JPS62177509A - Photographing lens utilizing floating - Google Patents
Photographing lens utilizing floatingInfo
- Publication number
- JPS62177509A JPS62177509A JP1892986A JP1892986A JPS62177509A JP S62177509 A JPS62177509 A JP S62177509A JP 1892986 A JP1892986 A JP 1892986A JP 1892986 A JP1892986 A JP 1892986A JP S62177509 A JPS62177509 A JP S62177509A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- lens groups
- object side
- refractive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004075 alteration Effects 0.000 abstract description 35
- 230000014509 gene expression Effects 0.000 description 9
- 206010010071 Coma Diseases 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 102220012898 rs397516346 Human genes 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 102220016825 rs2589615 Human genes 0.000 description 2
- 102220058910 rs786201402 Human genes 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 102220131033 rs145667920 Human genes 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は写真用カメラ、ビデオカメラ等に好適なフロー
ティングを利用した撮影レンズに関し、特に無限遠物体
から近距離物体に至る広範囲の物体に対して焦点合わせ
なする際の収差補正を良好に行った高性能なフローティ
ングを利用した撮影レンズに関するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a photographic lens using floating, suitable for photographic cameras, video cameras, etc., and particularly for a wide range of objects ranging from objects at infinity to objects at short distances. The present invention relates to a high-performance photographing lens that uses a floating mechanism to effectively correct aberrations during focusing.
(従来の技術)
従来より写真用カメラやビデオカメラ等において近距離
物体の撮影を主たる目的とした撮影レンズにマクロレン
ズ又はマイクロレンズ(以下「マクロレンズ」という。(Prior Art) Macro lenses or micro lenses (hereinafter referred to as "macro lenses") have traditionally been used as photographic lenses for photographic cameras, video cameras, etc. whose main purpose is to photograph objects at close range.
)と呼ばれるものがある。) is called.
マクロレンズは一般の標準レンズや望遠レンズ等の他の
撮影レンズに比べて、特に近距離物体において高い光学
性能が得られるように設計されている。又マクロレンズ
は多くの場合、近距離物体から黒限遠物体に至る広範囲
の物体に対しても使用されている。Macro lenses are designed to provide high optical performance, especially when approaching objects at close range, compared to other photographic lenses such as standard lenses and telephoto lenses. In addition, macro lenses are often used for a wide range of objects, from objects at close range to objects at the black limit.
一般にマクロレンズにおいて撮影倍率範囲を拡大すると
、特に高倍率の方に拡大すると撮影倍率の変化に伴い収
差変動が多く発生し、これを良好に補正するのが難しく
なってくる。In general, when the photographing magnification range of a macro lens is expanded, especially toward higher magnifications, aberration fluctuations occur frequently as the photographing magnification changes, and it becomes difficult to correct this well.
例えば、撮影倍率1/1oを基準に設計されたマクロレ
ンズを撮影倍率ワ、へと高倍率の方へ拡大して[12し
ようとすると球面収差、像面弯曲そしてコマ収差が著し
く発生してくる。For example, if you try to enlarge a macro lens designed with a photographic magnification of 1/1o to a high magnification of [12], spherical aberration, field curvature, and coma aberration will occur significantly. .
この他、焦点合わせを容易にする為、マクロレンズの有
効Fナンバーを明るくすると明るさに比例して撮影倍率
の変化に伴う収差変動が大きく発生し、これを良好に補
正するのが難しくなってくる。In addition, if the effective F number of a macro lens is made brighter in order to make focusing easier, aberration fluctuations will increase as the photographic magnification changes in proportion to the brightness, making it difficult to properly correct for this. come.
無限遠物体から近距離物体に至る撮影に際して、撮影倍
率の変化に伴う収差変動を補正する方法が例えば特開昭
48−’+0520号公報、特開昭52−7723号公
報、特開昭57−192916号公報等で提案されてい
る。これらで提案されている撮影レンズはいずれも焦点
合わせの際、少なくとも2つのレンズ群を独立に移動さ
せる所謂フローティングを利用している。しかしながら
、これらで提案されている撮影レンズはいずれも低倍率
の近距離撮影においては比較的良好に収差補正されてい
るか高倍率の撮影においては補正効果が必ずしも十分で
はなかった。例えば低倍率においてコマ収差は比較的良
好に補正されているが高倍率になると歪曲収差や色収差
等が多く発生してくる傾向があった。Methods for correcting aberration fluctuations due to changes in imaging magnification when photographing from an object at infinity to a close object are disclosed in, for example, JP-A-48-'+0520, JP-A-52-7723, and JP-A-57- It has been proposed in Publication No. 192916 and the like. All of these proposed photographic lenses utilize so-called floating, in which at least two lens groups are moved independently during focusing. However, in all of these proposed photographic lenses, aberrations are corrected relatively well in low-magnification close-range photography, but the correction effect is not necessarily sufficient in high-magnification photography. For example, at low magnifications, coma aberration is relatively well corrected, but at high magnifications, distortion, chromatic aberration, etc. tend to occur frequently.
(発明が解決しようとする問題点)
本発明は無限遠物体から近距離物体に至る、特に撮影倍
率が等倍付近に至る広範囲の物体に対して焦点合わせを
する際の収差変動を良好に補正した大口径比の高性能な
フローティングを利用した撮影レンズの提供を目的とす
る。(Problems to be Solved by the Invention) The present invention satisfactorily corrects aberration fluctuations when focusing on a wide range of objects, from objects at infinity to objects at short distances, especially objects at imaging magnifications close to 1x. The objective is to provide a high-performance photographic lens that utilizes floating technology and a large aperture ratio.
(問題点を解決するための手段)
物体側より順にいずれも正の屈折力の第1.第2、第3
レンズ群と負の屈折力の第4レンズ群の4つのレンズ群
を有し、無限遠物体から近距離物体に焦点合わせをする
際、隣接する2つのレンズ群により形成される3つの空
気間隔がいずれも増大するように前記第1.第2.第3
レンズ群を物体側へ移動させたことである。(Means for solving the problem) From the object side, the first lens has a positive refractive power. 2nd, 3rd
It has four lens groups: a lens group and a fourth lens group with negative refractive power, and when focusing from an object at infinity to a near object, the three air gaps formed by two adjacent lens groups are The above-mentioned first. Second. Third
This is because the lens group is moved toward the object side.
この他、本発明の特徴は実施例において記載されている
。Other features of the invention are described in the Examples.
(実施例)
第1図、第2図は各々本発明の数値実施例1゜3のレン
ズ断面図である。図中r、n、mは各々いずれも正の屈
折力の第1.第2.第3レンズ群、■は負の屈折力の第
4レンズ群である。又、矢印は無限遠物体から近距離物
体に焦点合わせを行う際の各レンズ群の移動方向を示す
。(Example) FIGS. 1 and 2 are cross-sectional views of a lens according to a numerical example 1°3 of the present invention. In the figure, r, n, and m each have a positive refractive power. Second. The third lens group (■) is a fourth lens group with negative refractive power. Further, arrows indicate the moving direction of each lens group when focusing from an object at infinity to an object at a short distance.
本実施例では面述のように物体側に正の屈折力の3つの
第1.第2.第3レンズ群を配置し、その後方に負の屈
折力の第4レンズ群を配置し、全体として4つのレンズ
群より撮影レンズを構成している。特に負の屈折力の第
4レンズ群を配置することにより、物体側に配置した正
の屈折力の3つのレンズ群の屈折力配置の自由度を増し
、基準仲能−nハ絹11υ主n捕Tか自昇r6千。イ1
,1ス 甫r3つのレンズ群全体の正の屈折力を強める
ことにより焦点合わせの際の3つのレンズ群の全体的な
繰り出し移動量を少なくし、レンズ全長の短縮化を図っ
ている。In this embodiment, as described above, there are three first lenses with positive refractive power on the object side. Second. A third lens group is disposed, and a fourth lens group having a negative refractive power is disposed behind the third lens group, and the photographing lens is constituted by the four lens groups as a whole. In particular, by arranging the fourth lens group with negative refractive power, the degree of freedom in refractive power arrangement of the three lens groups with positive refractive power placed on the object side is increased, and the standard Capture T or Jishou r 6,000. I1
, 1st r By strengthening the positive refractive power of all three lens groups, the overall amount of movement of the three lens groups during focusing is reduced, and the overall length of the lens is shortened.
そして無限遠物体から近距離物体へ焦点合わせをする際
には隣接する2つのレンズ群により形成される3つの空
気間隔がいずれも増大するように物体側の3つのレンズ
群I、n、IIIを各々独立に物体側へ移動させる所謂
フローティングを利用している。When focusing from an object at infinity to a near object, the three lens groups I, n, and III on the object side are adjusted so that the three air gaps formed by the two adjacent lens groups increase. So-called floating is used to move each object independently toward the object.
これにより2つのレンズ群若しくは3つのレンズ群を単
に移動させてフローティングを行った場合に比べ、撮影
倍率の変化に伴う収差変動を更に少なくし、無限遠物体
から近距離物体に至る広範囲の物体に対して良好なる収
差補正を可能としている。As a result, compared to the case where two or three lens groups are simply moved and floated, aberration fluctuations due to changes in imaging magnification can be further reduced, and it can be used for a wide range of objects from infinity to close objects. On the other hand, it is possible to perform good aberration correction.
特に等倍撮影に至る広範囲の物体に対して良好なる収差
補正を可能としている。In particular, it enables excellent aberration correction for a wide range of objects that can be photographed at 1:1 magnification.
更に本実施例において撮影倍率の変化に伴う収差変動を
少なくする為には次の諸条件を満足させるのが良い。Furthermore, in this embodiment, in order to reduce fluctuations in aberrations due to changes in photographic magnification, it is preferable to satisfy the following conditions.
面記第2.第4レンズ群の焦点距離なf2゜f4、全系
の焦点距離をf、無限遠物体から近距離物体に焦点合わ
せをする際の前記第1.第2゜第3レンズ群の移動量を
各々ml 、 2 、m3とするとき
なる条件を満足することである。Menki 2nd. The focal length of the fourth lens group is f2° f4, the focal length of the entire system is f, and the first lens group when focusing from an object at infinity to a close object. It is to satisfy the following conditions when the moving amounts of the 2nd and 3rd lens groups are respectively ml, 2, and m3.
条件式<1)は第2レンズ群の屈折力に関し、条件式(
2)は第4レンズ群の屈折力に関し、いずれも焦点合わ
せの際のレンズ群の繰り出し量を適切に設定する為のも
のである。Conditional expression <1) relates to the refractive power of the second lens group, and conditional expression (
2) relates to the refractive power of the fourth lens group, and is used to appropriately set the amount of extension of the lens group during focusing.
条件式(1)の上限値を越えて第2レンズ群の屈折力が
弱くなってくると焦点合わせの際の繰り出し量が増大し
すぎ、又、下限値を越えて屈折力が強くなりすぎると繰
り出し量は減少するが、撮影倍率の変化に伴う収差、特
に球面収差の変動が大きくなってくる。If the upper limit of conditional expression (1) is exceeded and the refractive power of the second lens group becomes weak, the amount of extension during focusing will increase too much, and if the lower limit is exceeded and the refractive power becomes too strong, Although the amount of extension decreases, fluctuations in aberrations, especially spherical aberrations, increase as the photographic magnification changes.
条件式(2)の上限値を越えて第4レンズ群の負の屈折
力が強くなりすぎると、物体側の3つのレンズ群のFi
1折力なそれに応じて強めなけらばならず、焦点合わせ
の際の各レンズ群の繰り出し量は少なくなるか、収差変
動が大きくなり良好なる収差補止が難しくなってくる。If the negative refractive power of the fourth lens group becomes too strong exceeding the upper limit of conditional expression (2), the Fi of the three lens groups on the object side will decrease.
The refractive power must be increased accordingly, and the amount of extension of each lens group during focusing will be reduced, or fluctuations in aberrations will become large, making it difficult to correct aberrations well.
又、下限値を越えて第4レンズ群の負の屈折力が弱くな
ってくると、第4レンズ群を配置する技術的意味が少な
くなり、焦点合わせの際の物体側の3つのレンズ群の繰
り出し量が多くなってくるので好ましくない。Moreover, if the negative refractive power of the fourth lens group becomes weak beyond the lower limit, the technical meaning of arranging the fourth lens group decreases, and the three lens groups on the object side during focusing become less effective. This is not preferable because the amount of feed increases.
条件式(3)は第ルンズ群と第2レンズ群の移動比に関
し、条件式(4)は第2レンズ群と第3レンズ群の移動
比に関し、いずれも焦点合わせの際の各レンズ群の移動
量を適切に設定することにより、撮影倍率の変化に伴う
収差変動を良好に補正する為のものである。Conditional expression (3) relates to the movement ratio of the lens group to the second lens group, and conditional expression (4) relates to the movement ratio of the second lens group to the third lens group, both of which are related to the movement ratio of each lens group during focusing. By appropriately setting the amount of movement, it is possible to satisfactorily correct aberration fluctuations caused by changes in imaging magnification.
特に撮影倍率の変化に伴う球面収差と外向性コマ収差の
変動を良好に補正している。In particular, fluctuations in spherical aberration and extroverted coma that occur with changes in imaging magnification are well corrected.
無限遠物体から近距離物体に対して第ルンズ群と第2レ
ンズ群との間隔変化量及び第2レンズ群と第3レンズ群
との間隔変化量を大きくすることにより、軸外光束を第
2レンズ群のより高い位置に入射させ、強く屈折させる
ことにより内向性コマ収差を発生させ、近距離物体に焦
点合わせなする際に発生する外向性コマ収差を補正して
いる。By increasing the amount of change in the distance between the second lens group and the second lens group and the amount of change in the distance between the second lens group and the third lens group from an object at infinity to an object at a short distance, the off-axis light flux is By making the light incident on a higher position in the lens group and strongly refracting it, inward coma aberration is generated, and outward coma aberration, which occurs when focusing on a close object, is corrected.
一方、軸上光束は物体距離が近距離になると第ルンズ群
と第2レンズ群の間で強く発散してくる為、各レンズ群
の移動比をあまり大きくすると球面収差が補正不足にな
ってくる。そこで本実施例では条件式(3) 、 (4
)の如く設定することによりコマ収差と球面収差をバラ
ンス良く補正している。On the other hand, the axial light beam diverges strongly between the first lens group and the second lens group when the object distance becomes short, so if the movement ratio of each lens group is too large, spherical aberration will be insufficiently corrected. . Therefore, in this embodiment, conditional expressions (3) and (4
), comatic aberration and spherical aberration are corrected in a well-balanced manner.
条件式(3)の上限値を越えて第ルンズ群と第2レンズ
群の間隔が増大しすぎると外向性コマ収差は良好に補正
されるが球面収差が補正不足となる。又、下限値を越え
て第ルンズ群と第2レンズ群の間隔を一定量以上増大さ
せないと外向性コマ収差の補正が不十分となってくる。If the distance between the first lens group and the second lens group increases too much beyond the upper limit of conditional expression (3), the extroverted coma is well corrected, but the spherical aberration becomes insufficiently corrected. Further, unless the lower limit is exceeded and the distance between the first lens group and the second lens group is increased by a certain amount or more, the correction of extroverted coma becomes insufficient.
条件式(4)の上限値を越えて第2レンズ群と第3レン
ズ群の間隔が一定量以上増大させないと、コマ収差の補
正が不十分となり、又、下限値を越えて第2レンズ群と
第3レンズ群との間隔が増大しすぎると全系の焦点距離
が長い方へ変化しすぎて各レンズ群の繰り出し量を増大
させねばならなく、レンズ全長が長くなってくるので好
ましくない。If the upper limit of conditional expression (4) is exceeded and the distance between the second lens group and the third lens group is not increased by a certain amount or more, the correction of coma aberration will be insufficient, and if the lower limit is exceeded and the distance between the second lens group If the distance between the third lens group and the third lens group increases too much, the focal length of the entire system will change too much to a long side, and the amount of extension of each lens group will have to be increased, which is undesirable because the overall length of the lens will become longer.
尚、本実施例においては絞りを第ルンズ群とi2レンズ
群との間に配置し、第2レンズ群と共に移動させること
により、軸上光束の第4レンズ群への入射高位置を無限
遠物体と近距離物体に対して大きく変化させるのが撮影
倍率の変化に伴う収差変動を少なくするのに好ましい。In this embodiment, the diaphragm is placed between the lens group and the i2 lens group, and by moving it together with the second lens group, the height of incidence of the axial light beam on the fourth lens group is adjusted to the point at which the axial light beam enters the fourth lens group. It is preferable to make a large change for close objects in order to reduce fluctuations in aberrations caused by changes in imaging magnification.
又、本実施例において画面全体の詰収差を良好に補正す
る為には、物体側より順に第ルンズ群を正レンズ、メニ
スカス状の正レンズそして負レンズの3つのレンズ、第
2レンズ群を負レンズと正レンズの貼り合わせレンズそ
して正レンズの2群3枚レンズ、第3レンズ群を少なく
とも1枚の正レンズそして第4レンズ群をメニスカス状
の負レンズより構成するのが良い。In addition, in order to properly correct the narrowing aberration of the entire screen in this embodiment, in order from the object side, the first lens group is made up of three lenses: a positive lens, a meniscus-like positive lens, and a negative lens, and the second lens group is made of a negative lens. It is preferable to configure a bonded lens of a lens and a positive lens, two groups of three lenses of positive lenses, a third lens group of at least one positive lens, and a fourth lens group of a meniscus-shaped negative lens.
次に本発明の数値実施例を示す。数値実施例においては
、Riは物体側より第i番目のレンズ面の曲率半径、D
iは物体側より順に第i番目のレンズ厚及び空気間隔、
Niとυiは各々物体側より第i番目のガラスの屈折率
とアラへ数である。Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface from the object side, and D
i is the i-th lens thickness and air gap in order from the object side,
Ni and υi are the refractive index of the i-th glass from the object side, respectively.
す・・]舅
数値実施例 I
F= 5]、6 FNO= 1 : 2.55 2ω
= 45.5゜Rl= −531,25D l=
2.23 N I=1.72000 ν1=50
.2R2= −61,75D 2= 0.15R3
= 22.00 D 3= 3.04 N
2=1.78590 υ2=44.2R4= 7
8.06 D 4= 1.05R5= −137
,25D 5= 1.19 N 3=1.603
42 ν3=38.OR6= 19.00 D
6= (可変)R7: (絞り) D 7=
4.05R8= −16,21D 8= 1.
62 N 4=1.69895 ν4=30.I
RQ= −85,24D 9= 3.71 N
5=1.77250 シ5=49.6R1O=
−19,66DlO= 0.15R11= −139
,17D11= 2.52 N 6=1.772
50 シ6工49.6R12= −40,93D1
2= (可変)R13= 346.13 D13
= 2.53 N 7=1.48749 υ7
=70.2R14= −120,56D14= (可変
)R15= 58.1:l D15= 1.8
2 N 8=1.51633 シ8=64.lR
16= 40.90
数値実施例 2
F=50.4FNO=に2.552ω=46.50Rl
= −325,25D I = 2.20 N
l =1.72000 υ1=50.2R2=
−59,14D2= 0.15R3= 21.27
D3= 3.24 N2=1.77250
シ2=49.6R4= 77.63 D4=
0.97R5= −133,47D 5= 1.
50 N 3=1.60562 シ3=43.7
R6= 18.75 D 6= (可変)R7=
(絞り) D 7= 3.80R8=
−16,41D 8= 1.67 N 4=1.
75520 シ4=27.5R9−−59,43D9
= 3.65 N5=1.77250 υ5=
49.6R1O= −19,40D 10= 0.
15R11= −258,63D11= 2.40
N 6=1.77250 シロ=49.6R12
= −40,59DI2=(可変)R13= 15
0.63 D13= 1.90 N 7=1
.65844 シフ=50.9R14= −899,
48DI4= (可変)R15= 82.71
D15= 1.75 N8=1.62299
シ8=58.2R16= 43.02
数値実施例 3
F= 51.61 FNO= 1 : 2.55 2
ω= 45.5゜RI= 65.20 D I=
2.80 N 1=1.78590 ν1=
44.2R2= −646,44D 2= 0.15
R3= 20.20 D 3= 2.97
N 2=1.80610 υ2=40.9R4=
44.49 D 4= 0.70R5= 8
4.16 D 5= 2.07 83=1.6
9895 ν3=30.IR6= 15.86
D 6= (可変)R7= (絞り) D
7= 5.00R8= −13,84D8= 1
.97 N4=1.72825 ν4=28.5
R9= −40,00D 9= 2.86 N
5=1.78590 ν5=44.2R1O=
−17,840lo= 0.15all= −117
,46D11= 2.410 N 6=1.77
250 シロ=49.6R12= −31,52D
I2= (可変)R13= −75,60D13=
2.50 N7=1.48749 シフ=70
.2R14= −44,81D14= (可変)R1
5= −64,38D15= 1.60 N8
=1.53172 シ8=48.9R16= −1
17,76
(発明の効果)
本発明によれば撮影レンズを4つのレンズ群より構成し
、このうち物体/jillの3つのレンズ群を前述のよ
うに所定条件を満足するように移動させることにより、
無限遠物体から近距離物体に至る広範囲の物体に対して
焦点合わせをする際の収差変動を良好に補正した高性能
なフローティングを利用した撮影レンズを達成すること
ができる。] Numerical Example I F= 5], 6 FNO= 1 : 2.55 2ω
= 45.5゜Rl= -531,25D l=
2.23 N I=1.72000 ν1=50
.. 2R2= -61,75D 2= 0.15R3
= 22.00 D 3= 3.04 N
2=1.78590 υ2=44.2R4= 7
8.06 D4= 1.05R5= -137
,25D 5= 1.19 N 3=1.603
42 ν3=38. OR6= 19.00D
6= (Variable) R7: (Aperture) D 7=
4.05R8=-16,21D8=1.
62 N 4=1.69895 ν4=30. I
RQ=-85,24D 9=3.71N
5=1.77250 5=49.6R1O=
−19,66DlO= 0.15R11= −139
,17D11=2.52 N6=1.772
50 C6 work 49.6R12= -40,93D1
2= (variable) R13= 346.13 D13
= 2.53 N 7 = 1.48749 υ7
=70.2R14= -120,56D14= (variable) R15= 58.1:l D15= 1.8
2 N 8=1.51633 C8=64. lR
16=40.90 Numerical Example 2 F=50.4FNO=2.552ω=46.50Rl
= -325,25D I = 2.20N
l =1.72000 υ1=50.2R2=
-59,14D2=0.15R3=21.27
D3=3.24 N2=1.77250
C2=49.6R4=77.63 D4=
0.97R5=-133,47D5=1.
50 N3=1.60562 C3=43.7
R6= 18.75 D 6= (variable) R7=
(Aperture) D7= 3.80R8=
-16,41D 8= 1.67 N 4=1.
75520 Shi4=27.5R9--59,43D9
= 3.65 N5=1.77250 υ5=
49.6R1O=-19,40D 10=0.
15R11=-258, 63D11=2.40
N 6 = 1.77250 White = 49.6R12
= -40,59DI2=(variable)R13=15
0.63 D13= 1.90 N 7=1
.. 65844 Schiff = 50.9R14 = -899,
48DI4= (variable) R15= 82.71
D15=1.75 N8=1.62299
C8=58.2R16=43.02 Numerical Example 3 F=51.61 FNO=1 : 2.55 2
ω= 45.5°RI= 65.20 DI=
2.80 N 1=1.78590 ν1=
44.2R2=-646,44D2=0.15
R3=20.20 D3=2.97
N2=1.80610 υ2=40.9R4=
44.49 D4=0.70R5=8
4.16 D 5 = 2.07 83 = 1.6
9895 ν3=30. IR6=15.86
D 6= (variable) R7= (aperture) D
7=5.00R8=-13,84D8=1
.. 97 N4=1.72825 ν4=28.5
R9=-40,00D 9=2.86N
5=1.78590 ν5=44.2R1O=
−17,840lo= 0.15all= −117
,46D11=2.410 N6=1.77
250 Shiro = 49.6R12 = -31,52D
I2= (variable) R13= -75,60D13=
2.50 N7=1.48749 Schiff=70
.. 2R14= -44, 81D14= (variable) R1
5=-64,38D15=1.60 N8
=1.53172 shi8=48.9R16= -1
17, 76 (Effects of the Invention) According to the present invention, the photographic lens is composed of four lens groups, and by moving the three lens groups of the object/jill so as to satisfy the predetermined conditions as described above, ,
It is possible to achieve a high-performance photographing lens using floating that satisfactorily corrects aberration fluctuations when focusing on a wide range of objects, from objects at infinity to objects at close distances.
第1図、第2図は各々本発明の数値実施例1゜3のレン
ズ断面図、第3.第4.第5図は各々本発明の数値実施
例1,2.3の諸収差図である。
レンズ断面図に右いてI、 IT、 Ill、 ■は各
々第1.第2.第3.第4レンズ群、矢印は無限遠物体
から近距離物体に焦点合わせをする際の各レンズ群の移
動方向、収差図において(八)は無限遠物体、(B)は
撮影倍率が一1倍のときの収差、Yは像高である。
第1図
第ろ図
84図
CB)FIGS. 1 and 2 are cross-sectional views of the lens of Numerical Example 1.3 of the present invention, and FIG. 3. 4th. FIG. 5 is a diagram showing various aberrations of numerical examples 1, 2.3 of the present invention, respectively. I, IT, Ill, and ■ on the right side of the lens cross-sectional view are 1st. Second. Third. The 4th lens group, the arrows indicate the movement direction of each lens group when focusing from an object at infinity to a close object, and in the aberration diagram, (8) is an object at infinity, and (B) is an image with a magnification of 11x. , and Y is the image height. Figure 1 Figure 84 CB)
Claims (1)
、第3レンズ群と負の屈折力の第4レンズ群の4つのレ
ンズ群を有し、無限遠物体から近距離物体に焦点合わせ
をする際、隣接する2つのレンズ群により形成される3
つの空気間隔がいずれも増大するように前記第1、第2
、第3レンズ群を物体側へ移動させたことを特徴とする
フローティングを利用した撮影レンズ。 (2)前記第2、第4レンズ群の焦点距離をf_2、f
_4、全系の焦点距離をf、無限遠物体から近距離物体
に焦点合わせをする際の前記第1、第2、第3レンズ群
の移動量を各々m_1、m_2、m_3とするとき 1.1<f_2/f<1.25 −6.0<f_4/f<−3.9 1.1<m_1/m_2<1.18 0.5≦m_3/m_2<0.8 なる条件を満足することを特徴とする特許請求の範囲第
1項記載のフローティングを利用した撮影レンズ。[Claims] (1) First and second lenses each having positive refractive power in order from the object side.
, has four lens groups: a third lens group and a fourth lens group with negative refractive power, and when focusing from an object at infinity to a near object, the three lens groups formed by two adjacent lens groups
the first and second air intervals are increased
, a photographic lens utilizing floating, characterized in that the third lens group is moved toward the object side. (2) The focal lengths of the second and fourth lens groups are f_2, f
_4. When the focal length of the entire system is f, and the amounts of movement of the first, second, and third lens groups when focusing from an object at infinity to a near object are m_1, m_2, and m_3, respectively.1. The following conditions must be satisfied: 1<f_2/f<1.25 -6.0<f_4/f<-3.9 1.1<m_1/m_2<1.18 0.5≦m_3/m_2<0.8 A photographic lens utilizing floating according to claim 1, characterized in that:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1892986A JPS62177509A (en) | 1986-01-30 | 1986-01-30 | Photographing lens utilizing floating |
US07/007,626 US4807983A (en) | 1986-01-30 | 1987-01-28 | Photographic lens of extended focusing range with improved stability of picture quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1892986A JPS62177509A (en) | 1986-01-30 | 1986-01-30 | Photographing lens utilizing floating |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62177509A true JPS62177509A (en) | 1987-08-04 |
Family
ID=11985323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1892986A Pending JPS62177509A (en) | 1986-01-30 | 1986-01-30 | Photographing lens utilizing floating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62177509A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4871243A (en) * | 1987-04-03 | 1989-10-03 | Canon Kabushiki Kaisha | Photographic lens of improved near distance performance |
US5398261A (en) * | 1991-03-14 | 1995-03-14 | Bull S.A. | Integrated circuit having controller impedances and application to transceivers, in particular for communication between units of a system |
JP2018180238A (en) * | 2017-04-12 | 2018-11-15 | 株式会社リコー | Projection optical system and image projection device |
JP2022162599A (en) * | 2021-04-13 | 2022-10-25 | 東京晨美光学電子株式会社 | imaging lens |
-
1986
- 1986-01-30 JP JP1892986A patent/JPS62177509A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4871243A (en) * | 1987-04-03 | 1989-10-03 | Canon Kabushiki Kaisha | Photographic lens of improved near distance performance |
US5398261A (en) * | 1991-03-14 | 1995-03-14 | Bull S.A. | Integrated circuit having controller impedances and application to transceivers, in particular for communication between units of a system |
JP2018180238A (en) * | 2017-04-12 | 2018-11-15 | 株式会社リコー | Projection optical system and image projection device |
US11042013B2 (en) | 2017-04-12 | 2021-06-22 | Ricoh Company, Ltd. | Projection optical system and image projection device |
JP2021144245A (en) * | 2017-04-12 | 2021-09-24 | 株式会社リコー | Projection optical system and image projection device |
JP2022162599A (en) * | 2021-04-13 | 2022-10-25 | 東京晨美光学電子株式会社 | imaging lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253405B2 (en) | Two-group zoom lens | |
JP5377032B2 (en) | Zoom lens and imaging apparatus having the same | |
US4871243A (en) | Photographic lens of improved near distance performance | |
JPH02244110A (en) | Zoom lens | |
JP2002287031A (en) | Zoom lens and optical equipment using the same | |
JPH06281861A (en) | Small variable power lens | |
JPH08248310A (en) | Variable aberration lens | |
JPH0642017B2 (en) | Compact zoom lens | |
JP2001154093A (en) | Small-sized high variable power wide-angle zoom lens | |
JP3821330B2 (en) | Zoom lens | |
JP3221765B2 (en) | Lens that can shoot at close range | |
JP3234618B2 (en) | Large aperture medium telephoto lens | |
JPH0634886A (en) | Variable power lens | |
JPH02284109A (en) | Small-sized wide angle zoom lens | |
JPH0894930A (en) | Variable power lens system for copying | |
JPH07318798A (en) | Photographic lens | |
JPH06160706A (en) | Wide angle lens | |
JPH0527163A (en) | Telephoto lens | |
JP2623871B2 (en) | Zoom lens with simple configuration | |
JP2782720B2 (en) | Zoom lens | |
JPS62177509A (en) | Photographing lens utilizing floating | |
JPH07294817A (en) | Zoom lens | |
JP2004226563A (en) | Variable focal length lens system | |
JP2581199B2 (en) | Small zoom lens | |
JPH0493812A (en) | Variable power lens |