JPS62179701A - Screening of durability characteristics of nonlinear resistance element - Google Patents
Screening of durability characteristics of nonlinear resistance elementInfo
- Publication number
- JPS62179701A JPS62179701A JP61021162A JP2116286A JPS62179701A JP S62179701 A JPS62179701 A JP S62179701A JP 61021162 A JP61021162 A JP 61021162A JP 2116286 A JP2116286 A JP 2116286A JP S62179701 A JPS62179701 A JP S62179701A
- Authority
- JP
- Japan
- Prior art keywords
- energy
- withstand
- selecting
- screening
- resistance element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は例えば電力系統を保護する過電圧保護装置に使
用される酸化亜鉛を主成分とする非直線抵抗体において
極めて少ないダメージで耐量特性の良否を判定し得る様
にした非直線抵抗体の耐量特性選別方法に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to determining the quality of withstand characteristics with extremely little damage in a nonlinear resistor whose main component is zinc oxide, which is used, for example, in an overvoltage protection device that protects a power system. The present invention relates to a method for selecting withstand characteristics of non-linear resistors that can be determined.
電圧非直線抵抗体は、一般にはバリスタと呼ばれ、その
優れた非直線電圧−電流特性が利用されて、電圧安定化
或いはサージ吸収を目的とした避雷器やサージアブソー
バに広く利用されている。A voltage nonlinear resistor is generally called a varistor, and its excellent nonlinear voltage-current characteristics are utilized to make it widely used in lightning arresters and surge absorbers for the purpose of voltage stabilization or surge absorption.
代表的なものとして、近年開発された酸化亜鉛バリスタ
がある。これは酸化亜鉛を主成分とし、これに少量のビ
スマス、アンチモン、コバルト、マンガン、クロム等の
酸化物を添加し、混合造粒、成形した後、空気中で高温
焼成し、その焼結体に電極を取り付けて構成されるもの
である。その非直線抵抗特性は非常に優れており、焼結
体は酸化亜鉛粒子とその周囲をとりまく添加物により形
成される粒界層かう成り、優れた非直線抵抗特性は酸化
亜鉛粒子と粒界層との界面に起因すると考えられており
、電圧−電流特性をある程度任意に調節し得る等多くの
特長を備えている。A typical example is the recently developed zinc oxide varistor. The main component is zinc oxide, to which a small amount of oxides such as bismuth, antimony, cobalt, manganese, chromium, etc. are added, mixed, granulated, molded, and then fired at high temperature in air to form a sintered body. It is constructed by attaching electrodes. Its non-linear resistance properties are very good, and the sintered body consists of a grain boundary layer formed by zinc oxide particles and additives surrounding them. It is believed that this is due to the interface between
又これらの非直線抵抗体は落雷などで生じる大電流を吸
収する耐量特性が極めて優れている。Furthermore, these non-linear resistors have extremely excellent withstand characteristics to absorb large currents generated by lightning strikes and the like.
しかしながら酸化亜鉛を主成分とする非直線抵抗体は酸
化亜鉛に数多くの金属酸化物の微粉末を混合し成形した
後に焼成して製造されるために微細構造が不均一になり
易い。すなわち混合が不十分なために起る成分のかたよ
りボイド、クラック等の内部欠陥などである。非直線抵
抗体にこれらの成分のかたより、ボイド、クラック等の
欠陥があると耐量特性が劣る事が知られている。However, since non-linear resistors containing zinc oxide as a main component are manufactured by mixing zinc oxide with fine powders of many metal oxides, molding the mixture, and then firing it, the fine structure tends to be non-uniform. That is, internal defects such as voids and cracks occur due to imbalance of components due to insufficient mixing. It is known that if a non-linear resistor has defects such as voids and cracks due to the presence of these components, the withstand characteristics will be inferior.
この様な非直線抵抗体の内部欠陥の有無を検出する一般
的な方法としては超音波によるエコー探傷やX線透過写
真による探傷が行われているが、この様な方法では大き
なボイドやクラックは検出できても小さなものは見逃す
危険があり信頼性の上からも問題があった。又成分分布
のかたよりなどはほとんど検出できず耐量特性の選別に
は役立っていなかった。Typical methods for detecting the presence or absence of internal defects in nonlinear resistors include ultrasonic echo testing and X-ray radiography, but these methods cannot detect large voids or cracks. Even if it could be detected, there was a risk of missing small objects, which caused reliability problems. In addition, deviations in component distribution could hardly be detected and were not useful for selecting tolerance characteristics.
本発明は上記要望に鑑みなされたもので耐量特性の選別
方法に於いて素子の耐量限界値の1/3以下のエネルギ
ーを印加し素子表面の温度分布がら良否を判定し選別す
る方法を提供する事を目的とする。The present invention has been developed in view of the above-mentioned needs, and provides a method for selecting the withstand characteristics by applying energy of 1/3 or less of the withstand limit value of the element, and determining pass/fail based on the temperature distribution on the element surface. aim at something.
かかる目的を達成するため本発明は非直線抵抗3一
体の耐量特性の選別方法として素子にダメージの残らな
い耐量限界値の1/3以下のエネルギーを印加し素子の
表面の温度分布を測定しあらかじめ定めた許容温度パタ
ーンと比較して良否を判定し選別する様にしたことを特
徴とする。In order to achieve this object, the present invention is a method for selecting the withstand characteristics of the non-linear resistor 3, by applying energy of 1/3 or less of the withstand limit value that does not leave any damage to the element and measuring the temperature distribution on the surface of the element. It is characterized in that it compares with a predetermined allowable temperature pattern to judge whether it is good or bad and then selects it.
以下本発明の実施例を第1図を参照に説明する。 Embodiments of the present invention will be described below with reference to FIG.
被測定非直線抵抗体1にあらかじめ多数の同形状の素子
により耐量限界試験を行って得られたエネルギーの1/
3以下のエネルギーを2msのく形のパルス波で電源4
から印加した。素子はジュール熱を発生し瞬時に温度が
上昇し表面から赤外線が放射される。この赤外線を赤外
線映像装置2で撮影する。赤外線映像袋w2には耐量特
性の良否を判定するデーターをインプットしたマイクロ
コンピュータ−3を接続してあり瞬時に合否が判定でき
る様にしである。1/1 of the energy obtained by carrying out a tolerance limit test on the non-linear resistor 1 to be measured using a large number of elements of the same shape.
Power supply 4 with energy of 3 or less using a 2 ms rectangular pulse wave
It was applied from The element generates Joule heat, the temperature rises instantly, and infrared rays are emitted from the surface. This infrared rays are photographed by an infrared imaging device 2. A microcomputer 3 is connected to the infrared imaging bag w2, into which data for determining the quality of the withstand characteristics is inputted, so that the pass/fail determination can be made instantaneously.
第2図には印加エネルギーとダメージの度合を示すV。FIG. 2 shows the applied energy and the degree of damage.
1、□(電流0.1mAを非直線抵抗体1に流した場合
の端子電圧)の変化率(V2 Vaを示す。ここにv
lはエネルギー印加前のvo、 1mAの値v2はエネ
ルギー印加後のVo、□+aAの値である。これによれ
ば耐量限界値の173以下ではvo、 1mAの値が変
化せずダメージがない事がわかる。1. The rate of change (V2 Va) of □ (terminal voltage when a current of 0.1 mA flows through the non-linear resistor 1) is shown here.
l is vo before energy is applied, the value v2 of 1 mA is Vo after energy is applied, and the value of □+aA. According to this, it can be seen that below the withstand limit value of 173, the value of vo, 1mA does not change and there is no damage.
又第3図には多数の同一形状の素子について行った素子
表面の温度分布と印加エネルギーの関係のX−X’ 、
Y−Y’ 2方向について示す。実線Aは平均的耐量
限界値の475のエネルギーを印加した時の発熱パター
ン、破線Bは同じ<113のエネルギーを印加した時の
発熱パターンを示すものである。In addition, Fig. 3 shows the relationship between the temperature distribution on the element surface and the applied energy, which was obtained for a large number of elements with the same shape.
Two directions, Y-Y', are shown. The solid line A shows the heat generation pattern when an energy of 475, which is the average withstand limit value, is applied, and the broken line B shows the heat generation pattern when the same energy <113 is applied.
これによれば印加エネルギーが耐量限界値の1/3以下
でも発熱の絶対値は変ってもパターンは同じである事が
わかる。この様にして多数の素子についてエネルギーを
段階的に増して行き素子が破壊するまでの表面の発熱パ
ターンを画像処理してマイクロコンピュータ−に記憶さ
せある耐量値以下で破壊するいわゆる不良品の発熱パタ
ーンを求めマイクロコンピュータ−に記憶させた。According to this, it can be seen that even if the applied energy is 1/3 or less of the withstand limit value, the pattern remains the same even if the absolute value of heat generation changes. In this way, energy is increased step by step for a large number of elements, and the heat generation pattern on the surface until the element breaks is image-processed and stored in a microcomputer.Heat generation pattern of so-called defective products that break down below a certain withstand value. was determined and stored in a microcomputer.
次に限界耐量値のほぼ1/3のエネルギーを印加して素
子表面の温度分布を求めついで実際に破壊するエネルギ
ーを求めた。多数の素子についてこれを行い不良素子選
別の発熱パターンが適正かどうか確認し修正を加えた。Next, approximately ⅓ of the energy limit was applied to determine the temperature distribution on the element surface, and then the energy that actually caused the element to break was determined. This was done for a large number of elements to confirm whether the heat generation pattern used to screen out defective elements was appropriate and to make corrections.
この結果173以下のエネルギーを加えた時の素子の発
熱パターンを求める事により不良素子を正確に選別する
事が可能になった。As a result, it has become possible to accurately select defective elements by determining the heat generation pattern of the element when energy of 173 or less is applied.
第4図には本発明により選別した素子と従来例のX線透
過法により選別した素子の耐量限界値のバラツキを示す
。これにより本発明によれば極めて信頼性の高い選別が
行われた事が判る。FIG. 4 shows the variation in tolerance limit values of elements selected by the present invention and elements selected by the conventional X-ray transmission method. This shows that extremely reliable selection was performed according to the present invention.
〔発明の効果〕
以上述べて来た様に本発明によれば素子にほとんどダメ
ージを与えないで耐量特性不良素子を選別できる。[Effects of the Invention] As described above, according to the present invention, devices with poor withstand characteristics can be selected with little damage to the devices.
第1図は本発明に係る耐量選別方法を行う装置の概略図
、第2図は印加エネルギーとダメージの度合いを示すv
o、 1mAの関係、第3図は印加エネルギーと素子表
面の温度分布の関係を示す図、第4図は本発明と従来方
法により選別した素子の耐量特性を示す図である。
1・・非直線抵抗体 2・・・赤外線映像装置3
・・・マイクロコンピュータ 4・・・電源代理人
弁理士 則 近 憲 佑
同 三俣弘文
第1図
潟乙V、、 37
(X耐量限界イl)
第2図
舎W城(寛曖ピトー奇)Fig. 1 is a schematic diagram of an apparatus for carrying out the resistance selection method according to the present invention, and Fig. 2 shows the applied energy and the degree of damage.
3 is a diagram showing the relationship between applied energy and temperature distribution on the surface of the element, and FIG. 4 is a diagram showing the withstand characteristics of elements selected by the present invention and the conventional method. 1...Non-linear resistor 2...Infrared imaging device 3
... Microcomputer 4 ... Power supply agent
Patent Attorney Nori Chika Ken Yudo Hirofumi Mitsumata Figure 1 Lagoon V,, 37 (X Tolerance Limit I) Figure 2 W Castle (Kanfu Pitou-ki)
Claims (1)
方法に於いて非直線抵抗体素子の耐量限界値の1/3以
下のエネルギーを印加しその素子表面の温度分布と予め
定められた許容温度パターンとを比較して素子の良否を
判定し選別することを特徴とする非直線抵抗体の耐量特
性選別方法。In a method for selecting withstand characteristics of a non-linear resistor whose main component is zinc oxide, energy of 1/3 or less of the withstand limit value of a non-linear resistor element is applied to determine the temperature distribution on the surface of the element and a predetermined tolerance. A method for selecting withstand characteristics of a non-linear resistor, which comprises comparing the temperature pattern to determine the quality of an element and selecting it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61021162A JPS62179701A (en) | 1986-02-04 | 1986-02-04 | Screening of durability characteristics of nonlinear resistance element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61021162A JPS62179701A (en) | 1986-02-04 | 1986-02-04 | Screening of durability characteristics of nonlinear resistance element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62179701A true JPS62179701A (en) | 1987-08-06 |
Family
ID=12047217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61021162A Pending JPS62179701A (en) | 1986-02-04 | 1986-02-04 | Screening of durability characteristics of nonlinear resistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62179701A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2734059A1 (en) * | 1995-05-11 | 1996-11-15 | Hitachi Ltd | PROCESS FOR ESTIMATING THE DISCHARGE CAPACITY OF A ZINC OXIDE-BASED POWER ELEMENT, PROCESS FOR SELECTING THIS ELEMENT AND SYSTEM FOR IMPLEMENTING THIS PROCESS |
-
1986
- 1986-02-04 JP JP61021162A patent/JPS62179701A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2734059A1 (en) * | 1995-05-11 | 1996-11-15 | Hitachi Ltd | PROCESS FOR ESTIMATING THE DISCHARGE CAPACITY OF A ZINC OXIDE-BASED POWER ELEMENT, PROCESS FOR SELECTING THIS ELEMENT AND SYSTEM FOR IMPLEMENTING THIS PROCESS |
US5680316A (en) * | 1995-05-11 | 1997-10-21 | Hitachi, Ltd. | Method for estimating discharge capability of zinc oxide power element, method for screening the element and systems for carrying out these methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Eda | Destruction mechanism of ZnO varistors due to high currents | |
JP3930905B2 (en) | Conductive polymer composition and device | |
CN108409306B (en) | Zinc oxide pressure-sensitive ceramic material and preparation method thereof | |
DE2450108A1 (en) | PROCESS FOR PRODUCING A VOLTAGE DEPENDENT RESISTANCE | |
JP6231127B2 (en) | Zinc oxide based varistor and method for producing the same | |
JPS62179701A (en) | Screening of durability characteristics of nonlinear resistance element | |
US4700169A (en) | Zinc oxide varistor and method of making it | |
US2949594A (en) | Electric temperature detector | |
JP2955281B2 (en) | Circuit protection equipment | |
JPS60238770A (en) | Operating duty testing method of lightning arrester | |
US6208496B1 (en) | Discharge counter and a nonlinear resistance material for a discharge counter | |
DE69519716T2 (en) | High frequency detector elements and their use in a high frequency heater | |
JPH0251072A (en) | Inspection of loaded power for voltage non-linear resistor | |
US5037594A (en) | Method for making varistor discs with increased high temperature stability | |
JPS5828802A (en) | Method of producing voltage non-linear resistor | |
JPS61270801A (en) | Selection of non-linear resistor | |
JP2671133B2 (en) | Manufacturing method of zinc oxide varistor | |
JP2525864B2 (en) | Serge absorber | |
JP3175171B2 (en) | Manufacturing method of positive resistance temperature coefficient heating element | |
JPS5919450B2 (en) | How to judge the quality of non-linear resistors | |
JP2625178B2 (en) | Varistor manufacturing method | |
JPS61154105A (en) | Manufacture of voltage non-linear resistor | |
Sokoly et al. | Development of a new type of nonlinear resistance valve block for surge arresters. Final report | |
JPH04288866A (en) | IC protection element optimization method and IC equipped with the protection element | |
JPH0246678A (en) | Surge absorption device |