[go: up one dir, main page]

JP3221765B2 - Lens that can shoot at close range - Google Patents

Lens that can shoot at close range

Info

Publication number
JP3221765B2
JP3221765B2 JP09400693A JP9400693A JP3221765B2 JP 3221765 B2 JP3221765 B2 JP 3221765B2 JP 09400693 A JP09400693 A JP 09400693A JP 9400693 A JP9400693 A JP 9400693A JP 3221765 B2 JP3221765 B2 JP 3221765B2
Authority
JP
Japan
Prior art keywords
lens
group
infinity
distance
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09400693A
Other languages
Japanese (ja)
Other versions
JPH06308386A (en
Inventor
小林祐子
山梨隆則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP09400693A priority Critical patent/JP3221765B2/en
Publication of JPH06308386A publication Critical patent/JPH06308386A/en
Application granted granted Critical
Publication of JP3221765B2 publication Critical patent/JP3221765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、近距離撮影可能なレン
ズに関し、特に、無限遠から等倍付近まで撮影可能な大
口径マクロレンズであって主にカメラレンズ等に利用さ
れるレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens capable of photographing at a short distance, and more particularly to a large-diameter macro lens capable of photographing from infinity to near the same magnification and mainly used as a camera lens.

【0002】[0002]

【従来の技術】従来より、無限遠から等倍付近まで撮影
可能なマクロレンズについての多くの提案がなされ、特
に、正・正・負の3群構成で合焦時の性能向上の方式と
して、下記の合焦方式が提案されている。
2. Description of the Related Art Conventionally, many proposals have been made for a macro lens capable of photographing from infinity to about the same magnification. Particularly, as a method of improving the performance at the time of focusing with a three-group configuration of positive, positive, and negative, the following is proposed. Has been proposed.

【0003】まず、固定の負の第3群に対して、正の第
1、第2群を一体で物体側に繰り出す合焦方式として
は、特開平3−141313号のものが公知である。こ
の合焦方式の場合は、合焦機構が簡単にできる利点はあ
るが、無限遠から近距離に至る全ての状態において高性
能を確保するのが難しい。上記の先行例の場合、等倍で
の収差補正が充分でなく、特に軸外の像面湾曲収差が大
きい。
First, as a focusing system in which the first and second positive lens units are integrally moved toward the object side with respect to the fixed negative third lens unit, Japanese Patent Application Laid-Open No. 3-141313 is known. In the case of this focusing method, there is an advantage that the focusing mechanism can be simplified, but it is difficult to ensure high performance in all states from infinity to short distance. In the case of the above-mentioned prior example, aberration correction at the same magnification is not sufficient, and particularly off-axis field curvature aberration is large.

【0004】次に、固定の負の第3群に対して、正の第
1群、第2群をそれぞれ物体側に繰り出す合焦方式とし
ては、特開昭56−107210号、特開平2−198
14号等のものが公知である。特開昭56−10721
0号の場合は、至近距離への合焦の際に、正の第1群、
第2群の群間隔が広がることにより、至近位置で大きく
なる球面収差を補正している。しかし、このフローティ
ング方式は、球面収差補正にはその効果を発揮するが、
軸外収差、特にコマ収差の悪化を招き、中心から周辺部
まで高性能を確保できないという欠点がある。また、特
開平2−19814号の場合は、至近距離への合焦の際
に、正の第1群、第2群の群間隔が縮小することによ
り、至近位置での第1〜2群の合成焦点距離を小さく
し、その繰り出し量を小さくしている。しかし、このフ
ローティング方式では、至近距離合焦時に繰り出し群
(正の第1〜2群)内での球面収差発生量が非常に大き
くなり、補正が難しい。後者の先行例では、等倍におい
て球面収差の曲がりが大きく、大口径光束で補正過剰
(プラス)となる、いわゆる輪帯球面収差が補正し切れ
ていない。
Next, as a focusing method for moving the positive first lens unit and the second lens unit toward the object side with respect to the fixed negative third lens unit, see JP-A-56-107210 and JP-A-2-107. 198
No. 14 and the like are known. JP-A-56-10721
In the case of No. 0, when focusing to a close distance,
The spherical aberration that increases at the closest position is corrected by increasing the group interval of the second group. However, this floating method is effective for correcting spherical aberration,
There is a drawback that off-axis aberrations, particularly coma aberrations, are deteriorated and high performance cannot be ensured from the center to the periphery. In the case of Japanese Patent Application Laid-Open No. 2-19814, the distance between the first and second lens groups at the closest position is reduced by reducing the distance between the positive first lens unit and the second lens unit when focusing on a close distance. The composite focal length is reduced, and the amount of extension is reduced. However, in this floating method, the amount of spherical aberration generated in the extending group (the first and second positive groups) becomes extremely large during focusing at a close distance, and correction is difficult. In the latter prior example, the so-called orbicular spherical aberration, in which the curvature of spherical aberration is large at the same magnification and becomes overcorrected (plus) with a large-diameter luminous flux, is not completely corrected.

【0005】また、正の第1群、第2群、負の第3群を
それぞれ物体側に繰り出す合焦方式とし、特開昭59−
228220号のものが公知である。また、負の第4群
に対して、正の第1群、第2群、第3群をそれぞれ物体
側に繰り出す合焦方式としては、特開昭62−1775
09号のもの等が公知である。前述の2つの先行例で
は、最終レンズ群である負レンズ群の倍率が小さく、前
群である正レンズ群、特に第1群の繰り出し量が大きく
なる欠点がある。この繰り出し量の増加は、繰り出し機
構への負担となり、かつ、製品の大型化につながってし
まう。また、最終負レンズ群の屈折力が弱いために、ペ
ッツバール和の補正が難しく、軸外諸収差補正が不充分
である。
A focusing system in which the first positive lens unit, the second lens unit, and the third negative lens unit are respectively extended toward the object side is disclosed in
No. 228220 is known. Japanese Patent Application Laid-Open No. Sho 62-1775 discloses a focusing system in which the first, second, and third groups are moved toward the object side with respect to the fourth, negative group.
No. 09 is known. The above two prior examples have the disadvantage that the magnification of the negative lens group, which is the last lens group, is small, and the amount of extension of the positive lens group, particularly the first group, which is the front group, is large. This increase in the feeding amount places a burden on the feeding mechanism and leads to an increase in the size of the product. Further, since the refractive power of the final negative lens group is weak, it is difficult to correct Petzval sum, and correction of various off-axis aberrations is insufficient.

【0006】[0006]

【発明が解決しようとする課題】前述のように、無限遠
から等倍付近まで撮影可能なレンズ、いわゆるマクロレ
ンズについて数多く提案がなされてきている。正・正・
負のレンズ群構成を基本としたタイプは、無限遠から至
近距離に合焦した時に繰り出し量を小さくすることが可
能であり、かつ、性能を確保するのに有利な点が多くあ
り、数多くの提案がなされてきた。しかし、何れの先行
例も至近距離合焦時での収差補正が充分でなく、無限遠
から等倍付近の至近位置まで全ての状態において高性能
であるとはいえない。
As described above, many proposals have been made on a lens capable of photographing from infinity to near the same magnification, that is, a so-called macro lens. Positive, positive,
The type based on the negative lens group configuration can reduce the amount of extension when focusing from infinity to a close distance, and has many advantages in ensuring performance. Has been done. However, none of the prior arts is sufficiently corrected for aberrations at a close distance, and cannot be said to have high performance in all states from infinity to a close position near the same magnification.

【0007】無限遠から等倍付近の至近距離まで撮影距
離が変化する場合に、先ず問題となるのは、球面収差の
変化量が大きいことである。これは、最も物体側に位置
する第1正レンズ群に入射する光束が大きく変化するこ
とに起因している。次に、軸外収差で、像面湾曲収差が
至近距離になるに従ってマイナスに大きくなるという問
題がある。これにより、特に等倍付近において、周辺部
のベスト像面が物体側に倒れ、周辺部ベスト像面と中心
部ベスト像面が一致しなくなる。多くの先行例は軸外収
差補正も含めてはいるが、主に至近距離合焦時に大きく
なる球面収差を補正することを主旨として提案されてき
た。そのため、軸外収差の補正については何れも充分で
はなく、特に等倍付近において、軸外収差の像面湾曲、
コマ収差の劣化が著しい。
When the photographing distance changes from infinity to a close distance near the same magnification, the first problem is that the amount of change in spherical aberration is large. This is because the light beam incident on the first positive lens group located closest to the object side greatly changes. Next, there is a problem that the off-axis aberration becomes larger negatively as the field curvature aberration becomes closer. As a result, especially near the same magnification, the peripheral best image plane falls to the object side, and the peripheral best image plane and the central best image plane do not match. Although many prior examples include correction of off-axis aberrations, they have been proposed with the main aim of correcting spherical aberration that increases when focusing on a close distance. Therefore, any correction of off-axis aberrations is not sufficient, and especially near the same magnification, curvature of field of off-axis aberrations,
The coma aberration is remarkably deteriorated.

【0008】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、近距離撮影可能
なマクロレンズにおいて、撮影距離が無限遠から等倍付
近の至近距離に変化した時に性能劣化の原因となる前述
の球面収差変動及び軸外諸収差変動を良好に補正するこ
とにある。
The present invention has been made in view of such a problem of the prior art, and an object of the present invention is to change the photographing distance from infinity to a close distance of about 1 × in a macro lens capable of photographing at a short distance. An object of the present invention is to satisfactorily correct the above-described fluctuations in spherical aberration and various off-axis aberrations that sometimes cause performance degradation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の近距離撮影可能なレンズは、物体側より順に、正屈
折力の第1レンズ群(G1)、正屈折力の第2レンズ群
(G2)、負屈折力の第3レンズ群(G3)を有し、前
記第1レンズ群(G1)は少なくとも1枚の負レンズを
有し、前記第2レンズ群(G2)は少なくとも1枚の負
レンズを有する前群(G2a)と正屈折力の後群(G2b
からなり、無限遠から近距離に合焦する際に、前記第1
レンズ群(G1)、第2レンズ群(G2)が前記第3レ
ンズ群(G3)に対して相対的に物体側へ移動し、か
つ、前記第2レンズ群(G2)の前群(G2a)と後群
(G2b)がその間隔を無限遠合焦時より近距離合焦時の
方が広くなるように物体側へ移動し、さらに下記の条件
を満足することを特徴とするものである。 −3.3<f3 /f<−1.5 ・・・(1) 0.01<Δdab/m1 <0.20 ・・・(2) ただし、fは無限遠合焦状態における全系の焦点距離、
3 は前記第3レンズ群(G3)の焦点距離、Δdab
無限遠から至近距離に合焦する際の前記第2レンズ群
(G2)内の前群(G2a)と後群(G2b)の間の最大間
隔変化量、m1 は無限遠から至近距離に合焦する際の前
記第1レンズ群(G1)の移動量である。
In order to achieve the above object, the present invention provides a short-distance photographable lens comprising a first lens unit (G1) having a positive refractive power and a second lens unit having a positive refractive power in order from the object side. (G2), a third lens group (G3) having a negative refractive power, the first lens group (G1) has at least one negative lens, and the second lens group (G2) has at least one lens. Group (G 2a ) having a negative lens and a rear group (G 2b ) having a positive refractive power
When focusing from infinity to a close distance, the first
Lens group (G1), and moves relatively in the object side with respect to the second lens group (G2) is the third lens group (G3), and said second lens group (G2) of the front group (G 2a ) And the rear group (G 2b ) move toward the object side such that the distance between them becomes wider when focusing on a short distance than when focusing on infinity, and further satisfies the following conditions. is there. −3.3 <f 3 /f<−1.5 (1) 0.01 <Δd ab / m 1 <0.20 (2) where f is the total in the infinity in-focus state. The focal length of the system,
f 3 is the focal length of the third lens group (G3), Δd ab is infinity close distance the second lens group upon focusing on (G2) in the front group (G 2a) and the rear group (G 2b ) Is the maximum distance change amount, and m 1 is the movement amount of the first lens group (G1) when focusing from infinity to a close distance.

【0010】この場合、無限遠から近距離に合焦する際
に、無限遠より中間倍率までは前記第2レンズ群(G
2)内の前群(G2a)と後群(G2b)の間隔が変化せず
に、中間倍率を越えて至近距離へ合焦時には前記第2レ
ンズ群(G2)内の前群(G2a)と後群(G2b)とがそ
の間隔を近距離付近で広げるように、物体側へ移動する
ようにすることが望ましい。
In this case, when focusing from infinity to a short distance, the second lens group (G
In the case where the distance between the front group (G 2a ) and the rear group (G 2b ) in 2 ) does not change, and when focusing is performed at a close distance beyond the intermediate magnification, the front group (G) in the second lens group (G2) is focused. 2a ) and the rear group (G 2b ) are desirably moved to the object side so as to widen the distance therebetween near a short distance.

【0011】[0011]

【作用】以下、上記構成を採用する理由と作用について
説明する。本発明の正・正・負の3群構成のマクロレン
ズは、基本的には、正・負の構成をとり、前群に焦点距
離の短い正レンズ群を配置し、後群の負レンズ群が拡大
倍率を持ち、焦点距離の短い正レンズ群である前群を繰
り出すことにより近距離への合焦を行っている。この合
焦方式の場合、全体繰り出しによる合焦方式に比べ、近
距離合焦時の繰り出し量を少なくすることができるとい
う利点がある。しかし、後群の負レンズ群が拡大倍率を
持つために、前群による収差を拡大するという欠点があ
り、前群での各収差を充分に補正しておく必要がある。
The reason and operation of the above configuration will be described below. The macro lens having three groups of positive, positive and negative according to the present invention basically has a positive and negative configuration, a positive lens group having a short focal length is arranged in the front group, and a negative lens group in the rear group. Has an enlargement magnification, and focuses on a short distance by extending a front lens group which is a positive lens group having a short focal length. In the case of this focusing method, there is an advantage that the amount of extension at the time of focusing on a short distance can be reduced as compared with the focusing method based on the whole extension. However, since the rear lens group has an enlargement magnification, there is a disadvantage that the aberration of the front group is enlarged, and it is necessary to sufficiently correct each aberration in the front group.

【0012】本発明のレンズ構成は、前述の前群内での
諸収差を小さく抑えるために、正の屈折力を持つ第1群
(G1)、第2群(G2)のそれぞれに少なくとも1枚
の負レンズを有している。これは、各レンズ群内の収差
を小さく設定するために必要な条件であり、かつ、前群
(G1〜G2)内での諸収差を小さく抑えるために必要
な条件であり、特に、無限遠状態での球面収差、軸外コ
マ収差の補正に有効的に働いている。
The lens arrangement according to the present invention has at least one lens in each of the first group (G1) and the second group (G2) having a positive refractive power in order to suppress the above-mentioned various aberrations in the front group. Has a negative lens. This is a condition necessary to set the aberration in each lens group small, and a condition necessary to suppress various aberrations in the front group (G1 to G2). It effectively works to correct spherical aberration and off-axis coma in the state.

【0013】正・正・負の構成のマクロレンズで、無限
遠から等倍付近の至近距離まで撮影距離が変化する場合
に、特に問題となるのは球面収差の変化量が大きいこと
であるが、これは、最も物体側に位置する第1正レンズ
群に入射する光束が大きく変化することに起因する。前
述の前群(G1〜G2)内で充分に球面収差発生量を補
正することにより、その変化量を小さくすることは可能
である。しかし、前群内の球面収差発生量を極力小さく
し、無限遠状態で球面収差を良好に補正し、かつ、近距
離物点に対する球面収差変化量を極力小さくしていく
と、等倍付近においては、球面収差は大口径で補正過剰
(プラス)となってくる傾向がある、いわゆる輪帯球面
収差が大きくなってくる。
When the photographing distance changes from infinity to a close distance near the same magnification with a macro lens having a positive / positive / negative configuration, a particular problem is that the amount of change in spherical aberration is large. This is because the light beam incident on the first positive lens group located closest to the object side changes greatly. By sufficiently correcting the spherical aberration generation amount in the front group (G1 to G2), the change amount can be reduced. However, if the amount of spherical aberration generated in the front group is reduced as much as possible, the spherical aberration is corrected favorably at infinity, and the amount of change in spherical aberration with respect to a short-distance object point is reduced as much as possible, near the same magnification. In other words, spherical aberration tends to be overcorrected (plus) at large diameters, so-called annular spherical aberration increases.

【0014】次に問題となるのは、等倍付近で劣化の激
しい像面湾曲収差とコマ収差である。本発明のレンズ構
成は、最終レンズ群が負のパワーを持ち、その負パワー
と正パワーの組み合わせによりペッツバール和を良好に
保つためには有利な構成であり、無限遠合焦時の像面湾
曲、非点収差を良好に補正することは比較的容易であ
る。しかし、前群(G1〜G2)内及び後群(G3)内
で充分に収差発生量を抑えておかないと、至近距離合焦
状態において良好な画質を確保することは困難となる。
特に等倍付近では、軸外コマ収差及び像面湾曲収差の発
生量が大きく、周辺部のベスト像面が物体側に倒れてし
まうという問題がある。
The next problem is the curvature of field and the coma which are greatly deteriorated near the same magnification. The lens configuration of the present invention is an advantageous configuration for keeping the Petzval sum good by the combination of the negative power and the positive power in the final lens group, and the field curvature at infinity focusing. It is relatively easy to satisfactorily correct astigmatism. However, it is difficult to ensure good image quality in the close-distance focusing state unless the amount of aberration generation is sufficiently suppressed in the front group (G1 to G2) and the rear group (G3).
In particular, near the same magnification, the amount of off-axis coma aberration and curvature of field aberration is large, and there is a problem that the best image surface in the peripheral portion falls to the object side.

【0015】本発明の大きな特徴は、前述の前群中の第
2正レンズ群(G2)を少なくとも1枚の負レンズを有
する前群(G2a)と正屈折力の後群(G2b)で構成し、
無限遠から近距離に合焦する際に、その第2群の前群
(G2a)と正屈折力の後群(G2b)がその間隔を近距離
合焦時の方が無限遠合焦時より広くなるように物体側へ
移動していることである。この間隔のフローティングに
より、等倍付近の至近距離状態において、大口径で補正
過剰(プラス)となる球面収差を良好に設定することが
可能となり、同時に、軸外ベスト像面を起こすことが可
能となる。
A major feature of the present invention is that the second positive lens group (G2) in the front group includes a front group (G 2a ) having at least one negative lens and a rear group (G 2b ) having a positive refractive power. Composed of
When focusing from infinity to a close distance, the distance between the front group (G 2a ) of the second group and the rear group (G 2b ) of the positive refracting power is shorter when focusing on a short distance is closer to infinity. Moving to the object side to make it wider. By floating at this distance, it is possible to set a spherical aberration that is overcorrected (plus) with a large aperture in a close-up state near the same magnification, and at the same time, it is possible to raise an off-axis best image plane. Become.

【0016】その作用について詳しく述べる。等倍付近
の至近距離において、大口径光束の球面収差が補正過剰
(プラス)となる、いわゆる輪帯球面収差が大きくなる
のは、第1正レンズ群(G1)内における高次球面収差
が補正し切れないことが原因である。本発明では、第2
群(G2)内の間隔をフローティングすることにより、
第2群(G2)内の強い正パワーを持つ後群(G2b)に
入射する光束を変化させて、第2群(G2)内において
第1群(G1)内で発生する高次収差を補う高次収差を
発生させ、前群(G1〜G2)内での収差発生量を小さ
くしている。これにより、等倍付近の至近距離において
大口径光束で補正過剰(プラス)となる球面収差、いわ
ゆる輪帯球面収差を良好に補正することが可能となる。
The operation will be described in detail. At close distances near the same magnification, the spherical aberration of the large-diameter luminous flux becomes excessively corrected (plus), that is, the so-called orbicular spherical aberration increases. This is because high-order spherical aberration in the first positive lens unit (G1) is corrected. It is because it cannot be completed. In the present invention, the second
By floating the interval in the group (G2),
By changing the luminous flux incident on the rear group (G 2b ) having strong positive power in the second group (G2), high-order aberrations generated in the first group (G1) in the second group (G2) are reduced. Higher order aberrations are compensated for, and the amount of aberrations generated in the front group (G1 to G2) is reduced. This makes it possible to satisfactorily correct spherical aberration that is overcorrected (plus) by a large-diameter luminous flux at a close distance near the same magnification, so-called annular spherical aberration.

【0017】同時に、等倍付近の至近距離において、第
2群(G2)内で発生する像面湾曲収差はその発生量が
減り、軸外コマ収差についても、その主光線変化に伴い
補正可能な方向に変化する。これにより、等倍付近の至
近距離で像面湾曲の倒れが補正され、中心ベスト像面と
周辺部ベスト像面が一致し、中心から周辺まで良好な画
質を確保することが可能となる。
At the same time, the amount of curvature of field generated in the second lens unit (G2) at a close distance near the same magnification is reduced, and off-axis coma can be corrected with the change of the principal ray. Change in direction. As a result, the inclination of the curvature of field is corrected at a close distance near the same magnification, the center best image plane and the peripheral best image plane coincide, and it is possible to secure good image quality from the center to the periphery.

【0018】次に、具体的な条件について述べる。前記
条件(1)は、負レンズ群である第3群(G3)の屈折
力に関する条件であり、本発明のレンズがその効果を発
揮し得る屈折力配置を規定する条件で、その上限を越え
ると、第3群(G3)内で発生する収差量が増加し、総
合して収差を良好に補正できなくなる。特に、等倍付近
の至近距離において像面湾曲の倒れが非常に大きくな
り、歪曲収差はプラスに大きくなる等収差劣化が激し
く、本発明によるフローティングを駆使しても補正不可
能となる。条件(1)の下限を越えると、第3群(G
3)内での収差発生量が減り収差補正上は有利にはなる
が、ペッツバール和がプラスに大きくなるために、無限
遠状態において軸外収差の非点隔差が非常に大きくな
り、良好な画質を確保するのが困難になる。また、第2
群(G2)と第3群(G3)の群間隔が小さくなり、機
械的に干渉する問題も生じ、これを解決するために第1
〜第2群のパワーを弱める等の策が必要となり、最終的
にはレンズ全長が大型化してしまう。
Next, specific conditions will be described. The condition (1) is a condition relating to the refractive power of the third group (G3), which is a negative lens group, and is a condition that defines a refractive power arrangement where the lens of the present invention can exert its effect, and exceeds the upper limit. Then, the amount of aberration generated in the third lens unit (G3) increases, and it becomes impossible to satisfactorily correct the aberration as a whole. In particular, the inclination of the curvature of field becomes extremely large at a close distance near the same magnification, and the distortion is increased to a large extent. When the lower limit of the condition (1) is exceeded, the third lens group (G
3) The amount of aberrations generated in (3) is reduced, which is advantageous for aberration correction. However, since the Petzval sum becomes large, the astigmatic difference of off-axis aberrations becomes extremely large at infinity, resulting in good image quality. Will be difficult to secure. Also, the second
The group interval between the group (G2) and the third group (G3) is reduced, and a problem of mechanical interference occurs.
-It is necessary to take measures such as weakening the power of the second unit, and eventually the overall length of the lens is increased.

【0019】前記条件(2)は、本発明の特徴である第
2群(G2)内のフローティング量を規定する条件で、
条件(2)の上限を越えると、等倍付近の至近距離状態
において、軸外収差の像面湾曲収差が補正過剰となり、
同時に、球面収差がマイナスに大きくなり補正不足とな
る。また、球面収差の悪化に伴い、軸外のコマ収差が悪
化し、補正不可能となってしまう。条件(2)の下限を
越えると、本発明の目的とするフローティングによる収
差補正効果が発揮されず、等倍付近の至近距離状態にお
いて輪帯球面収差が非常に大きくなり、つまり、大口径
光束での球面収差がプラスに大きくなり、同時に、像面
湾曲収差が物体側に大きく倒れ、中心ベスト像面と周辺
部ベスト像面が一致しなくなる。
The condition (2) is a condition for defining a floating amount in the second lens unit (G2) which is a feature of the present invention.
When the value exceeds the upper limit of the condition (2), the field curvature aberration of the off-axis aberration becomes excessively corrected in a close distance state near the same magnification, and
At the same time, the spherical aberration becomes negatively large, resulting in insufficient correction. In addition, with the deterioration of the spherical aberration, the off-axis coma becomes worse and cannot be corrected. If the lower limit of the condition (2) is exceeded, the aberration correction effect due to floating, which is the object of the present invention, will not be exhibited, and the spherical aberration of the annular zone will become extremely large at a close distance near the same magnification. Becomes large positively, and at the same time, the field curvature aberration largely falls to the object side, so that the central best image plane and the peripheral best image plane do not coincide with each other.

【0020】さらに、前記前群(G1〜G2)の無限遠
状態における合成焦点距離をf12、第1レンズ群(G
1)の屈折力をf1 としたときに、下記の条件を満足す
ることにより、前群(G1〜G2)内での至近距離合焦
時における収差発生量をより小さくすることが可能とな
る。
The combined focal length of the front group (G1 to G2) at infinity is f 12 , and the first lens group (G
The refractive power of 1) is taken as f 1, by satisfying the following conditions, it is possible to further reduce the aberration generation amount upon focusing close range focus in front group (G1~G2) in .

【0021】 1.5<f1 /f12<2.0 ・・・(3) 上記条件(3)の上限を越えて第1正レンズ群(G1)
の屈折力が弱くなると、その正屈折力を補うために第2
レンズ群(G2)の正屈折力が強くなる。また、第1群
(G1)での光線収束力が弱くなるために、第2群(G
2)に入射する光束が広がる。これらにより、第2正レ
ンズ群(G2)内での諸収差発生量が増加し、特に、至
近距離状態で球面収差が大きくなり、補正し切れなくな
る。条件(3)の下限を越えてその屈折力が強くなる
と、第2群(G2)内の特に強い正の屈折力をもつ後群
(G2b)の屈折力を弱く設定することが可能となり、至
近距離合焦時における球面収差補正には有利に働く。し
かし、至近距離合焦時における第1群(G1)内での収
差発生量が増加し、特に像面の倒れが増大すると同時
に、非点隔差が大きくなり、補正し切れなくなる。
1.5 <f 1 / f 12 <2.0 (3) Exceeding the upper limit of the above condition (3), the first positive lens group (G1)
When the refractive power of becomes weaker, the second
The positive refractive power of the lens group (G2) increases. In addition, since the ray convergence in the first group (G1) is weak, the second group (G1)
The light beam incident on 2) spreads. As a result, the amount of generation of various aberrations in the second positive lens unit (G2) increases, and spherical aberration increases particularly at a close distance, and correction cannot be completed. When the refractive power is increased beyond the lower limit of the condition (3), the refractive power of the rear group (G 2b ) having a particularly strong positive refractive power in the second group (G2) can be set weakly. This is advantageous for correcting spherical aberration when focusing at a close distance. However, the amount of aberrations generated in the first lens unit (G1) at the time of focusing on a close distance increases, and in particular, at the same time as the inclination of the image plane increases, the astigmatic difference increases and correction cannot be performed.

【0022】また、無限遠状態における全系の焦点距離
をf、第1群(G1)内の最も像側に位置するレンズ面
の曲率半径r1Rとした時に、下記の条件を満足すること
により、大口径レンズでの無限遠時の収差を良好に保つ
ことが容易になってくる。
When the focal length of the entire system at infinity is f and the radius of curvature r 1R of the lens surface closest to the image side in the first lens unit (G1), the following condition is satisfied. It is easy to maintain good aberrations at infinity with a large aperture lens.

【0023】 0.25<r1R/f<0.35 ・・・(4) 条件(4)の下限を越えると、特にサジタル方向の収差
が悪化し、像面の曲がりが大きくなると同時に、軸外コ
マ収差が悪化し、いわゆるサジタルコマフレアが増加
し、無限遠状態での収差補正が不可能となる。条件
(4)の上限を越えると、その面による屈折力は弱くな
る方向にあり、収差補正上は有利ではあるが、ペッツバ
ール和がプラスに大きくなり、特に無限遠での非点隔差
が補正し切れなくなる。また、その上限を越えると、前
群(G1〜G2)の後側主点位置が像面側に変移するた
め、群間隔の増加、バックフォーカスの増加を招き、レ
ンズ全長が大きくなってしまう。
0.25 <r 1R /f<0.35 (4) When the value goes below the lower limit of the condition (4), the aberration in the sagittal direction is particularly deteriorated, and the curvature of the image plane is increased. External coma aberration worsens, so-called sagittal coma flare increases, and it becomes impossible to correct aberrations at infinity. When the value exceeds the upper limit of the condition (4), the refractive power due to the surface tends to be weaker, which is advantageous for aberration correction. However, the Petzval sum becomes large, and the astigmatic difference at infinity is corrected. It will not cut. If the upper limit is exceeded, the position of the rear principal point of the front group (G1 to G2) shifts to the image plane side, which causes an increase in group spacing and an increase in back focus, resulting in an increase in the overall lens length.

【0024】本発明の特徴は、前述のような第2群(G
2)内でのレンズ間隔のフローティングであり、これは
至近距離状態において発生する第1群(G1)内での収
差を補って、前群(G1〜G2)としての収差発生量を
小さくするのに役立っている訳であるが、第1群(G
1)内での収差発生量を極力抑えた場合に、無限遠から
至近距離に合焦する際に、遠距離側の中間倍率において
は、フローティングによる補正が過剰となり、特に中心
ベスト像面と周辺ベスト像面が一致しなくなってしまう
ことがある。無限遠から等倍付近の至近距離まで全ての
状態において高画質を維持しようとすると、各群内での
収差発生量を極力小さく設定することが必要となり、特
に無限遠状態においての各レンズ群内での収差発生量を
小さくすることが必要となる。このような場合において
は、中間倍率を過ぎた至近距離状態でのみ収差悪化の現
象が発生する。つまり、無限遠から等倍付近の至近距離
まで全ての状態において最も良好な画質を得ようとする
には、撮影状態が中間倍率を越えた場合に、本発明の第
2群(G2)内でのフローティングを行って収差補正す
る方法がより効果的であるといえる。
The feature of the present invention is that the second group (G
The floating of the lens interval in 2) compensates the aberration in the first group (G1) generated in the close range state, and reduces the amount of aberration generated in the front group (G1 to G2). The first group (G
In the case where the amount of aberration generation in 1) is suppressed as much as possible, when focusing from infinity to a close distance, the correction by floating becomes excessive at the intermediate magnification on the long distance side, and especially the center best image plane and the peripheral best. The image planes may not match. In order to maintain high image quality in all states from infinity to a close distance near the same magnification, it is necessary to set the aberration generation amount in each group as small as possible, especially in each lens group in infinity state. Needs to be reduced. In such a case, the phenomenon of deterioration of aberration occurs only in a close distance state after the intermediate magnification. That is, in order to obtain the best image quality in all conditions from infinity to a close distance near the unity magnification, when the photographing state exceeds the intermediate magnification, the image quality in the second group (G2) of the present invention is reduced. It can be said that a method of performing aberration correction by performing floating is more effective.

【0025】また、本発明において、無限遠から等倍付
近の至近距離状態まで合焦する際に、第1正レンズ群
(G1)と第2正レンズ群(G2)とがその群間隔を変
えながら第3レンズ群(G3)に対して相対的に物体側
に移動する場合においても、前述の第2群(G2)内で
のフローティングを利用することにより、良好に収差補
正が図れる。本発明の第2群(G2)内でのフローティ
ングに加え、第1正レンズ群(G1)と第2正レンズ群
(G2)とがその群間隔を近距離付近で広げるよう物体
側に移動する場合は、等倍付近の球面収差量をより小さ
く設定することが可能となり、第1正レンズ群(G1)
と第2正レンズ群(G2)とがその群間隔を近距離付近
で縮小するよう物体側に移動する場合は、無限遠から等
倍付近の至近距離状態まで合焦する際のレンズの繰り出
し量をより小さく設定することが可能となる。
In the present invention, when focusing is performed from infinity to a close distance state near the same magnification, the first positive lens group (G1) and the second positive lens group (G2) change the distance between the groups. Even when the lens moves relatively to the object side with respect to the third lens group (G3), aberration can be corrected well by using the above-mentioned floating in the second group (G2). In addition to the floating in the second group (G2) of the present invention, the first positive lens group (G1) and the second positive lens group (G2) move to the object side so as to widen the group interval near a short distance. In this case, it is possible to set a smaller spherical aberration amount near the same magnification, and the first positive lens group (G1)
When the lens and the second positive lens group (G2) move toward the object side so as to reduce the distance between the groups in the vicinity of a short distance, the amount of extension of the lens when focusing from infinity to a close distance state near the same magnification is determined. It can be set smaller.

【0026】[0026]

【実施例】以下、図面を参照にして、本発明のマクロレ
ンズの実施例1〜8について説明する。レンズデータは
後記するが、図1に実施例1の無限遠合焦時(a)及び
等倍撮影時(b)のレンズ断面図を、また、図2、図
3、図4にそれぞれ実施例2、実施例3、実施例4の無
限遠合焦時のレンズ断面図を示す。実施例5、7、8は
実施例1と、実施例6は実施例2とほぼ同じレンズ断面
を有しているので、図示は省く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 8 of the macro lens of the present invention will be described below with reference to the drawings. The lens data will be described later. FIG. 1 is a lens cross-sectional view of Example 1 when focusing on infinity (a) and at the same magnification (b), and FIGS. 2, 3, and 4 show examples. FIGS. 2A and 2B are lens cross-sectional views of Examples 3, 3, and 4 when focused on infinity. Examples 5, 7, and 8 have substantially the same lens cross section as Example 1 and Example 6 as Example 2, so that illustration is omitted.

【0027】実施例1〜8は、無限遠から等倍まで撮影
可能なマクロレンズで、正屈折力の第1レンズ群G1、
正屈折力の第2レンズ群G2、負屈折力の第3レンズ群
G3からなり、無限遠から近距離に合焦する際に、第1
レンズ群G2、第2レンズ群G2が物体側に移動し、か
つ、第2レンズ群の前群G2aと後群G2bがその間隔を広
げながら物体側に移動して合焦をしている。
The first to eighth embodiments are macro lenses capable of photographing from infinity to the same magnification, and have a first lens unit G1 having a positive refractive power.
The second lens group G2 has a positive refracting power and the third lens group G3 has a negative refracting power.
Lens group G2, the second lens group G2 moves to the object side, and the front group G 2a and the rear group G 2b of the second lens group has a focusing moves to the object side while the interval .

【0028】実施例1、5、7〜8は、物体側から、両
凸レンズ、物体側に凸面を向けた正メニスカスレンズ、
像面側に強い凹面を向けた負メニスカスレンズよりなる
正屈折力の第1群G1、両凹レンズと両凸レンズの接合
レンズ、像面側に凸面を向けた正メニスカスレンズ、両
凸レンズよりなる正の屈折力の第2群G2、両凸レン
ズ、両凹レンズ、物体側に凸面を向けた正メニスカスレ
ンズよりなる負の屈折力の第3群G3で構成し、無限遠
から近距離に合焦する際に、第1群G1、第2群G2が
物体側に移動し、かつ、第2群G2の前群G2aである両
凹レンズと両凸レンズの接合レンズと、第2群G2の後
群G2bである像面側に凸面を向けた正メニスカスレンズ
と両凸レンズがその群間隔を広げながら物体側に移動し
て合焦をしている。
Embodiments 1, 5, 7 to 8 show a biconvex lens from the object side, a positive meniscus lens having a convex surface facing the object side,
A first group G1 of positive refractive power composed of a negative meniscus lens having a strong concave surface facing the image surface side, a cemented lens of a biconcave lens and a biconvex lens, a positive meniscus lens having a convex surface facing the image surface side, and a positive lens composed of a biconvex lens A second group G2 having a refractive power, a biconvex lens, a biconcave lens, and a third group G3 having a negative refractive power composed of a positive meniscus lens having a convex surface facing the object side. When focusing from infinity to a short distance, the first group G1, second lens group G2 moves to the object side, and a cemented lens of a biconcave lens and a biconvex lens that is a second group G2 of the front group G 2a, is the group G 2b after the second group G2 A positive meniscus lens having a convex surface facing the image surface side and a biconvex lens move toward the object side while widening the group interval to focus.

【0029】実施例2、6は、物体側から、両凸レン
ズ、物体側に凸面を向けた正メニスカスレンズ、像面側
に強い凹面を向けた負メニスカスレンズよりなる正屈折
力の第1群G1、両凹レンズと両凸レンズの接合レン
ズ、両凸レンズよりなる正の屈折力の第2群G2、両凸
レンズ、両凹レンズ、物体側に凸面を向けた正メニスカ
スレンズよりなる負の屈折力の第3群G3で構成し、無
限遠から近距離に合焦する際に、第1群G1、第2群G
2が物体側に移動し、かつ、第2群G2の前群G2aであ
る両凹レンズと両凸レンズの接合レンズと、第2群G2
の後群G2bである両凸レンズがその群間隔を広げながら
物体側に移動して合焦をしている。なお、実施例2は第
1群G1の両凸レンズの物体側の面に、実施例6は第2
群G2の後群G2bの両凸レンズの物体側の面に、それぞ
れ非球面を1面用いている。
The second and sixth embodiments have a first group G1 having a positive refractive power composed of a biconvex lens, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a strong concave surface facing the image side. A second unit G2 having a positive refractive power including a cemented lens of a biconcave lens and a biconvex lens, a biconvex lens, and a third unit having a negative refractive power including a biconvex lens, a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. G3, when focusing from infinity to a short distance, the first group G1 and the second group G
2 is moved to the object side, and a cemented lens of a biconcave lens and a biconvex lens that is a second group G2 of the front group G 2a, the second group G2
The biconvex lens, which is the rear group G2b , moves to the object side while focusing to increase the distance between the groups, and focuses. Note that Example 2 is on the object-side surface of the biconvex lens of the first group G1, and Example 6 is on the second side.
Object-side surface of the biconvex lens group G 2b after the group G2, is used one aspherical surface, respectively.

【0030】実施例3は、物体側から、両凸レンズ、物
体側に凸面を向けた2枚の正メニスカスレンズ、像面側
に強い凹面を向けた負メニスカスレンズよりなる正屈折
力の第1群G1、両凹レンズと両凸レンズの接合レン
ズ、像面側に凸面を向けた正メニスカスレンズ、両凸レ
ンズよりなる正の屈折力の第2群G2、両凸レンズ、両
凹レンズ、物体側に凸面を向けた正メニスカスレンズよ
りなる負の屈折力の第3群G3で構成し、無限遠から近
距離に合焦する際に、第1群G1、第2群G2が物体側
に移動し、かつ、第2群G2の前群G2aである両凹レン
ズと両凸レンズの接合レンズと、第2群G2の後群G2b
である像面側に凸面を向けた正メニスカスレンズと両凸
レンズがその群間隔を広げながら物体側に移動して合焦
をしている。
In the third embodiment, the first group of positive refractive power includes a biconvex lens from the object side, two positive meniscus lenses having a convex surface facing the object side, and a negative meniscus lens having a strong concave surface facing the image side. G1, a cemented lens of a biconcave lens and a biconvex lens, a positive meniscus lens having a convex surface facing the image side, a second group G2 of positive refractive power composed of a biconvex lens, a biconvex lens, a biconcave lens, and a convex surface facing the object side A third lens unit G3 composed of a positive meniscus lens and having a negative refractive power. When focusing from infinity to a short distance, the first lens unit G1 and the second lens unit G2 move to the object side, and the second lens unit G2. a biconcave lens and a cemented lens of a double convex lens which is G2 of the front group G 2a, the rear group of the second group G2 G 2b
The positive meniscus lens and the biconvex lens having the convex surface facing the image plane move toward the object side while widening the group interval to focus.

【0031】実施例4は、物体側から、両凸レンズ、物
体側に凸面を向けた正メニスカスレンズ、像面側に強い
凹面を向けた負メニスカスレンズよりなる正屈折力の第
1群G1、両凹レンズと両凸レンズの接合レンズ、像面
側に凸面を向けた正メニスカスレンズ、物体側に凸面を
向けた正メニスカスレンズよりなる正の屈折力の第2群
G2、像面側に凸面を向けた正メニスカスレンズ、両凹
レンズ、両凸レンズよりなる負の屈折力の第3群G3で
構成し、無限遠から近距離に合焦する際に、第1群G
1、第2群G2が物体側に移動し、かつ、第2群G2の
前群G2aである両凹レンズと両凸レンズの接合レンズ
と、第2群G2の後群G2bである像面側に凸面を向けた
正メニスカスレンズと物体側に凸面を向けた正メニスカ
スがその群間隔を広げながら物体側に移動して合焦をし
ている。
In the fourth embodiment, a first group G1 having a positive refractive power, comprising a biconvex lens, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a strong concave surface facing the image side, is used. A second group G2 having a positive refractive power including a cemented lens of a concave lens and a biconvex lens, a positive meniscus lens having a convex surface facing the image surface side, a positive meniscus lens having a convex surface facing the object side, and having a convex surface facing the image surface side. A third lens unit G3 having a negative refractive power, comprising a positive meniscus lens, a biconcave lens, and a biconvex lens. The first unit G3 is used when focusing from infinity to a short distance.
1, the second group G2 moves toward the object side, and a cemented lens of a biconcave lens and a biconvex lens that is a second group G2 of the front group G 2a, image plane side is a group G 2b after the second group G2 A positive meniscus lens having a convex surface directed toward the object and a positive meniscus having a convex surface directed toward the object side move toward the object side while widening the group interval to focus.

【0032】なお、実施例4〜6では、無限遠より撮影
倍率1/10倍までは、第2群G2内の前群G2aと後群
2bの間隔は不変とすることにより、倍率の比較的小さ
い撮影距離においてもより良好な性能を維持している。
[0032] In Example 4-6, infinite to the photographing magnification 1/10 from far away, the distance between the front group G 2a and the rear group G 2b of the second group in G2 is by unchanged, the magnification of Even at relatively small shooting distances, better performance is maintained.

【0033】同様に、実施例7では、無限遠より撮影倍
率1/2倍までは、第2群G2内の前群G2aと後群G2b
の間隔は不変であり、撮影倍率1/2倍から等倍に合焦
する際に、この間隔が増加するように移動している。
Similarly, in the seventh embodiment, the front group G 2a and the rear group G 2b in the second group G2 from infinity to a photographing magnification of 1/2.
Is invariable, and is moved so as to increase this distance when focusing from 撮 影 magnification to 1 × magnification.

【0034】実施例8では、無限遠より撮影倍率1/1
0倍までは、第2群G2内の前群G2aと後群G2bの間隔
は不変であり、撮影倍率1/10倍から等倍に合焦する
際に、この間隔が増加するように移動し、かつ、第1群
G1と第2群G2の間隔が減少しながら物体側に移動し
ている。
In the eighth embodiment, the photographing magnification is 1/1 from infinity.
Up to 0 ×, the distance between the front group G 2a and the rear group G 2b in the second group G2 is unchanged, and this distance increases when focusing from 1/10 × to 1 ×. It moves and moves to the object side while the distance between the first group G1 and the second group G2 decreases.

【0035】なお、各実施例において、開口絞りは第1
群G1と第2群G2の間の空間に配置されている。図5
〜図32は各実施例の収差図である。この中、図5〜図
7は実施例1の無限遠、1/2倍、等倍状態での収差図
である。各状態において、球面収差、非点収差、歪曲収
差を示してある。図8〜図10は実施例2に関する同様
の収差図、図11〜図13は実施例2に関する同様の収
差図である。図14〜図17は実施例4の無限遠、1/
10倍、1/2倍、等倍状態での収差図であり、同様
に、各状態において、球面収差、非点収差、歪曲収差を
示してある。図18〜図21は実施例5に関する同様の
収差図、図22〜図25は実施例6に関する同様の収差
図である。図26〜図28は実施例7の無限遠、1/2
倍、等倍状態での収差図であり、図29〜図32は実施
例8の無限遠、1/10倍、1/2倍、等倍状態での収
差図である。なお、各収差図中、FはFナンバー、Yは
像高を表す。
In each embodiment, the aperture stop is the first stop.
It is arranged in the space between the group G1 and the second group G2. FIG.
32 to 32 are aberration diagrams of the respective examples. 5 to 7 are aberration diagrams of the first embodiment at infinity, 1/2 times, and 1: 1. In each state, spherical aberration, astigmatism, and distortion are shown. 8 to 10 are similar aberration diagrams according to the second embodiment, and FIGS. 11 to 13 are similar aberration diagrams according to the second embodiment. FIG. 14 to FIG. 17 show infinity, 1 /
FIG. 4 is an aberration diagram in a 10 ×, 1/2 ×, and 1 × state, and similarly shows spherical aberration, astigmatism, and distortion in each state. 18 to 21 are similar aberration diagrams according to the fifth embodiment, and FIGS. 22 to 25 are similar aberration diagrams according to the sixth embodiment. 26 to 28 show infinity, 1/2 of the seventh embodiment.
FIG. 29 to FIG. 32 are aberration diagrams at infinity, 1/10 ×, 倍 ×, and 1 × of the eighth embodiment, respectively. In each aberration diagram, F represents an F number, and Y represents an image height.

【0036】以下に上記実施例1〜8のレンズデータを
示すが、記号は、上記の外、fは無限遠合焦時の焦点距
離、FNOは無限遠合焦時のFナンバー、Mは撮影倍率
(∞は合焦距離無限遠を表す。)、r1 、r2 …は各レ
ンズ面の曲率半径、d1 、d2…は各レンズ面間の間
隔、nd1、nd2…は各レンズのd線の屈折率、νd1、ν
d2…は各レンズのアッベ数である。また、非球面形状
は、xを光軸方向、yを光軸からの距離とすると、下記
の式で表される。 x=y2 /{r+r〔1−P(y/r)2 1/2 }+A4
4 +A66 +A88 +A10 10 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6
A8、A10 は非球面係数である。
The lens data of Examples 1 to 8 above are shown below, where the symbols are as above, f is the focal length at infinity focusing, F NO is the F-number at infinity focusing, and M is M photographing magnification (∞ represents a far-focusing distance infinity.), r 1, r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... is D-line refractive index of each lens, ν d1 , ν
d2 ... is the Abbe number of each lens. The aspherical shape is expressed by the following equation, where x is the optical axis direction and y is the distance from the optical axis. x = y 2 / {r + r [1-P (y / r) 2 ] 1/2} + A 4
y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 where r is the paraxial radius of curvature, P is the conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients.

【0037】実施例1 f =100 FNO=2.86 r1 = 100.2613 d1 = 3.3528 nd1 =1.77250 νd1 =49.66 r2 = -634.7240 d2 = 1.0596 r3 = 38.7503 d3 =10.9255 nd2 =1.80610 νd2 =40.95 r4 = 113.1185 d4 = 0.5525 r5 = 257.1733 d5 = 4.4162 nd3 =1.78470 νd3 =26.22 r6 = 30.5058 d6 =10.4828 r7 = -37.1521 d7 = 1.8404 nd4 =1.67270 νd4 =32.10 r8 = 377.5959 d8 = 5.5707 nd5 =1.78590 νd5 =44.18 r9 = -53.1287 d9 =(可変) r10= -193.5082 d10= 2.1241 nd6 =1.78800 νd6 =47.38 r11= -69.1551 d11= 0.0064 r12= 138.7597 d12= 2.1873 nd7 =1.74100 νd7 =52.68 r13= -3490.9154 d13=(可変) r14= 359.6462 d14= 2.2057 nd8 =1.80518 νd8 =25.43 r15= -95.6058 d15= 0.9222 r16= -114.1472 d16= 1.4612 nd9 =1.79952 νd9 =42.24 r17= 35.9870 d17= 8.6702 r18= 44.5976 d18= 5.8308 nd10=1.61272 νd10=58.75 r19= 249.0311 (1)f3 /f=-1.89 (2)Δdab/m1 =0.080 (3)f1 /f12=1.90 (4)r1R/f=0.31
[0037] Example 1 f = 100 F NO = 2.86 r 1 = 100.2613 d 1 = 3.3528 n d1 = 1.77250 ν d1 = 49.66 r 2 = -634.7240 d 2 = 1.0596 r 3 = 38.7503 d 3 = 10.9255 n d2 = 1.80610 ν d2 = 40.95 r 4 = 113.1185 d 4 = 0.5525 r 5 = 257.1733 d 5 = 4.4162 n d3 = 1.78470 ν d3 = 26.22 r 6 = 30.5058 d 6 = 10.4828 r 7 = -37.1521 d 7 = 1.8404 n d4 = 1.67270 ν d4 = 32.10 r 8 = 377.5959 d 8 = 5.5707 n d5 = 1.78590 ν d5 = 44.18 r 9 = -53.1287 d 9 = (variable) r 10 = -193.5082 d 10 = 2.1241 n d6 = 1.78800 ν d6 = 47.38 r 11 = -69.1551 d 11 = 0.0064 r 12 = 138.7597 d 12 = 2.1873 n d7 = 1.74100 ν d7 = 52.68 r 13 = -3490.9154 d 13 = ( variable) r 14 = 359.6462 d 14 = 2.2057 n d8 = 1.80518 ν d8 = 25.43 r 15 = -95.6058 d 15 = 0.9222 r 16 = -114.1472 d 16 = 1.4612 n d9 = 1.79952 ν d9 = 42.24 r 17 = 35.9870 d 17 = 8.6702 r 18 = 44.5976 d 18 = 5.8308 n d10 = 1.61272 ν d10 = 58.75 r 19 = 249.0311 (1) f 3 /f=-1.89 (2) Δd ab / m 1 = 0.080 (3) f 1 / f 12 = 1.90 (4) r 1R /f=0.31
.

【0038】実施例2 f =100 FNO=2.90 r1 = 79.0842(非球面) d1 = 3.8192 nd1 =1.77250 νd1 =49.66 r2 = -5032.4373 d2 = 2.6325 r3 = 38.4633 d3 =10.7188 nd2 =1.78590 νd2 =44.18 r4 = 91.2940 d4 = 0.8209 r5 = 156.2928 d5 = 4.3738 nd3 =1.78470 νd3 =26.22 r6 = 28.3543 d6 = 9.9477 r7 = -35.6731 d7 = 1.9909 nd4 =1.67270 νd4 =32.10 r8 = 320.2481 d8 = 4.2169 nd5 =1.78590 νd5 =44.18 r9 = -47.9688 d9 =(可変) r10= 196.9227 d10= 2.4865 nd6 =1.78590 νd6 =44.18 r11= -93.3213 d11=(可変) r12= 233.6723 d12= 2.4656 nd7 =1.80518 νd7 =25.43 r13= -100.9232 d13= 0.4833 r14= -120.3763 d14= 1.3581 nd8 =1.80610 νd8 =40.95 r15= 36.5358 d15=10.4077 r16= 45.5721 d16= 4.3497 nd9 =1.62280 νd9 =57.06 r17= 202.8410 非球面係数 第1面 P = 1.0000 A4 =-0.11520×10-6 A6 = 0.10736×10-9 A8 =-0.14745×10-14 A10=-0.45440×10-15 (1)f3 /f=-2.13 (2)Δdab/m1 =0.091 (3)f1 /f12=1.88 (4)r1R/f=0.28
[0038] Example 2 f = 100 F NO = 2.90 r 1 = 79.0842 ( aspherical) d 1 = 3.8192 n d1 = 1.77250 ν d1 = 49.66 r 2 = -5032.4373 d 2 = 2.6325 r 3 = 38.4633 d 3 = 10.7188 n d2 = 1.78590 ν d2 = 44.18 r 4 = 91.2940 d 4 = 0.8209 r 5 = 156.2928 d 5 = 4.3738 n d3 = 1.78470 ν d3 = 26.22 r 6 = 28.3543 d 6 = 9.9477 r 7 = -35.6731 d 7 = 1.9909 n d4 = 1.67270 ν d4 = 32.10 r 8 = 320.2481 d 8 = 4.2169 n d5 = 1.78590 ν d5 = 44.18 r 9 = -47.9688 d 9 = ( variable) r 10 = 196.9227 d 10 = 2.4865 n d6 = 1.78590 ν d6 = 44.18 r 11 = -93.3213 d 11 = (variable) r 12 = 233.6723 d 12 = 2.4656 n d7 = 1.80518 ν d7 = 25.43 r 13 = -100.9232 d 13 = 0.4833 r 14 = -120.3763 d 14 = 1.3581 n d8 = 1.80610 ν d8 = 40.95 r 15 = 36.5358 d 15 = 10.4077 r 16 = 45.5721 d 16 = 4.3497 n d9 = 1.62280 ν d9 = 57.06 r 17 = 202.8410 Aspheric surface first surface P = 1.0000 A 4 = -0.11520 × 10 -6 A 6 = 0.10736 × 10 -9 A 8 = -0.14745 × 10 -14 A 10 = -0.45440 × 10 -15 (1) f 3 / f = −2.13 (2) Δd ab / m 1 = 0.091 (3) f 1 / f 12 = 1.88 (4) r 1R /f=0.28
.

【0039】実施例3 f =100 FNO=2.60 r1 = 604.6515 d1 = 7.7780 nd1 =1.69680 νd1 =55.52 r2 = -305.1304 d2 = 0.1333 r3 = 75.0446 d3 = 3.2532 nd2 =1.77250 νd2 =49.66 r4 = 272.3840 d4 = 0.1333 r5 = 38.6022 d5 =10.5728 nd3 =1.78590 νd3 =44.18 r6 = 55.1875 d6 = 0.9444 r7 = 95.4099 d7 = 3.1842 nd4 =1.78470 νd4 =26.22 r8 = 30.8285 d8 =12.2193 r9 = -31.5379 d9 = 1.2887 nd5 =1.67270 νd5 =32.10 r10= 192.9620 d10= 5.5035 nd6 =1.78590 νd6 =44.18 r11= -43.4020 d11=(可変) r12= -248.0289 d12= 2.6111 nd7 =1.78590 νd7 =44.18 r13= -74.3135 d13= 1.0561 r14= 208.2001 d14= 2.6563 nd8 =1.72916 νd8 =54.68 r15= -498.5283 d15=(可変) r16= 565.4013 d16= 3.0094 nd9 =1.80518 νd9 =25.43 r17= -116.6258 d17= 0.9444 r18= -165.0658 d18= 1.5224 nd10=1.78590 νd10=44.18 r19= 37.2497 d19=11.0527 r20= 46.5181 d20= 4.7057 nd11=1.61272 νd11=58.75 r21= 248.3963 (1)f3 /f=-2.16 (2)Δdab/m1 =0.078 (3)f1 /f12=1.89 (4)r1R/f=0.31
[0039] Example 3 f = 100 F NO = 2.60 r 1 = 604.6515 d 1 = 7.7780 n d1 = 1.69680 ν d1 = 55.52 r 2 = -305.1304 d 2 = 0.1333 r 3 = 75.0446 d 3 = 3.2532 n d2 = 1.77250 ν d2 = 49.66 r 4 = 272.3840 d 4 = 0.1333 r 5 = 38.6022 d 5 = 10.5728 n d3 = 1.78590 ν d3 = 44.18 r 6 = 55.1875 d 6 = 0.9444 r 7 = 95.4099 d 7 = 3.1842 n d4 = 1.78470 ν d4 = 26.22 r 8 = 30.8285 d 8 = 12.2193 r 9 = -31.5379 d 9 = 1.2887 n d5 = 1.67270 ν d5 = 32.10 r 10 = 192.9620 d 10 = 5.5035 n d6 = 1.78590 ν d6 = 44.18 r 11 = -43.4020 d 11 = (variable) r 12 = -248.0289 d 12 = 2.6111 n d7 = 1.78590 ν d7 = 44.18 r 13 = -74.3135 d 13 = 1.0561 r 14 = 208.2001 d 14 = 2.6563 n d8 = 1.72916 ν d8 = 54.68 r 15 = - 498.5283 d 15 = (variable) r 16 = 565.4013 d 16 = 3.0094 n d9 = 1.80518 ν d9 = 25.43 r 17 = -116.6258 d 17 = 0.9444 r 18 = -165.0658 d 18 = 1.5224 n d10 = 1.78590 ν d10 = 44.18 r 19 = 37.2497 d 19 = 11.0527 r 20 = 46.5181 d 2 0 = 4.7057 n d11 = 1.61272 ν d11 = 58.75 r 21 = 248.3963 (1) f 3 /f=−2.16 (2) Δd ab / m 1 = 0.078 (3) f 1 / f 12 = 1.89 (4) r 1R /f=0.31
.

【0040】実施例4 f =100 FNO=2.86 r1 = 77.7363 d1 = 3.4700 nd1 =1.77250 νd1 =49.66 r2 = -643.6652 d2 = 1.0973 r3 = 42.2967 d3 =11.1569 nd2 =1.80610 νd2 =40.95 r4 = 83.9796 d4 = 0.6273 r5 = 187.4029 d5 = 4.0256 nd3 =1.78470 νd3 =26.22 r6 = 31.4646 d6 =11.5310 r7 = -30.8571 d7 = 1.8444 nd4 =1.67270 νd4 =32.10 r8 = 641.8826 d8 = 5.5077 nd5 =1.78590 νd5 =44.18 r9 = -44.1170 d9 =(可変) r10= -258.6575 d10= 2.1168 nd6 =1.77250 νd6 =49.66 r11= -65.2111 d11= 0.1111 r12= 152.2193 d12= 2.1464 nd7 =1.74100 νd7 =52.68 r13= 897.5515 d13=(可変) r14= -238.0454 d14= 2.2223 nd8 =1.80518 νd8 =25.43 r15= -61.8452 d15= 0.9222 r16= -68.8823 d16= 1.3334 nd9 =1.78590 νd9 =44.18 r17= 41.9769 d17= 9.6628 r18= 56.2180 d18= 6.7262 nd10=1.61700 νd10=62.79 r19= -182.9115 (1)f3 /f=-3.22 (2)Δdab/m1 =0.058 (3)f1 /f12=1.85 (4)r1R/f=0.31
[0040] Example 4 f = 100 F NO = 2.86 r 1 = 77.7363 d 1 = 3.4700 n d1 = 1.77250 ν d1 = 49.66 r 2 = -643.6652 d 2 = 1.0973 r 3 = 42.2967 d 3 = 11.1569 n d2 = 1.80610 ν d2 = 40.95 r 4 = 83.9796 d 4 = 0.6273 r 5 = 187.4029 d 5 = 4.0256 n d3 = 1.78470 ν d3 = 26.22 r 6 = 31.4646 d 6 = 11.5310 r 7 = -30.8571 d 7 = 1.8444 n d4 = 1.67270 ν d4 = 32.10 r 8 = 641.8826 d 8 = 5.5077 n d5 = 1.78590 ν d5 = 44.18 r 9 = -44.1170 d 9 = ( variable) r 10 = -258.6575 d 10 = 2.1168 n d6 = 1.77250 ν d6 = 49.66 r 11 = -65.2111 d 11 = 0.1111 r 12 = 152.2193 d 12 = 2.1464 n d7 = 1.74100 ν d7 = 52.68 r 13 = 897.5515 d 13 = ( variable) r 14 = -238.0454 d 14 = 2.2223 n d8 = 1.80518 ν d8 = 25.43 r 15 = -61.8452 d 15 = 0.9222 r 16 = -68.8823 d 16 = 1.3334 n d9 = 1.78590 ν d9 = 44.18 r 17 = 41.9769 d 17 = 9.6628 r 18 = 56.2180 d 18 = 6.7262 n d10 = 1.61700 ν d10 = 62.79 r 19 = -182.9115 (1) f 3 /f=−3.22 (2) Δd ab / m 1 = 0.058 (3) f 1 / f 12 = 1.85 (4) r 1R /f=0.31
.

【0041】実施例5 f =100 FNO=2.86 r1 = 82.0072 d1 = 3.3887 nd1 =1.77250 νd1 =49.66 r2 = -2285.5860 d2 = 1.0973 r3 = 41.3474 d3 =10.9704 nd2 =1.80610 νd2 =40.95 r4 = 102.8031 d4 = 0.6710 r5 = 202.5416 d5 = 4.4065 nd3 =1.78470 νd3 =26.22 r6 = 31.2387 d6 =10.5551 r7 = -34.4776 d7 = 1.9409 nd4 =1.67270 νd4 =32.10 r8 = 345.8288 d8 = 5.8469 nd5 =1.78590 νd5 =44.18 r9 = -47.4529 d9 =(可変) r10= -227.5868 d10= 2.1666 nd6 =1.77250 νd6 =49.66 r11= -83.7747 d11= 0.2337 r12= 172.1880 d12= 2.2682 nd7 =1.74100 νd7 =52.68 r13= -395.4384 d13=(可変) r14= 337.7301 d14= 2.2221 nd8 =1.80518 νd8 =25.43 r15= -122.1248 d15= 0.9222 r16= -171.1019 d16= 1.3265 nd9 =1.78590 νd9 =44.18 r17= 36.1930 d17= 9.9621 r18= 44.8308 d18= 4.0554 nd10=1.62299 νd10=58.14 r19= 195.9432 (1)f3 /f=-2.17 (2)Δdab/m1 =0.078 (3)f1 /f12=1.86 (4)r1R/f=0.31
[0041] Example 5 f = 100 F NO = 2.86 r 1 = 82.0072 d 1 = 3.3887 n d1 = 1.77250 ν d1 = 49.66 r 2 = -2285.5860 d 2 = 1.0973 r 3 = 41.3474 d 3 = 10.9704 n d2 = 1.80610 ν d2 = 40.95 r 4 = 102.8031 d 4 = 0.6710 r 5 = 202.5416 d 5 = 4.4065 n d3 = 1.78470 ν d3 = 26.22 r 6 = 31.2387 d 6 = 10.5551 r 7 = -34.4776 d 7 = 1.9409 n d4 = 1.67270 ν d4 = 32.10 r 8 = 345.8288 d 8 = 5.8469 n d5 = 1.78590 ν d5 = 44.18 r 9 = -47.4529 d 9 = ( variable) r 10 = -227.5868 d 10 = 2.1666 n d6 = 1.77250 ν d6 = 49.66 r 11 = -83.7747 d 11 = 0.2337 r 12 = 172.1880 d 12 = 2.2682 n d7 = 1.74100 ν d7 = 52.68 r 13 = -395.4384 d 13 = ( variable) r 14 = 337.7301 d 14 = 2.2221 n d8 = 1.80518 ν d8 = 25.43 r 15 = -122.1248 d 15 = 0.9222 r 16 = -171.1019 d 16 = 1.3265 n d9 = 1.78590 ν d9 = 44.18 r 17 = 36.1930 d 17 = 9.9621 r 18 = 44.8308 d 18 = 4.0554 n d10 = 1.62299 ν d10 = 58.14 r 19 = 195.9432 (1) f 3 /f=−2.17 (2) Δd ab / m 1 = 0.078 (3) f 1 / f 12 = 1.86 (4) r 1R /f=0.31
.

【0042】実施例6 f =100 FNO=2.86 r1 = 82.8340 d1 = 3.5287 nd1 =1.81600 νd1 =46.62 r2 = -5378.8801 d2 = 1.4629 r3 = 37.9553 d3 =10.2883 nd2 =1.78590 νd2 =44.18 r4 = 89.4926 d4 = 0.8110 r5 = 167.0664 d5 = 4.4569 nd3 =1.80518 νd3 =25.43 r6 = 29.3994 d6 =10.3880 r7 = -35.8500 d7 = 1.9626 nd4 =1.67270 νd4 =32.10 r8 = 349.9547 d8 = 4.0533 nd5 =1.79952 νd5 =42.24 r9 = -48.9335 d9 =(可変) r10= 192.8326(非球面) d10= 3.3292 nd6 =1.78590 νd6 =44.18 r11= -93.8475 d11=(可変) r12= 238.9547 d12= 2.2220 nd7 =1.80518 νd7 =25.43 r13= -99.4567 d13= 0.3333 r14= -123.2562 d14= 1.3415 nd8 =1.80610 νd8 =40.95 r15= 36.0534 d15=11.3330 r16= 44.8238 d16= 3.9849 nd9 =1.61700 νd9 =62.79 r17= 194.8566 非球面係数 第10面 P = 1.0000 A4 =-0.23837×10-6 A6 = 0.85244×10-12 A8 = 0.49412×10-12 A10=-0.43293×10-15 (1)f3 /f=-2.16 (2)Δdab/m1 =0.08 (3)f1 /f12=1.90 (4)r1R/f=0.29
[0042] Example 6 f = 100 F NO = 2.86 r 1 = 82.8340 d 1 = 3.5287 n d1 = 1.81600 ν d1 = 46.62 r 2 = -5378.8801 d 2 = 1.4629 r 3 = 37.9553 d 3 = 10.2883 n d2 = 1.78590 ν d2 = 44.18 r 4 = 89.4926 d 4 = 0.8110 r 5 = 167.0664 d 5 = 4.4569 n d3 = 1.80518 ν d3 = 25.43 r 6 = 29.3994 d 6 = 10.3880 r 7 = -35.8500 d 7 = 1.9626 n d4 = 1.67270 ν d4 = 32.10 r 8 = 349.9547 d 8 = 4.0533 n d5 = 1.79952 ν d5 = 42.24 r 9 = -48.9335 d 9 = (variable) r 10 = 192.8326 (aspherical surface) d 10 = 3.3292 n d6 = 1.78590 ν d6 = 44.18 r 11 = -93.8475 d 11 = (variable) r 12 = 238.9547 d 12 = 2.2220 n d7 = 1.80518 ν d7 = 25.43 r 13 = -99.4567 d 13 = 0.3333 r 14 = -123.2562 d 14 = 1.3415 n d8 = 1.80610 ν d8 = 40.95 r 15 = 36.0534 d 15 = 11.3330 r 16 = 44.8238 d 16 = 3.9849 nd 9 = 1.61700 ν d9 = 62.79 r 17 = 194.8566 Aspheric surface 10th surface P = 1.0000 A 4 = -0.23837 × 10 -6 A 6 = 0.85244 × 10 -12 A 8 = 0.49412 × 10 -12 A 10 = -0.43293 × 10 -15 (1) f 3 / f = -2.16 (2) Δd ab / m 1 = 0.08 (3) f 1 / f 12 = 1.90 (4) r 1R /f=0.29
.

【0043】実施例7 f =100 FNO=2.86 r1 = 97.8196 d1 = 3.6808 nd1 =1.77250 νd1 =49.66 r2 = -348.4924 d2 = 1.6239 r3 = 42.8550 d3 =10.9278 nd2 =1.80610 νd2 =40.95 r4 = 111.8485 d4 = 1.1396 r5 = 400.7552 d5 = 4.3314 nd3 =1.78470 νd3 =26.22 r6 = 33.4828 d6 = 8.9511 r7 = -34.8885 d7 = 1.7222 nd4 =1.67270 νd4 =32.10 r8 = 874.4911 d8 = 5.1348 nd5 =1.78590 νd5 =44.18 r9 = -56.0857 d9 =(可変) r10= -168.7927 d10= 2.0738 nd6 =1.77250 νd6 =49.66 r11= -62.5854 d11= 0.0064 r12= 267.6063 d12= 2.0912 nd7 =1.74100 νd7 =52.68 r13= -159.6212 d13=(可変) r14= 304.5439 d14= 2.0544 nd8 =1.80518 νd8 =25.43 r15= -131.6794 d15= 0.9223 r16= -199.6176 d16= 1.2130 nd9 =1.78590 νd9 =44.18 r17= 36.1074 d17=13.0359 r18= 45.7858 d18= 4.5506 nd10=1.61272 νd10=58.75 r19= 176.9179 (1)f3 /f=-2.13 (2)Δdab/m1 =0.023 (3)f1 /f12=1.91 (4)r1R/f=0.33
[0043] Example 7 f = 100 F NO = 2.86 r 1 = 97.8196 d 1 = 3.6808 n d1 = 1.77250 ν d1 = 49.66 r 2 = -348.4924 d 2 = 1.6239 r 3 = 42.8550 d 3 = 10.9278 n d2 = 1.80610 ν d2 = 40.95 r 4 = 111.8485 d 4 = 1.1396 r 5 = 400.7552 d 5 = 4.3314 n d3 = 1.78470 ν d3 = 26.22 r 6 = 33.4828 d 6 = 8.9511 r 7 = -34.8885 d 7 = 1.7222 n d4 = 1.67270 ν d4 = 32.10 r 8 = 874.4911 d 8 = 5.1348 n d5 = 1.78590 ν d5 = 44.18 r 9 = -56.0857 d 9 = ( variable) r 10 = -168.7927 d 10 = 2.0738 n d6 = 1.77250 ν d6 = 49.66 r 11 = -62.5854 d 11 = 0.0064 r 12 = 267.6063 d 12 = 2.0912 n d7 = 1.74100 ν d7 = 52.68 r 13 = -159.6212 d 13 = ( variable) r 14 = 304.5439 d 14 = 2.0544 n d8 = 1.80518 ν d8 = 25.43 r 15 = -131.6794 d 15 = 0.9223 r 16 = -199.6176 d 16 = 1.2130 n d9 = 1.78590 ν d9 = 44.18 r 17 = 36.1074 d 17 = 13.0359 r 18 = 45.7858 d 18 = 4.5506 n d10 = 1.61272 ν d10 = 58.75 r 19 = 176.9179 (1) f 3 /f=−2.13 (2) Δd ab / m 1 = 0.023 (3) f 1 / f 12 = 1.91 (4) r 1R /f=0.33
.

【0044】実施例8 f =100 FNO=2.86 r1 = 79.3589 d1 = 7.5215 nd1 =1.81600 νd1 =46.62 r2 = -1549.3469 d2 = 1.0381 r3 = 39.9383 d3 =10.3508 nd2 =1.80400 νd2 =46.57 r4 = 77.3323 d4 = 0.9829 r5 = 160.9329 d5 = 4.5910 nd3 =1.80518 νd3 =25.43 r6 = 30.8738 d6 =(可変) r7 = -35.4277 d7 = 1.8629 nd4 =1.66680 νd4 =33.04 r8 = 384.3600 d8 = 5.5057 nd5 =1.78590 νd5 =44.18 r9 = -48.9606 d9 =(可変) r10= -186.1971 d10= 2.1907 nd6 =1.78590 νd6 =44.18 r11= -90.2600 d11= 1.0176 r12= 144.5069 d12= 1.9405 nd7 =1.72916 νd7 =54.68 r13= -262.3764 d13=(可変) r14= 280.4038 d14= 2.2223 nd8 =1.80518 νd8 =25.43 r15= -121.1287 d15= 0.1185 r16= -180.7959 d16= 1.3334 nd9 =1.79500 νd9 =45.29 r17= 36.0967 d17=10.9422 r18= 45.0729 d18= 4.0972 nd10=1.60311 νd10=60.70 r19= 195.6851 (1)f3 /f=-2.16 (2)Δdab/m1 =0.079 (3)f1 /f12=1.83 (4)r1R/f=0.31
[0044] Example 8 f = 100 F NO = 2.86 r 1 = 79.3589 d 1 = 7.5215 n d1 = 1.81600 ν d1 = 46.62 r 2 = -1549.3469 d 2 = 1.0381 r 3 = 39.9383 d 3 = 10.3508 n d2 = 1.80400 ν d2 = 46.57 r 4 = 77.3323 d 4 = 0.9829 r 5 = 160.9329 d 5 = 4.5910 n d3 = 1.80518 ν d3 = 25.43 r 6 = 30.8738 d 6 = ( variable) r 7 = -35.4277 d 7 = 1.8629 n d4 = 1.66680 ν d4 = 33.04 r 8 = 384.3600 d 8 = 5.5057 n d5 = 1.78590 ν d5 = 44.18 r 9 = -48.9606 d 9 = ( variable) r 10 = -186.1971 d 10 = 2.1907 n d6 = 1.78590 ν d6 = 44.18 r 11 = -90.2600 d 11 = 1.0176 r 12 = 144.5069 d 12 = 1.9405 n d7 = 1.72916 ν d7 = 54.68 r 13 = -262.3764 d 13 = ( variable) r 14 = 280.4038 d 14 = 2.2223 n d8 = 1.80518 ν d8 = 25.43 r 15 = -121.1287 d 15 = 0.1185 r 16 = -180.7959 d 16 = 1.3334 n d9 = 1.79500 ν d9 = 45.29 r 17 = 36.0967 d 17 = 10.9422 r 18 = 45.0729 d 18 = 4.0972 n d10 = 1.60311 ν d10 = 60.70 r 19 = 195.6851 (1) f 3 /f=-2.16 (2) Δd ab / m 1 = 0.079 (3) f 1 / f 12 = 1.83 (4) r 1R /f=0.31
.

【0045】[0045]

【効果】以上の説明から明らかなように、本発明による
と、無限遠から等倍付近までの至近距離に至る全ての状
態において、非常に良好に収差補正がされたレンズであ
って、至近距離での性能劣化が少なく、特に等倍付近に
おいて球面収差及び像面湾曲等の諸収差が良好に補正さ
れた近距離撮影可能なレンズが可能となる。
As is clear from the above description, according to the present invention, in all the states from infinity to the close distance from infinity to near the same magnification, the lens is very well corrected for aberrations. This makes it possible to provide a lens that can perform short-distance shooting, in which various aberrations such as spherical aberration and curvature of field are corrected satisfactorily in the vicinity of the same magnification, in particular, near the same magnification.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のマクロレンズの無限遠合焦
時(a)及び等倍撮影時(b)のレンズ断面図である。
FIG. 1 is a lens cross-sectional view of a macro lens according to a first embodiment of the present invention when focused on an object at infinity (a) and when photographing at the same magnification (b).

【図2】実施例2の無限遠合焦時のレンズ断面図であ
る。
FIG. 2 is a lens cross-sectional view of Example 2 upon focusing on infinity.

【図3】実施例3の無限遠合焦時のレンズ断面図であ
る。
FIG. 3 is a lens cross-sectional view of Example 3 upon focusing on infinity.

【図4】実施例4の無限遠合焦時のレンズ断面図であ
る。
FIG. 4 is a lens cross-sectional view of Example 4 upon focusing on infinity.

【図5】実施例1の無限遠状態での球面収差、非点収
差、歪曲収差を表す収差図である。
FIG. 5 is an aberration diagram showing a spherical aberration, an astigmatism, and a distortion in Example 1 at an infinity state.

【図6】実施例1の1/2倍状態での図5と同様な収差
図である。
FIG. 6 is an aberration diagram similar to FIG. 5 in a 1 / 2-fold state of Example 1.

【図7】実施例1の等倍状態での図5と同様な収差図で
ある。
FIG. 7 is an aberration diagram similar to FIG. 5 in an equal magnification state of the first embodiment.

【図8】実施例2の無限遠状態での図5と同様な収差図
である。
FIG. 8 is an aberration diagram similar to FIG. 5 in Example 2 at an infinite distance.

【図9】実施例2の1/2倍状態での図5と同様な収差
図である。
FIG. 9 is an aberration diagram similar to FIG. 5 in a 1 / 2-fold state of Example 2.

【図10】実施例2の等倍状態での図5と同様な収差図
である。
FIG. 10 is an aberration diagram similar to FIG. 5 in an equal magnification state of the second embodiment.

【図11】実施例3の無限遠状態での図5と同様な収差
図である。
FIG. 11 is an aberration diagram similar to FIG. 5 in Example 3 at infinity.

【図12】実施例3の1/2倍状態での図5と同様な収
差図である。
FIG. 12 is an aberration diagram similar to FIG. 5 in a half-fold state of the third embodiment.

【図13】実施例3の等倍状態での図5と同様な収差図
である。
FIG. 13 is an aberration diagram similar to FIG. 5 in an equal magnification state of the third embodiment.

【図14】実施例4の無限遠状態での図5と同様な収差
図である。
FIG. 14 is an aberration diagram similar to FIG. 5 in Example 4 at infinity.

【図15】実施例4の1/10倍状態での図5と同様な
収差図である。
15 is an aberration diagram similar to FIG. 5 in a 1 / 10-fold state of Example 4. FIG.

【図16】実施例4の1/2倍状態での図5と同様な収
差図である。
FIG. 16 is an aberration diagram similar to FIG. 5 in a 倍 magnification state of the fourth embodiment.

【図17】実施例4の等倍状態での図5と同様な収差図
である。
FIG. 17 is an aberration diagram similar to FIG. 5 in an equal magnification state of the fourth embodiment.

【図18】実施例5の無限遠状態での図5と同様な収差
図である。
18 is an aberration diagram similar to FIG. 5 in Example 5 at infinity. FIG.

【図19】実施例5の1/10倍状態での図5と同様な
収差図である。
19 is an aberration diagram similar to FIG. 5 in a 1 / 10-fold state of Example 5. FIG.

【図20】実施例5の1/2倍状態での図5と同様な収
差図である。
FIG. 20 is an aberration diagram similar to that of FIG.

【図21】実施例5の等倍状態での図5と同様な収差図
である。
FIG. 21 is an aberration diagram similar to FIG. 5 in Example 1 in the same magnification state.

【図22】実施例6の無限遠状態での図5と同様な収差
図である。
FIG. 22 is an aberration diagram similar to FIG. 5 in Example 6 at infinity.

【図23】実施例6の1/10倍状態での図5と同様な
収差図である。
FIG. 23 is an aberration diagram similar to FIG. 5 in a 1 / 10-fold state of Example 6.

【図24】実施例6の1/2倍状態での図5と同様な収
差図である。
FIG. 24 is an aberration diagram similar to that of FIG. 5 in a 1 / 2-fold state of Example 6.

【図25】実施例6の等倍状態での図5と同様な収差図
である。
FIG. 25 is an aberration diagram similar to FIG. 5 in a same-magnification state of the sixth embodiment.

【図26】実施例7の無限遠状態での図5と同様な収差
図である。
26 is an aberration diagram similar to FIG. 5 in Example 7 at infinity. FIG.

【図27】実施例7の1/2倍状態での図5と同様な収
差図である。
FIG. 27 is an aberration diagram similar to FIG. 5 in a half-fold state of Example 7.

【図28】実施例7の等倍状態での図5と同様な収差図
である。
FIG. 28 is an aberration diagram similar to FIG. 5 in a same-magnification state of the seventh embodiment.

【図29】実施例8の無限遠状態での図5と同様な収差
図である。
FIG. 29 is an aberration diagram similar to FIG. 5 in Example 8 at infinity.

【図30】実施例8の1/10倍状態での図5と同様な
収差図である。
30 is an aberration diagram similar to FIG. 5 in a 1 / 10-fold state of Example 8. FIG.

【図31】実施例8の1/2倍状態での図5と同様な収
差図である。
FIG. 31 is an aberration diagram similar to FIG. 5 in a 1 / magnification state of the eighth embodiment.

【図32】実施例8の等倍状態での図5と同様な収差図
である。
FIG. 32 is an aberration diagram similar to FIG. 5 in Example 8 in the same magnification state.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G2a…第2レンズ群の前群 G2b…第2レンズ群の後群G1 first lens group G2 second lens group G3 third lens group G2a front group of second lens group G2b rear group of second lens group

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側より順に、正屈折力の第1レンズ
群(G1)、正屈折力の第2レンズ群(G2)、負屈折
力の第3レンズ群(G3)を有し、前記第1レンズ群
(G1)は少なくとも1枚の負レンズを有し、前記第2
レンズ群(G2)は少なくとも1枚の負レンズを有する
前群(G2a)と正屈折力の後群(G2b)からなり、無限
遠から近距離に合焦する際に、前記第1レンズ群(G
1)、第2レンズ群(G2)が前記第3レンズ群(G
3)に対して相対的に物体側へ移動し、かつ、前記第2
レンズ群(G2)の前群(G2a)と後群(G2b)がその
間隔を無限遠合焦時より近距離合焦時の方が広くなるよ
うに物体側へ移動し、さらに下記の条件を満足すること
を特徴とする近距離撮影可能なレンズ: −3.3<f3 /f<−1.5 ・・・(1) 0.01<Δdab/m1 <0.20 ・・・(2) ただし、fは無限遠合焦状態における全系の焦点距離、
3 は前記第3レンズ群(G3)の焦点距離、Δdab
無限遠から至近距離に合焦する際の前記第2レンズ群
(G2)内の前群(G2a)と後群(G2b)の間の最大間
隔変化量、m1 は無限遠から至近距離に合焦する際の前
記第1レンズ群(G1)の移動量である。
A first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The first lens group (G1) has at least one negative lens.
Lens group (G2) consists of the group (G 2b) a front group (G 2a) and positive refractive power having at least one negative lens, infinity upon focusing at a short distance, the first lens group (G
1) The second lens group (G2) is the third lens group (G
3) moving toward the object side relative to
The front group (G 2a ) and the rear group (G 2b ) of the lens group (G2) move toward the object side so that the distance between them becomes wider when focusing on a short distance than when focusing on infinity. A lens capable of short-distance photography characterized by satisfying the condition: −3.3 <f 3 /f<−1.5 (1) 0.01 <Δd ab / m 1 <0.20 .. (2) where f is the focal length of the entire system in the infinity in-focus state,
f 3 is the focal length of the third lens group (G3), Δd ab is infinity close distance the second lens group upon focusing on (G2) in the front group (G 2a) and the rear group (G 2b ), The maximum distance change amount m 1 is the movement amount of the first lens group (G1) when focusing from infinity to a close distance.
【請求項2】 無限遠から近距離に合焦する際に、無限
遠より中間倍率までは前記第2レンズ群(G2)内の前
群(G2a)と後群(G2b)の間隔が変化せずに、中間倍
率を越えて至近距離へ合焦時には前記第2レンズ群(G
2)内の前群(G2a)と後群(G2b)とがその間隔を近
距離付近で広げるように、物体側へ移動することを特徴
とする請求項1記載の近距離撮影可能なレンズ。
2. When focusing from infinity to a short distance, the distance between the front group (G 2a ) and the rear group (G 2b ) in the second lens group (G2) changes from infinity to intermediate magnification. Without focusing, the second lens group (G
2. The near-field photographing method according to claim 1, wherein the front group (G 2a ) and the rear group (G 2b ) in the second group move toward the object side so as to widen the distance between the front group and the rear group. lens.
【請求項3】 前記第1レンズ群(G1)及び前記第2
レンズ群(G2)の無限遠状態における合成焦点距離を
12、前記第1レンズ群(G1)の屈折力をf1 とした
ときに、下記の条件を満足することを特徴とする請求項
1又は2記載の近距離撮影可能なレンズ。 1.5<f1 /f12<2.0 ・・・(3)
3. The first lens group (G1) and the second lens group (G1).
Lens group the combined focal length at infinity state of (G2) f 12, the refractive power of the first lens group (G1) when the f 1, claim 1, characterized by satisfying the following conditions Or the lens capable of short-distance photography according to 2. 1.5 <f 1 / f 12 <2.0 (3)
【請求項4】 無限遠状態における全系の焦点距離を
f、前記第1レンズ群(G1)内の最も像側に位置する
レンズ面の曲率半径r1Rとした時に、下記の条件を満足
することを特徴とする請求項1又は2記載の近距離撮影
可能なレンズ。 0.25<r1R/f<0.35 ・・・(4)
4. The following condition is satisfied, where f is the focal length of the entire system at infinity, and r 1R is the radius of curvature of the lens surface closest to the image side in the first lens group (G1). 3. The lens according to claim 1, wherein the lens is capable of photographing at a short distance. 0.25 <r 1R /f<0.35 (4)
【請求項5】 無限遠から等倍付近の至近距離状態まで
合焦する際に、第1正レンズ群(G1)と第2正レンズ
群(G2)とがその群間隔を変えながら第3レンズ群
(G3)に対して相対的に物体側に移動することを特徴
とする請求項1又は2記載の近距離撮影可能なレンズ。
5. When focusing from infinity to a close distance state near the same magnification, the first positive lens group (G1) and the second positive lens group (G2) change the distance between the third lens group. 3. The lens according to claim 1, wherein the lens moves toward an object relative to (G3).
JP09400693A 1993-04-21 1993-04-21 Lens that can shoot at close range Expired - Fee Related JP3221765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09400693A JP3221765B2 (en) 1993-04-21 1993-04-21 Lens that can shoot at close range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09400693A JP3221765B2 (en) 1993-04-21 1993-04-21 Lens that can shoot at close range

Publications (2)

Publication Number Publication Date
JPH06308386A JPH06308386A (en) 1994-11-04
JP3221765B2 true JP3221765B2 (en) 2001-10-22

Family

ID=14098352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09400693A Expired - Fee Related JP3221765B2 (en) 1993-04-21 1993-04-21 Lens that can shoot at close range

Country Status (1)

Country Link
JP (1) JP3221765B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286303B2 (en) 2005-06-21 2007-10-23 Tamron Co., Ltd. Macro lens
JP4996151B2 (en) * 2006-07-13 2012-08-08 株式会社シグマ Macro lens
EP2362259B1 (en) 2007-12-13 2013-05-01 Nikon Corporation Macro lens of the telephoto type having three lens groups and front focusing, method for its manufacture
KR101595252B1 (en) 2009-01-12 2016-02-18 삼성전자주식회사 Lens system
JP5279532B2 (en) * 2009-01-29 2013-09-04 株式会社栃木ニコン Imaging optical system and inspection apparatus
JP5460255B2 (en) * 2009-11-16 2014-04-02 キヤノン株式会社 Optical system and optical instrument using the same
KR101676787B1 (en) 2010-09-27 2016-11-17 삼성전자주식회사 Macro lens system and pickup device having the same
JP5783375B2 (en) * 2011-12-21 2015-09-24 株式会社タムロン Macro lens
JP6410462B2 (en) * 2014-05-12 2018-10-24 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6972994B2 (en) * 2017-12-06 2021-11-24 株式会社リコー Imaging lens, imaging device
JP7086640B2 (en) * 2018-02-28 2022-06-20 キヤノン株式会社 Optical system and an image pickup device having it

Also Published As

Publication number Publication date
JPH06308386A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
JP3541983B2 (en) Wide-angle lens
JP3147167B2 (en) Zoom lens
JP2924117B2 (en) Zoom lens
JP3369654B2 (en) Wide-angle lens
JPS62235916A (en) Zoom lens
JP3204703B2 (en) Zoom lens
JP3254239B2 (en) Large aperture medium telephoto lens
JP3221765B2 (en) Lens that can shoot at close range
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP4550970B2 (en) Floating photography lens
JP3821330B2 (en) Zoom lens
JP3394624B2 (en) Zoom lens
JP3476909B2 (en) telescope lens
JPH08327896A (en) Lens system
US4364641A (en) Wide angle zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3407421B2 (en) Lens that can be used for close-up photography
JP4817551B2 (en) Zoom lens
JP3540349B2 (en) Wide angle lens with long back focus
US4695134A (en) Compact photographic lens
JP3331228B2 (en) Bright wide-angle lens
JP3005037B2 (en) Compact high zoom lens
JPH05188286A (en) Large-aperture intermediate telephoto lens
JP2899019B2 (en) Zoom lens
JP3447424B2 (en) High zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees