[go: up one dir, main page]

JPS6217863B2 - - Google Patents

Info

Publication number
JPS6217863B2
JPS6217863B2 JP56014878A JP1487881A JPS6217863B2 JP S6217863 B2 JPS6217863 B2 JP S6217863B2 JP 56014878 A JP56014878 A JP 56014878A JP 1487881 A JP1487881 A JP 1487881A JP S6217863 B2 JPS6217863 B2 JP S6217863B2
Authority
JP
Japan
Prior art keywords
film
silicon dioxide
dioxide film
etching
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56014878A
Other languages
Japanese (ja)
Other versions
JPS57128944A (en
Inventor
Hiroyuki Shiraki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1487881A priority Critical patent/JPS57128944A/en
Publication of JPS57128944A publication Critical patent/JPS57128944A/en
Publication of JPS6217863B2 publication Critical patent/JPS6217863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路の絶縁分離帯の形成方
法に関するものであり、集積度、素子特性および
良品率を向上させることを目的とした分離帯の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an insulating separation band for a semiconductor integrated circuit, and more particularly to a method for forming a separation band for the purpose of improving the degree of integration, device characteristics, and yield rate.

現在、半導体集積回路(以下ICと略記)の絶
縁分離帯の形成方法としては、珪素(以下Siと略
記)基板を選択的に酸化する方法が用いられてい
る。しかし、この方法は素子領域への二酸化珪素
(以下SiO2と略記)の喰い込みが大きく、その結
果として広い分離帯を必要とし、半導体素子の集
積度の向上を妨げている。また喰い込み時に生ず
るSiとSiO2の境界面は基板表面に対して30゜〜45
゜の傾斜角をなしており、その結果基板―コレク
ター、コレクター―ベースおよびベース―エミツ
タ間の寄生接合容量が大きく、スイツチングスピ
ード等の特子特性の向上を妨げている。これ等二
つの障害は、SiとSiO2の境界面を、傾斜角が90゜
に近くなるような条件下で選択酸化を行なう方法
によつて改善される。しかし、そのような条件下
では、素子領域に高密度の結晶欠陥が誘起され、
良品率の低下を招く。
BACKGROUND ART Currently, a method of selectively oxidizing a silicon (hereinafter abbreviated as Si) substrate is used as a method for forming an insulating separation band for a semiconductor integrated circuit (hereinafter abbreviated as IC). However, this method causes a large amount of silicon dioxide (hereinafter abbreviated as SiO 2 ) to penetrate into the device region, and as a result, a wide separation band is required, which hinders the improvement of the degree of integration of semiconductor devices. In addition, the interface between Si and SiO 2 that occurs during biting is at an angle of 30° to 45° with respect to the substrate surface.
As a result, the parasitic junction capacitance between the substrate and the collector, between the collector and the base, and between the base and the emitter is large, which hinders the improvement of characteristics such as switching speed. These two problems can be improved by selectively oxidizing the interface between Si and SiO 2 under conditions such that the angle of inclination is close to 90°. However, under such conditions, a high density of crystal defects is induced in the device region,
This results in a decrease in the non-defective product rate.

本発明は、こうした欠点を克服した新規の絶縁
分離帯の形成方法を提供しようとするものであ
る。
The present invention aims to provide a novel method for forming an insulating separation band that overcomes these drawbacks.

本発明の特徴は、半導体集積回路の絶縁分離方
法において、半導体基板の表面上に厚い第1の二
酸化シリコン膜を形成し、該第1の二酸化シリコ
ン膜上にリンを含む気相成長二酸化珪素膜(以下
リンガラスと称す)の蝕刻速度よりも蝕刻速度の
小さい膜を形成する工程と、前記蝕刻速度の小さ
い膜および前記第1の二酸化シリコン膜を選択的
に除去し、それにより露出せる分離帯とするべき
半導体基板の領域に溝を形成する工程と、前記半
導体基板の溝の底面および側面に薄い第2の二酸
化シリコン膜を形成する工程と、前記底面の第2
の二酸化シリコン膜を通して不純物をイオン注入
して前記溝の底面およびその近傍のみにチヤンネ
ルストツパー領域を形成する工程と、次にリンガ
ラスを全面に被着させ、しかる後にそのリンガラ
スを流動化して前記溝を埋める工程と、前記半導
体基板上の該リンガラスをその上面より、前記蝕
刻速度の小さい膜に達するまで蝕刻する工程と、
次に前記蝕刻速度の小さい膜を蝕刻除去する工程
と、しかる後に、前記第1の二酸化シリコンを蝕
刻除去すると同時にそれに相当する高さの前記リ
ンガラスの部分を蝕刻除去し、これにより前記半
導体基板の表面を露出せしめると同時に前記溝内
のリンガラスの上面を該基板の表面とほぼ一致せ
しめる工程とを含む半導体装置の製造方法にあ
る。
The present invention is characterized by forming a thick first silicon dioxide film on the surface of a semiconductor substrate, and forming a vapor phase grown silicon dioxide film containing phosphorus on the first silicon dioxide film in a method for insulating and separating a semiconductor integrated circuit. (hereinafter referred to as phosphorus glass); and selectively removing the film having a low etching speed and the first silicon dioxide film, thereby exposing a separation zone. a step of forming a trench in a region of the semiconductor substrate where the semiconductor substrate is to be formed; a step of forming a thin second silicon dioxide film on the bottom and side surfaces of the trench of the semiconductor substrate;
a step of ion-implanting impurities through the silicon dioxide film to form a channel stopper region only on the bottom surface of the trench and its vicinity, and then depositing phosphorus glass on the entire surface, and then fluidizing the phosphorus glass. a step of filling the groove; and a step of etching the phosphor glass on the semiconductor substrate from its upper surface until reaching the film having a low etching rate;
Next, there is a step of etching away the film having a low etching rate, and then, at the same time as etching away the first silicon dioxide, a portion of the phosphor glass having a height corresponding to the first silicon dioxide is etched away, thereby removing the semiconductor substrate. The method of manufacturing a semiconductor device includes the steps of exposing the surface of the substrate and simultaneously making the upper surface of the phosphor glass in the groove substantially coincide with the surface of the substrate.

本発明の効果は、素子領域と絶縁分離帯との境
界面が、基板表面に対して垂直であるため、各接
合容量が小さく、それ故に良好な素子特性が得ら
れる点、リンガラスの流動体化は素子領域への
SiO2膜の喰い込みを伴わないため集積度を向上
できる点、およびリンガラスの流動化が本質的に
結晶欠陥を誘起しないため良品率の低下を伴わな
い点にある。
The advantages of the present invention are that since the interface between the element region and the insulating strip is perpendicular to the substrate surface, each junction capacitance is small and therefore good element characteristics can be obtained; is applied to the element area.
The degree of integration can be improved because the SiO 2 film is not dug in, and the fluidization of phosphorus glass does not essentially induce crystal defects, so there is no reduction in the yield rate.

さらに、チヤンネルストツパ領域を設けている
から分離機能がさらに高まると同時に、溝底面の
第2の二酸化シリコン膜を通してイオン注入して
いるからこの領域の部分の結晶欠陥は発生しな
い。又、溝側面にも第2の二酸化シリコン膜を形
成し、リンガラスが直接に素子形成部分に接して
いないから、素子領域の清浄が保てる。さらに、
Si3N4膜のようにリンガラスの蝕刻よりも遅い蝕
刻速度の膜を設けているから、上部のリンガラス
の蝕刻終止点が明かくとなる。もしこの膜が存在
しないと、上部のリンガラスを蝕刻する際に第1
の二酸化シリコン膜を蝕刻し、さらに溝内部のリ
ンガラスまでも不所望に蝕刻される恐れがある。
この点本発明ではまず上部のリンガラスを蝕刻
し、次にSi3N4膜を蝕刻し、次に第1の二酸化シ
リコン膜と同時にそれと同レベルのリンガラスを
蝕刻するという3段階に分けて行うから、上記不
都合は発生しない。
Furthermore, since the channel stopper region is provided, the isolation function is further enhanced, and at the same time, since ions are implanted through the second silicon dioxide film at the bottom of the trench, no crystal defects occur in this region. Furthermore, since the second silicon dioxide film is also formed on the side surfaces of the trench, and the phosphor glass is not in direct contact with the element forming portion, the element region can be kept clean. moreover,
Since a film such as the Si 3 N 4 film has an etching speed slower than that of phosphor glass, the end point of etching of the upper phosphor glass becomes clear. If this film does not exist, the first step is required when etching the upper phosphor glass.
In addition, there is a risk that the phosphorus glass inside the groove may be etched undesirably.
In this regard, in the present invention, the process is divided into three steps: first, the upper phosphorus glass is etched, then the Si 3 N 4 film is etched, and then the phosphor glass of the same level as the first silicon dioxide film is etched at the same time. If you do this, the above inconvenience will not occur.

次に実施例によつて、本発明を具体的に説明す
る。まず、シリコン(Si)基板1を全面にわたつ
て酸化して約5000Åの二酸化シリコン(SiO2)膜
2を成長させ、その上に気相成長窒化珪素膜3
(以下Si3N4膜と略記)を全面に約1000Å被着させ
る。次に選択的蝕刻法を用いて、絶縁分離帯とす
るべき領域のSi3N4膜、SiO2膜、Siを順次蝕刻し
溝4を形成する。Siの蝕刻には、蝕刻ガスとして
四塩化炭素を用いる反応性イオンエツチング法
(以下RIE法と略記)によつて行い、溝の側壁を
基板1の表面に対してほぼ垂直にする。実際に得
られる側壁の基板表面に対する傾斜角は70゜〜80
゜である。この溝幅は1μm程度の細い溝である
ことが好ましい。何故なら溝幅が広いと、後で行
なうリンガラスの流動化によつて、溝4を完全に
埋め尽せないからである。Si3N4膜3を被着する
理由は、流動体化した後のリンガラスを除去する
際の蝕刻終点を明確にするためである。したがつ
てSi3N4膜に限らず、リンガラスの蝕刻液または
蝕刻ガラスに対して蝕刻速度がリンガラスより小
さい物質であれば、他の膜たとえば気相成長多結
晶珪素膜を用いても良い。第1図には、厚さ1.5
μmのn型エピタキシヤル層5に対し、深さ1μ
mの溝を堀つた場合の断面形状を示した。
Next, the present invention will be specifically explained with reference to Examples. First, a silicon (Si) substrate 1 is oxidized over the entire surface to grow a silicon dioxide (SiO 2 ) film 2 with a thickness of about 5000 Å, and a vapor phase grown silicon nitride film 3 is deposited on top of it.
(hereinafter abbreviated as Si 3 N 4 film) is deposited to a thickness of approximately 1000 Å over the entire surface. Next, using a selective etching method, the Si 3 N 4 film, the SiO 2 film, and the Si in the region to be used as the insulating isolation band are sequentially etched to form the groove 4 . The etching of Si is carried out by a reactive ion etching method (hereinafter abbreviated as RIE method) using carbon tetrachloride as an etching gas, so that the side walls of the grooves are made almost perpendicular to the surface of the substrate 1. The angle of inclination of the sidewall to the substrate surface that is actually obtained is 70° to 80°.
It is ゜. This groove width is preferably a narrow groove of about 1 μm. This is because if the groove width is wide, the groove 4 cannot be completely filled by the fluidization of the phosphor glass that will be performed later. The reason for depositing the Si 3 N 4 film 3 is to clarify the etching end point when removing the phosphorus glass after it has been made into a fluid. Therefore, it is not limited to Si 3 N 4 films, but other films such as vapor-grown polycrystalline silicon films can be used as long as the etching rate of phosphorus glass is lower than that of phosphorus glass. good. Figure 1 shows a thickness of 1.5
The depth is 1 μm for the n-type epitaxial layer 5 of μm.
This figure shows the cross-sectional shape when a trench of m length is dug.

次に基板1を再度酸化し、厚さ500ÅのSiO2
6を成長させる。このSiO2膜6は溝4の側壁を
清浄に保ち、良好なP―N接合を素子領域7内に
作るためのものである。この酸化の後、チヤネル
ストツパー用ボロンをイオン注入9する。この
時、側壁のSiO2膜6は、素子領域7へのボロン
の注入を防ぐ障壁として働く。なお素子領域7の
上には厚いSiO22があるため、ボロンは注入され
ない。ここまでの断面形状を第2図に示した。
Next, the substrate 1 is oxidized again and a SiO 2 film 6 with a thickness of 500 Å is grown. This SiO 2 film 6 is used to keep the side walls of the trench 4 clean and to create a good PN junction in the element region 7. After this oxidation, boron ions for channel stopper are ion-implanted 9. At this time, the sidewall SiO 2 film 6 acts as a barrier to prevent boron from being implanted into the element region 7. Note that since there is thick SiO 2 2 above the element region 7, boron is not implanted. The cross-sectional shape up to this point is shown in FIG.

次にリン濃度12モル%のリンガラス8を、1.5
μmの厚さに被着させ、1000℃N2またはO2雰囲
気で10分の熱処理を行ない、リンガラス8を流動
体化して、細い溝4を完全に埋め尽す。この流動
体化には、レーザーアニール法を用いることもで
きる。リンガラスを被着させ、流動体化した後の
断面形状を第3図に示した。
Next, add phosphorus glass 8 with a phosphorus concentration of 12 mol% to 1.5
It is deposited to a thickness of μm and heat treated for 10 minutes at 1000° C. in an N 2 or O 2 atmosphere to turn the phosphor glass 8 into a fluid and completely fill the narrow grooves 4 . A laser annealing method can also be used for this fluidization. FIG. 3 shows the cross-sectional shape after phosphorus glass was applied and the material was made into a fluid.

その後、弗酸水溶液でリンガラスをSi3N4膜3
まで蝕刻し、さらにCF4プラズマ(円筒型)によ
つてSi3N4膜3のみを蝕刻する(第4図)。最後に
蝕刻ガスとして水素を含むCF4を用いるRIE法で
SiO2膜2とリンガラスを蝕刻して、素子領域7
のSi表面を露出させる(第4図)。ここでRIE法
を用いる理由は、酸化膜2とリンガラスとの蝕刻
速度がほぼ等しいからである。
After that, phosphorus glass was converted into Si 3 N 4 film 3 using aqueous hydrofluoric acid solution.
Then, only the Si 3 N 4 film 3 is etched using CF 4 plasma (cylindrical type) (FIG. 4). Finally, the RIE method using CF4 containing hydrogen as the etching gas was used.
By etching the SiO 2 film 2 and the phosphor glass, the device region 7 is etched.
(Figure 4). The reason why the RIE method is used here is that the etching rates of the oxide film 2 and the phosphor glass are approximately equal.

こうして、素子領域7と絶縁分離帯との境界面
が基板表面に対してほぼ垂直であり、かつそれ等
の表面をほぼ平坦にすることができる。
In this way, the interface between the element region 7 and the insulating strip is substantially perpendicular to the substrate surface, and these surfaces can be made substantially flat.

本発明の他の実施例として、電界効果型ICの
絶縁分離帯へ適用し、集積度を向上させ、かつソ
ース、ドレインと基板間の接合容量を減少させる
ことができる。
As another embodiment of the present invention, it can be applied to an isolation band of a field effect IC to improve the degree of integration and reduce the junction capacitance between the source, drain and substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の実施例による絶縁
分離帯の形成方法を工程順に示した断面図であ
る。 尚、図において、1……Si基板、2……SiO2
(5000Å)、3……Si3N4膜、4……溝、5……エ
ピタキシヤル層、6……SiO2膜(500Å)7……
素子領域、8……リンガラス層、9……ボロンを
示す。
1 to 4 are cross-sectional views showing a method of forming an insulating separation band according to an embodiment of the present invention in order of steps. In the figure, 1... Si substrate, 2... SiO 2 film (5000 Å), 3... Si 3 N 4 film, 4... Groove, 5... Epitaxial layer, 6... SiO 2 film (500 Å) )7...
Element region, 8... Phosphorus glass layer, 9... Boron.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体集積回路の絶縁分離方法において、半
導体基板の表面上に厚い第1の二酸化シリコン膜
を形成し、該第1の二酸化シリコン膜上にリンを
含む気相成長二酸化珪素膜の蝕刻速度よりも蝕刻
速度の小さい膜を形成する工程と、前記蝕刻速度
の小さい膜および前記第1の二酸化シリコン膜を
選択的に除去し、それにより露出せる分離帯とす
るべき半導体基板の領域に溝を形成する工程と、
前記半導体基板の溝の底面および側面に薄い第2
の二酸化シリコン膜を形成する工程と、前記底面
の第2の二酸化シリコン膜を通して不純物をイオ
ン注入して前記溝の底面およびその近傍のみにチ
ヤンネルストツパー領域を形成する工程と、次に
リンを含む気相成長二酸化珪素膜を全面に被着さ
せ、しかる後にその被着膜を流動化して前記溝を
埋める工程と、前記半導体基板上の該被着膜をそ
の上面より前記蝕刻速度の小さい膜に達するまで
蝕刻する工程と、次に前記蝕刻速度の小さい膜を
蝕刻除去する工程と、しかる後に、前記第1の二
酸化シリコンを蝕刻除去すると同時にそれに相当
する高さの前記リンを含む二酸化珪素膜の部分を
蝕刻除去し、これにより前記半導体基板の表面を
露出せしめると同時に前記溝内のリンを含む二酸
化珪素膜の上面を該基板の表面とほぼ一致せしめ
る工程とを含むことを特徴とする半導体装置の製
造方法。
1. In a semiconductor integrated circuit insulation separation method, a thick first silicon dioxide film is formed on the surface of a semiconductor substrate, and the etching rate is higher than that of a vapor-phase grown silicon dioxide film containing phosphorus on the first silicon dioxide film. forming a film with a low etching rate; and selectively removing the film with a low etching rate and the first silicon dioxide film, thereby forming a trench in an exposed region of the semiconductor substrate to be an isolation zone. process and
A thin second layer is formed on the bottom and side surfaces of the groove of the semiconductor substrate.
forming a channel stopper region only on the bottom surface of the trench and its vicinity by implanting impurity ions through the second silicon dioxide film on the bottom surface; a step of depositing a vapor-phase grown silicon dioxide film over the entire surface and then fluidizing the deposited film to fill the groove; and converting the deposited film on the semiconductor substrate into a film having a lower etching rate than the upper surface thereof. a step of etching the first silicon dioxide film until the etching rate is reached, a step of etching away the film with a low etching rate, and then etching away the first silicon dioxide film and at the same time etching the silicon dioxide film containing phosphorus to a corresponding height. A semiconductor device comprising the step of etching away a portion of the semiconductor substrate, thereby exposing the surface of the semiconductor substrate, and simultaneously bringing the upper surface of the phosphorus-containing silicon dioxide film in the groove substantially coincident with the surface of the substrate. manufacturing method.
JP1487881A 1981-02-03 1981-02-03 Maufacture of semiconductor device Granted JPS57128944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1487881A JPS57128944A (en) 1981-02-03 1981-02-03 Maufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1487881A JPS57128944A (en) 1981-02-03 1981-02-03 Maufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57128944A JPS57128944A (en) 1982-08-10
JPS6217863B2 true JPS6217863B2 (en) 1987-04-20

Family

ID=11873264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1487881A Granted JPS57128944A (en) 1981-02-03 1981-02-03 Maufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57128944A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901300B2 (en) * 2006-05-19 2012-03-21 新電元工業株式会社 Manufacturing method of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032974B2 (en) * 1977-03-16 1985-07-31 株式会社日立製作所 Manufacturing method of semiconductor device
JPS54132177A (en) * 1978-04-05 1979-10-13 Nec Corp Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPS57128944A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
US4509249A (en) Method for fabricating isolation region in semiconductor devices
JP2606141B2 (en) Semiconductor device and manufacturing method thereof
US4044452A (en) Process for making field effect and bipolar transistors on the same semiconductor chip
US4056413A (en) Etching method for flattening a silicon substrate utilizing an anisotropic alkali etchant
US5086011A (en) Process for producing thin single crystal silicon islands on insulator
US4641416A (en) Method of making an integrated circuit structure with self-aligned oxidation to isolate extrinsic base from emitter
US4619033A (en) Fabricating of a CMOS FET with reduced latchup susceptibility
JPH06232061A (en) Forming single crystal region by selective epitaxy
KR880001591B1 (en) Semiconductor device manufacturing method
US5856700A (en) Semiconductor device with doped semiconductor and dielectric trench sidewall layers
EP0405923B1 (en) Method for forming variable width isolation structures
US5234861A (en) Method for forming variable width isolation structures
JPH01274470A (en) Bipolar transistor device and its manufacturing method
US4333774A (en) Method for producing walled emitter type bipolar transistors
JPS6212660B2 (en)
JPH0697400A (en) Soi wafer and its manufacture
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JPS6217863B2 (en)
JPS59108325A (en) Manufacture of semiconductor device
USRE34400E (en) Method for fabricating isolation region in semiconductor devices
JPS6020530A (en) Forming method of element isolation region
JPS59182538A (en) Semiconductor device and manufacture thereof
US20080203536A1 (en) Bipolar transistor using selective dielectric deposition and methods for fabrication thereof
JPS6347335B2 (en)
JPH05114646A (en) Manufacture of semiconductor device