagram showing the configuration of an embodiment of the part disposed outside, in which 6' is a signal line from the solid-state imaging device;
5 is an amplifier; 36 is an A/D converter; 37 is a switching circuit that is switched by a signal from the color switching signal circuit 25;
38a, 38b, and 38C are memories that store information in each wavelength range, and 39 is a T necessary for displaying on a TV monitor.
This is a V signal processing circuit. In this example, information in three wavelength regions is sequentially allocated to multiple wavelength regions in memory 33a.
, 38b and 38C, and if not read, they are read simultaneously to perform signal processing suitable for a TV monitor. Memo! J38a, 38b, and 38C are provided with a refresh function to read the same signal many times. Also each note! J38a, 38b and 38C each consist of a memory for the anti-number, and can be corrected while being read.

第4図は本発明のフィルタ45の実施例を示す図である
。本例では、固体撮像装置の受光面上に各波長選択性の
あるフィルタ邪分45a、45bおよび45cを市松模
様に配置し、フィルタ部分45a、45bおよび45c
のうち少なくとも1つを赤外波長領域にのみ透過性のあ
るものとする。
FIG. 4 is a diagram showing an embodiment of the filter 45 of the present invention. In this example, filter portions 45a, 45b, and 45c having wavelength selectivity are arranged in a checkerboard pattern on the light receiving surface of the solid-state imaging device.
At least one of them is transparent only in the infrared wavelength region.

例えば、フィルタ部分45aをR(赤色)、45bをG
(緑色)および45cをIR(赤外波長領域の1つ)と
決めることもできる。固体撮像装置から得られた信号は
、既知の単板式カラーTVカメラの信号処理と同様な処
理をすることによって、各波長領域に応じた像信号を分
i1し、TV画面上に色像を表示できる信号処理を行う
For example, the filter portion 45a is R (red) and the filter portion 45b is G.
(green) and 45c can also be determined as IR (one of the infrared wavelength regions). The signal obtained from the solid-state imaging device is processed in a manner similar to the signal processing of known single-chip color TV cameras to separate image signals according to each wavelength region and display a color image on the TV screen. Perform signal processing where possible.

フィルタ45の3つの部分45a、45b、45Cの透
過波長は上述した例以外に例えば、部分45aは700
nm〜800nm(赤色)、部分45bは800nm 
〜900nm(赤外領域)、部分45cは600nm〜
700nm(橙色)のそれぞれの波長の光を透過するも
のとすることもできる。このようなフィルタ45の部分
の走査と同期して信号切換回路28を駆動し、例えば赤
色部分45aを透過した光により得られる像信号を緑色
出力端子28Gを介して緑色チャンネルに供給し、モニ
タ用ブラウン管34上で緑色像として映出させ、赤外領
域部分45bを透過した光により得られる像信号を赤色
出力端子28Rを経て赤色像として表示し、橙色部分4
5Cを透過した光で得られる像信号を青色出力端子28
Bを経て青色像として表示することができる。この場合
各照明光波長領域から得られた像信号は、必ずしもモニ
ター用ブラウン管34上で同じか似たような色で表示さ
せる必要はなく、例えば部分45aに対応する出力を赤
色に、部分45bのそれは青色に、部分45 Cのそれ
は緑色にそれぞれ表示することは当然考えられる。また
その組合せは多数あるが、患部と正常部との識別が最も
し易いように、これらの組合せを行えば良い。
The transmission wavelength of the three parts 45a, 45b, and 45C of the filter 45 is in addition to the above-mentioned example.
nm to 800 nm (red), part 45b is 800 nm
~900 nm (infrared region), portion 45c is ~600 nm
It is also possible to transmit light of each wavelength of 700 nm (orange color). The signal switching circuit 28 is driven in synchronization with the scanning of the filter 45 portion, and an image signal obtained by, for example, the light transmitted through the red portion 45a is supplied to the green channel via the green output terminal 28G, and is used for monitoring. A green image is projected on the cathode ray tube 34, and an image signal obtained by the light transmitted through the infrared region portion 45b is displayed as a red image via the red output terminal 28R.
The image signal obtained by the light transmitted through 5C is sent to the blue output terminal 28.
B can be displayed as a blue image. In this case, the image signals obtained from each illumination light wavelength range do not necessarily need to be displayed in the same or similar colors on the monitor cathode ray tube 34; for example, the output corresponding to the portion 45a may be displayed in red, and the output corresponding to the portion 45b may be displayed in red. It is naturally possible to display it in blue and that in section 45C in green. Although there are many combinations, these combinations may be used in such a way that it is easiest to distinguish between the affected area and the normal area.

本発明に用いるフィルタの各部分は、表1の如く種々の
波長領域を設定し得る。しかしながら、波長領域の組合
せはこれに限られるものではない。
Various wavelength ranges can be set for each part of the filter used in the present invention as shown in Table 1. However, the combination of wavelength regions is not limited to this.

表  1 第5図は第4図のフィルタ45を組込んだ本発明の内視
鏡装置を示す図で、内視鏡鞘先端に配置した結像レンズ
4により、UMB察体の像を上述した光学フィルタ45
を経て固体撮像装置5に入射させる。固体撮像装置5か
らの信号を増幅器およびクランプ回路51を経てスイッ
チング回路52に供給する。このスイッチング回路52
を固体撮像装置駆動回路53により同期駆動し、フィル
タ45の各波長領域から得られた信号を順次に緑、1テ
および赤色チャンネルの増幅器およびフィルタ54a、
54bおよび54cに供給する。これらの出力信号をそ
れぞれフレームメモリ56a、55b、56Cに記憶す
る。これらフレームメモリから選択的に読出した信号を
さらに信号処理回路55に供給し、TVモニターに適合
した所定の色信号を得ることができる。
Table 1 FIG. 5 is a diagram showing an endoscope device of the present invention incorporating the filter 45 shown in FIG. optical filter 45
The light is made incident on the solid-state imaging device 5 through the . A signal from the solid-state imaging device 5 is supplied to a switching circuit 52 via an amplifier and a clamp circuit 51. This switching circuit 52
are synchronously driven by the solid-state imaging device drive circuit 53, and the signals obtained from each wavelength region of the filter 45 are sequentially transmitted to the green, 1TE, and red channel amplifiers and filters 54a,
54b and 54c. These output signals are stored in frame memories 56a, 55b, and 56C, respectively. The signals selectively read out from these frame memories are further supplied to a signal processing circuit 55 to obtain a predetermined color signal suitable for a TV monitor.

第6図は本発明内視鏡装置に用いるフィルタのさらに他
の実施例を示す。本例のフィルタ46のフィルタ部分4
6aおよび46bは、それぞれ赤色像信号および緑色像
信号を透過するいわゆるストライプフィルタ46を構成
するものとする。
FIG. 6 shows still another embodiment of the filter used in the endoscope apparatus of the present invention. Filter portion 4 of filter 46 in this example
6a and 46b constitute a so-called stripe filter 46 that transmits a red image signal and a green image signal, respectively.

第7図は第6図に示すフィルタを使用する場合の本発明
内視鏡装置に用いる光分解系の一例を示す側面図である
。この場合には、2個の固体撮像装置25a、5bを用
いる。すなわち、1つの固体撮像装置はある特定の波長
領域の像信号を、他の固体撮像装置は他の特定のあるい
は複数の波長領域の像を得るためのもので、上記波長領
域のうちの少なくとも1つが赤外波長領域の像を得るた
めのものであることを特徴とする。例えば、被観察物体
から反射しレンズを通過した光9がペンタプリズム10
に入射し、グイタロイック面11て赤外波長領域光が反
射され、赤色光と緑色光が透過し直進する。グイクロイ
ック面11で反射された赤外波長領域光12はミラー面
13でふたたび反射され、赤外線透過フィルタ47を介
して第1の固体撮像装置5aに入射する。グイクロイッ
ク面11を透過した光は、光透過性ブロック14中を通
過し、ストライプフィルタ46のフィルタ部分46aお
よび46bのフィルタ作用により、赤色光および緑色光
が透過し、第2の固体撮像装置5bに入射する。
FIG. 7 is a side view showing an example of a photolysis system used in the endoscope apparatus of the present invention when the filter shown in FIG. 6 is used. In this case, two solid-state imaging devices 25a and 5b are used. That is, one solid-state imaging device is for obtaining an image signal in a specific wavelength range, and the other solid-state imaging device is for obtaining an image in another specific wavelength range or a plurality of wavelength ranges, and at least one of the wavelength ranges is It is characterized in that it is for obtaining an image in an infrared wavelength region. For example, the light 9 reflected from the object to be observed and passed through the lens is reflected by the pentaprism 10.
The infrared wavelength region light is reflected by the gitaloic surface 11, and the red light and green light are transmitted and go straight. The infrared wavelength region light 12 reflected by the guichroic surface 11 is reflected again by the mirror surface 13 and enters the first solid-state imaging device 5a via the infrared transmission filter 47. The light transmitted through the guichroic surface 11 passes through the light-transmitting block 14, and due to the filtering action of the filter portions 46a and 46b of the stripe filter 46, red light and green light are transmitted, and are transmitted to the second solid-state imaging device 5b. incident.

第8図は第7図の光分解系を本発明内視鏡装置の体腔内
に挿入される部分に組込んだ一構成例を示す図である。
FIG. 8 is a diagram showing an example of a configuration in which the photolysis system shown in FIG. 7 is incorporated into a portion of the endoscopic device of the present invention to be inserted into a body cavity.

この例では被観察物体からの反射光を撮像用ガラス窓3
を経て取り入れ、結像レンズ4とペンタプリズムlOと
、光透過性ブロック14と、固体撮像装置5aおよび5
bによって結像し、光分解し、電気信号に変える。リー
ド線束6には、撮像装置5aおよび5bからの映像信号
をとり出すためのリード線が収容されており、他は第2
図の説明に示した通りの構成をとる。
In this example, the reflected light from the object to be observed is captured by the imaging glass window 3.
, the imaging lens 4, the pentaprism lO, the light-transmitting block 14, and the solid-state imaging devices 5a and 5.
imaged by b, photodecomposed, and converted into electrical signals. The lead wire bundle 6 accommodates lead wires for taking out video signals from the imaging devices 5a and 5b, and the other lead wires are stored in the second lead wire bundle 6.
The configuration is as shown in the explanation of the figure.

第9図は生体体腔内の正常部と患き3についての反射曲
線図で、正常部の反射曲線をΔ、患δ:Sの反射曲線を
Bで示す。いまel、β2およびβ3の各波長領域を通
す分光フィルタを用いて分光し、これら各波長領域の光
によって固体撮像装置から得られる電気信号を、例えば
それぞれR(赤色)、G(緑色)およびB(青色)の電
気信号に同期させて画像表示すると、正常部については
反射曲線Δがほぼ平坦な軌跡を描くためR,GおよびB
の反射率が一定となり、その結果混色されて白色となる
。しかし患部についてみると、反射曲線Bの如き軌跡を
描き波長領域11.β2及びβ3における各反射率をα
、βおよびTとするとαR+βG十rBの割合で混色さ
れるため、正常な白色の表示装置に色のついた患部の部
分が明瞭に色が出て表示される。可視域ではたとえ従来
のような可視域のR,GおよびBのフィルタを通したと
しても反射曲線Aと反射曲線Bはほとんど同じなため、
正常部と異常部の差を表示装置で識別することは困難で
ある。
FIG. 9 is a reflection curve diagram of the normal part and diseased part 3 in the living body cavity, where the reflection curve of the normal part is shown by Δ, and the reflection curve of the diseased part δ:S is shown by B. Now, spectroscopy is performed using a spectral filter that passes the el, β2, and β3 wavelength regions, and the electrical signals obtained from the solid-state imaging device by the light in these wavelength regions are, for example, R (red), G (green), and B, respectively. When displaying an image in synchronization with the (blue) electrical signal, the reflection curve Δ traces a nearly flat trajectory in the normal area, so R, G, and B
The reflectance of the light becomes constant, and as a result, the colors are mixed and become white. However, when looking at the affected area, it shows a trajectory similar to reflection curve B in the wavelength range 11. Each reflectance at β2 and β3 is α
, β, and T, the colors are mixed at a ratio of αR+βG0rB, so that the colored affected area is clearly displayed in color on a normal white display device. In the visible range, even if it passes through a conventional visible range R, G, and B filter, reflection curve A and reflection curve B are almost the same, so
It is difficult to distinguish between a normal part and an abnormal part using a display device.

本発明は上述した例にのみ限定されるものではなく、幾
多の変更、変形が可能である。上述した例では3個の波
長領域の像を得る例について説明したが、これに限定さ
れるものではない。波長領域を数多くとることによって
さらに多くの情報を得ることもできる。この場合、現在
普及しているTVモニターではR(赤色)、G(緑色)
、B(青色)の3原色を発光し、その混合によって種々
の色調の像を表示しているので、これらの混合によって
3色以上の色像を表示してもよい。すなわち各波長領域
ごとの像を一度フレームメモリに蓄えておいて順次切換
えて、メモリからの像信号を3波長領域づつ読み出して
、3原色にTVモニクー上で表示することも考えられる
The present invention is not limited to the above-mentioned examples, and can be modified and modified in many ways. Although the above example describes an example in which images in three wavelength regions are obtained, the present invention is not limited to this. Even more information can be obtained by using a large number of wavelength regions. In this case, currently popular TV monitors display R (red) and G (green).
, B (blue), and a mixture of these colors displays images of various tones. Therefore, a color image of three or more colors may be displayed by mixing these colors. In other words, it is conceivable to once store images for each wavelength region in a frame memory and to sequentially switch over the images, read out image signals from the memory in three wavelength regions at a time, and display them in three primary colors on a TV monitor.

以上詳述したように、本発明の内視鏡装置によれば、3
色分解フィルタを回転させることにより時系列的に順次
被写体色像に対応した原色像信号をfjf、る場合にお
いて、欠点とされていた色分解−信号伝送一色合成の過
程における色バランスの忠実性を高めることができる。
As detailed above, according to the endoscope device of the present invention, three
In the case where the primary color image signals corresponding to the object color images are sequentially generated in time series by rotating the color separation filter, the fidelity of color balance in the process of color separation-signal transmission and one-color synthesis, which has been considered a drawback, has been improved. can be increased.

すなわち、従来上記欠点の原因とされていた ■ 固体撮像素子の青感度の不良性、 ■ 照明光の色温度を理想状態にすることの困難性、 ■ 信号伝送路、信号処理回路での歪の不完全排除性、 ■ 光合成の段階におけるCRTの各原色発光スペクト
ルの理想状態への未到達性 等について、これら諸種の原因を取り除くことができ、
生体内部の患部と正常部の識別を容易かつ迅速に行うこ
とができ、加えて、従来に増して正確な検知を期待する
ことができる効果を有ずろらのである。
In other words, the causes of the above-mentioned shortcomings were: ■ Poor blue sensitivity of solid-state image sensors, ■ Difficulty in achieving the ideal color temperature of illumination light, and ■ Distortion in signal transmission paths and signal processing circuits. It is possible to eliminate various causes of incomplete exclusion, ■ failure to reach the ideal state of each primary color emission spectrum of CRT at the stage of photosynthesis, etc.
It is possible to easily and quickly distinguish between affected parts and normal parts inside a living body, and in addition, it has the effect of making it possible to expect more accurate detection than ever before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBは人体1臓盟の反射スペクトルの状態
を示す図、 第2図は本発明による内視鏡装置の一例の体腔内に挿入
される部分の先端を示す断面図、第3図ΔおよびBはそ
れぞれ本発明の内視鏡(々置の外部に配置される部分の
i、li7成を示す図、第4図は本発明の内視鏡装置に
使用するフィルタを示す図、 第5図は第4図のフィルタを利用した本発明の内視鏡装
置の一例を示した構成図、 第6図はフィルタのさらに他の例を示した図、第7図は
第6図のフィルタを使用する場合の本発明装置に用いる
光分解系の一例を示す側面図、第8図は第7図の光分解
系を本発明装置の体腔内に挿入される部分に組込んだ一
構成例を示す図、第9図は生体体腔内の正常部と患部に
ついての反射曲線を示す図である。 1・・・光導体      2・・・照明用ガラス窓3
・・・撮像用ガラス窓  4・・・結像レンズ5.5a
、5b・・・固体撮像装置 6・・・リード線束 6′・・・固体撮像装置からの信号線 7・・・I!S         8−外匣9・・・レ
ンズを通過した光 10・・・ペンクプリズム 11・・・ダイクロイック
面12・・・赤外波長領域光 13・・・ミラー面14
・・・光透過性ブロック 21・・・光源 25・・・色切換信号回路 26・・・増幅器27・・
・発振回路    28・・・信号切換回路28R・・
・赤色出力端子 28G・・・緑色出力端子 28B・・・青色出力端子 29・・・緑色増幅器   30・・・赤色増幅器31
・・・青色増幅器   32・・・水平偏向回路33・
・・垂直偏向回路 34・・・モニター用ブラウン管 35・・・増幅器     36・・・A/D変換器3
7・・・スイッチング回路 38a、38b、33c・・・情報収納メモリ39・・
・TV信号処理回路 40.41,42.45a、45b、45c、46a、
46b・・・フィルタ部分 45.46.47・・・フィルタ 51・・・増幅器・クランプ回路 52・・・スイッチング回路 53・・・固体撮像装置駆動回路 54a、54b、54c・・・信号増幅器・フィルタ5
5・・・信号処理回路 56a、56b、56c・・・フレームメモリ′t、’
r許出願人   オリンパス光学工業株式会社第1図 づ、マ 講 t、−1 第4図 第5図 手  続  補  正  書 昭和62年 2月23日 特許庁長官  黒  1) 明  雄  殿昭和62年
1月24日提出の特許願(6)2、発明の名称 内視鏡装置 3、補正をする者 事件との関係  特許出願人 (037)オリンパス光学工業株式会社4、代理人 1、明細書第3頁第2〜3行の「感光するので」を「感
度を有するので」に訂正する。 2、同第8頁第11行の「減衰すので、」を「減衰する
ので、」に訂正する。
1A and 1B are diagrams showing the state of the reflection spectrum of one internal organ of the human body; FIG. 2 is a sectional view showing the tip of a portion of an example of the endoscopic device according to the present invention to be inserted into a body cavity; and FIG. Figures Δ and B are diagrams showing the i and li configurations of the parts placed outside the endoscope of the present invention (Fig. 4 are diagrams showing a filter used in the endoscope apparatus of the present invention, respectively. FIG. 5 is a configuration diagram showing an example of an endoscope apparatus of the present invention using the filter shown in FIG. 4, FIG. 6 is a diagram showing still another example of the filter, and FIG. A side view showing an example of the photolysis system used in the device of the present invention when a filter is used, and FIG. 8 is a configuration in which the photolysis system of FIG. 7 is incorporated into the part of the device of the present invention that is inserted into the body cavity. A diagram showing an example, and FIG. 9 is a diagram showing reflection curves for a normal part and an affected part in a living body cavity. 1... Light guide 2... Glass window for illumination 3
...Imaging glass window 4...Imaging lens 5.5a
, 5b...Solid-state imaging device 6...Lead wire bundle 6'...Signal line 7 from the solid-state imaging device...I! S8-Outer box 9...Light passing through lens 10...Penk prism 11...Dichroic surface 12...Infrared wavelength region light 13...Mirror surface 14
...Light transmitting block 21...Light source 25...Color switching signal circuit 26...Amplifier 27...
・Oscillation circuit 28...Signal switching circuit 28R...
・Red output terminal 28G...Green output terminal 28B...Blue output terminal 29...Green amplifier 30...Red amplifier 31
...Blue amplifier 32...Horizontal deflection circuit 33.
・Vertical deflection circuit 34 ・Monitor cathode ray tube 35 ・Amplifier 36 ・A/D converter 3
7... Switching circuits 38a, 38b, 33c... Information storage memory 39...
-TV signal processing circuits 40.41, 42.45a, 45b, 45c, 46a,
46b...Filter portion 45.46.47...Filter 51...Amplifier/clamp circuit 52...Switching circuit 53...Solid-state imaging device drive circuit 54a, 54b, 54c...Signal amplifier/filter 5
5... Signal processing circuits 56a, 56b, 56c... Frame memories 't,'
r Applicant Olympus Optical Industry Co., Ltd. Figure 1, Ma Lecture t, -1 Figure 4 Figure 5 Procedures Amendment Written February 23, 1988 Commissioner of the Patent Office Black 1) Toshio Akira 1986 Patent application filed on January 24th (6) 2, name of the invention endoscope device 3, relationship with the amended person case Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, attorney 1, specification No. On page 3, lines 2 and 3, "because it is sensitive to light" is corrected to "because it has sensitivity." 2. On page 8, line 11, ``attenuate, so'' is corrected to ``attenuate,''.

Claims (1)

【特許請求の範囲】 1、少なくとも1つの赤外波長領域の光と、少なくとも
1つの、この赤外波長領域とは異なる波長領域の光で被
観察体を同時に照明する手段と、 被観察体の内部に挿入される部分の先端に 設けられ、被観察体からの光を受けて結像面に被観察体
像を形成する光学系と、 この光学系の結像面位置に配置され、被観 察体像を電気信号に変換する固体撮像装置と、前記光学
系と固体撮像装置との間に配置さ れ、上記各波長領域の光を分離するフィルタと、 前記固体撮像装置から出力される上記各波 長領域の光による被観察体像を表わす電気信号をそれぞ
れ記憶する複数のフレームメモリと、 これら複数のフレームメモリから選択的に 読出した電気信号を受けて画像の表示を行う手段とを具
えることを特徴とする内視鏡装置。
[Claims] 1. means for simultaneously illuminating an object to be observed with at least one light in an infrared wavelength range and at least one light in a wavelength range different from the infrared wavelength range; An optical system is installed at the tip of the part inserted into the interior and forms an image of the object on an imaging plane by receiving light from the object to be observed. a solid-state imaging device that converts a body image into an electrical signal; a filter that is arranged between the optical system and the solid-state imaging device and separates light in each of the wavelength regions; A plurality of frame memories each storing electrical signals representing an image of an object to be observed by light in a region, and means for displaying an image in response to electrical signals selectively read out from the plurality of frame memories. Features of the endoscopic device.
JP62013312A 1987-01-24 1987-01-24 Endoscope device Granted JPS62174716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013312A JPS62174716A (en) 1987-01-24 1987-01-24 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013312A JPS62174716A (en) 1987-01-24 1987-01-24 Endoscope device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7850779A Division JPS563033A (en) 1979-06-21 1979-06-21 Endoscope device

Publications (2)

Publication Number Publication Date
JPS62174716A true JPS62174716A (en) 1987-07-31
JPH059008B2 JPH059008B2 (en) 1993-02-03

Family

ID=11829653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013312A Granted JPS62174716A (en) 1987-01-24 1987-01-24 Endoscope device

Country Status (1)

Country Link
JP (1) JPS62174716A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308531A (en) * 1988-02-08 1989-12-13 Olympus Optical Co Ltd Endoscopic apparatus
EP0605259A2 (en) * 1993-01-01 1994-07-06 Canon Kabushiki Kaisha Image reading apparatus and image processing apparatus
EP0605898A1 (en) * 1993-01-01 1994-07-13 Canon Kabushiki Kaisha Solid-state image pickup device
US5648653A (en) * 1993-10-22 1997-07-15 Canon Kabushiki Kaisha Optical filter having alternately laminated thin layers provided on a light receiving surface of an image sensor
US5711755A (en) * 1995-04-14 1998-01-27 Vipera Systems, Inc. Endoscopic diagnostic systems and associated methods employing infrared radiation
JPH10508222A (en) * 1994-09-15 1998-08-18 ストリカー・コーポレーション Protective transillumination of body parts during invasive procedures
US5833596A (en) * 1995-04-14 1998-11-10 Vipera Systems, Inc. Endoscope for imaging infrared emissions within the range of 2 to 14 microns
JP2017225755A (en) * 2016-06-24 2017-12-28 富士フイルム株式会社 Endoscope device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5215189A (en) * 1975-07-28 1977-02-04 Olympus Optical Co Endscope device for indicating color picture
JPS5268687U (en) * 1975-11-18 1977-05-21
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5215189A (en) * 1975-07-28 1977-02-04 Olympus Optical Co Endscope device for indicating color picture
JPS5268687U (en) * 1975-11-18 1977-05-21
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308531A (en) * 1988-02-08 1989-12-13 Olympus Optical Co Ltd Endoscopic apparatus
EP0809298A1 (en) * 1993-01-01 1997-11-26 Canon Kabushiki Kaisha Solid-state image pickup device
US5724152A (en) * 1993-01-01 1998-03-03 Canon Kabushiki Kaisha Image reading apparatus and image processing apparatus for reading optical information of visible and non-visible light
EP0605259A3 (en) * 1993-01-01 1995-02-08 Canon Kk Image reading apparatus and image processing apparatus.
US5453611A (en) * 1993-01-01 1995-09-26 Canon Kabushiki Kaisha Solid-state image pickup device with a plurality of photoelectric conversion elements on a common semiconductor chip
EP0605898A1 (en) * 1993-01-01 1994-07-13 Canon Kabushiki Kaisha Solid-state image pickup device
EP0605259A2 (en) * 1993-01-01 1994-07-06 Canon Kabushiki Kaisha Image reading apparatus and image processing apparatus
US5801373A (en) * 1993-01-01 1998-09-01 Canon Kabushiki Kaisha Solid-state image pickup device having a plurality of photoelectric conversion elements on a common substrate
US5648653A (en) * 1993-10-22 1997-07-15 Canon Kabushiki Kaisha Optical filter having alternately laminated thin layers provided on a light receiving surface of an image sensor
JPH10508222A (en) * 1994-09-15 1998-08-18 ストリカー・コーポレーション Protective transillumination of body parts during invasive procedures
US5711755A (en) * 1995-04-14 1998-01-27 Vipera Systems, Inc. Endoscopic diagnostic systems and associated methods employing infrared radiation
US5833596A (en) * 1995-04-14 1998-11-10 Vipera Systems, Inc. Endoscope for imaging infrared emissions within the range of 2 to 14 microns
US5944653A (en) * 1995-04-14 1999-08-31 Vipera Systems, Inc. Dual IR and visible channel endodiagnostic apparatus
US5997472A (en) * 1995-04-14 1999-12-07 Vipera Systems, Inc. Endodiagnostic method using differential thermal relaxation and IR imaging
JP2017225755A (en) * 2016-06-24 2017-12-28 富士フイルム株式会社 Endoscope device

Also Published As

Publication number Publication date
JPH059008B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
US4663657A (en) Image pickup apparatus for endoscopes
US6638215B2 (en) Video endoscope system
US7766818B2 (en) Electronic endoscope system
US5105269A (en) Imaging apparatus and endoscope apparatus with selectable wavelength ranges
JPH0785135B2 (en) Endoscope device
JP3501388B2 (en) Video processor of electronic endoscope for fluorescence diagnosis
JP3467131B2 (en) Electronic endoscope device for fluorescence diagnosis
JPH029804B2 (en)
JPH0528129B2 (en)
JPH08140929A (en) Electronic endoscope apparatus for fluorescence diagnosis
JPH08140928A (en) Electronic endoscope apparatus for fluorescence diagnosis
JPH0397441A (en) Endoscope for fluorescent observation
JP2655571B2 (en) Imaging device
JP2003061909A (en) Light source and electronic endoscope
JPS62174716A (en) Endoscope device
JP2641654B2 (en) Endoscope device
CN105142492B (en) Endoscopic system
JPS62174715A (en) Endoscope device
JP2641653B2 (en) Endoscope device
JPS62174713A (en) Endoscope device
JPS62174712A (en) Endoscope device
JPS62182705A (en) Endoscope device
JPS62174714A (en) Endoscope device
JPH0324848B2 (en)
JPH0679594B2 (en) Electronic endoscopic device