JPS62167838A - Ni-based alloy and its manufacturing method - Google Patents
Ni-based alloy and its manufacturing methodInfo
- Publication number
- JPS62167838A JPS62167838A JP949386A JP949386A JPS62167838A JP S62167838 A JPS62167838 A JP S62167838A JP 949386 A JP949386 A JP 949386A JP 949386 A JP949386 A JP 949386A JP S62167838 A JPS62167838 A JP S62167838A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stress corrosion
- corrosion cracking
- strength
- cracking resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、軽水炉あるいは新型転換炉の炉内構造部材や
燃料要素等に用いられるピン、ボルト、スクリュー等の
締結部材又は板バネ、コイルバネ等のスプリング部材並
びに、タービン用ボルト、熱交換器用支持構造部材、熱
交換器伝熱管材等に好適な耐応力腐食割れ性に優れた高
強度のNi基合金及びその製造法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to fastening members such as pins, bolts, screws, etc., plate springs, coil springs, etc. used for internal structural members and fuel elements of light water reactors or new type converter reactors. The present invention relates to a high-strength Ni-based alloy with excellent stress corrosion cracking resistance suitable for use in spring members, bolts for turbines, support structure members for heat exchangers, heat exchanger tube materials, etc., and a method for producing the same.
従来、軽水炉等の前記用途材として、インコネルx−7
50(商品名)と称するNi≧72%、 Cr14〜1
7チ、Fe6〜9%を有し、Al、Ti、Nbを1〜2
%含む析出強化型Ni基合金が多用されている。Conventionally, Inconel x-7 has been used as a material for light water reactors, etc.
50 (product name) Ni≧72%, Cr14~1
7chi, Fe 6-9%, Al, Ti, Nb 1-2
% precipitation-strengthened Ni-based alloys are often used.
ところがインコネルX−750は、熱処理条件によって
は前記用途の使用環境における応力腐食割れ感受性が高
く、上記の締結部材等において応力腐食割れを生じるこ
とがある。しかも、一般に0.2%耐力や引張強さの大
きな高強度材になるほど、耐応力腐食割れ性が劣ると言
われており、前記のビン、ボルト又はスプリング等のよ
うに高強度でしかも高温高圧水中での耐応力腐食割れ性
に優れて(・る事が要求される部材として好適なものは
なかった。However, depending on the heat treatment conditions, Inconel X-750 is highly susceptible to stress corrosion cracking in the usage environment of the above-mentioned applications, and stress corrosion cracking may occur in the above-mentioned fastening members and the like. Moreover, it is generally said that the higher the 0.2% proof stress or tensile strength of a high-strength material, the poorer the stress corrosion cracking resistance. There was no material suitable for use as a member that requires excellent stress corrosion cracking resistance in water.
本発明は、上記従来合金の不具合に鑑みてなされたもの
で、高強度でしかも高温高圧水中での耐応力腐食割れ性
に優れたNi基合金の提供を目的とする。The present invention was made in view of the above-mentioned problems with the conventional alloys, and an object of the present invention is to provide a Ni-based alloy that has high strength and excellent stress corrosion cracking resistance in high-temperature, high-pressure water.
本発明者らは、鋭意研究の結果、従来のインコネルχ−
750の締結部材では、その化学成分、熱処理条件若し
くは加工条件等に起因して金属組織が変化し、材料の応
力腐食割れ感受性が高くなるとの知見を得た上、このよ
うな問題点のない化学組成、金属組織のNi基合金とそ
の製造法とを開発するに至った。As a result of intensive research, the present inventors discovered that the conventional Inconel χ-
750 fasteners, the metal structure changes due to the chemical composition, heat treatment conditions, processing conditions, etc., making the material more susceptible to stress corrosion cracking. We have developed a Ni-based alloy with a composition and metal structure, and a method for producing the same.
そのため、本発明は、まず
(1)重量比で00.08%以下、SLo、15%以下
、Mn 0.1〜1%、Ni45〜75 %、Cr20
〜30%、1010%以下、Ti3.5チ以下、Al2
俤以下、Nb7チ以下並びに希土類元素、Mg及びCa
の各々0.1係以下を少なくとも1種以上と残部Feを
含み、γ基地にγ1相及びγ11相の少なくともいずれ
か1種を有し、結晶粒界にM23C6が半連続状に優先
的に析出している事を特徴とする高温高圧水中での耐応
力腐食割れ性に優れた高強度Ni基合金を第1発明とし
た。Therefore, the present invention first focuses on (1) weight ratio of 0.08% or less, SLo, 15% or less, Mn 0.1-1%, Ni 45-75%, Cr20
~30%, 1010% or less, Ti3.5 or less, Al2
Nb or less, Nb7 or less, rare earth elements, Mg and Ca
Contains at least one type of each having a coefficient of 0.1 or less and the remainder Fe, has at least one type of γ1 phase and γ11 phase in the γ base, and M23C6 precipitates preferentially in a semi-continuous manner at the grain boundaries. The first invention is a high-strength Ni-based alloy that has excellent stress corrosion cracking resistance in high-temperature, high-pressure water.
そしてこのNi基合金を得るだめの製造法として、次の
(2)〜(3)の発明を第2発明乃至第4発明とした。As a manufacturing method for obtaining this Ni-based alloy, the following inventions (2) to (3) were designated as the second to fourth inventions.
(2)重量比でc 0.08%以下、st 0.15
%以下、Mn 0.1〜1%、Ni45〜75%、Or
20〜30 %、IA010%以下、Ti3,5%以
下、Al2%以下、1ib7%以下並びに希土類元素、
Mg及びCaの各々0.1チ以下を少な(とも1種以上
と残部Feを含む合金に、980〜1200℃に加熱保
持して空冷以上の冷却速度で冷却し、更に550〜85
0℃に加熱保持する時効処理を少なくとも1回以上施こ
すことを特徴とする高温高圧水中での耐応力腐食割れ性
に優れた高強度Ni基合金の製造法。(2) Weight ratio c 0.08% or less, st 0.15
% or less, Mn 0.1-1%, Ni 45-75%, Or
20-30%, IA010% or less, Ti3.5% or less, Al2% or less, 1ib7% or less, and rare earth elements,
An alloy containing a small amount of 0.1 or less of each of Mg and Ca (one or more of them and the balance Fe) is heated and held at 980 to 1200 °C, cooled at a cooling rate faster than air cooling, and further heated to 550 to 85 °C.
A method for producing a high-strength Ni-based alloy having excellent stress corrosion cracking resistance in high-temperature, high-pressure water, the method comprising performing aging treatment at least once by heating and holding the alloy at 0°C.
(3)重量比でC0.08%以下、Si0.15%以下
、Mn 0.1〜1係、Ni45〜75%、C「20〜
30%、1010%以下、Ti3.5%以下、Al2チ
以下、Nb7チ以下並びに希土類元素、Mg及びCaの
各々0.1%以下を少なくとも1種以上と残部Feを含
む合金に、980〜1200℃に加熱保持して空冷以上
の冷却速度で冷却した後、断面縮小率で10係以上の冷
間加工を施し、更に550〜850℃に加熱保持する時
効処理を少なくとも1回以上施すことを特徴とする高温
高圧水中での耐応力腐食割れ性に優れた高強度Ni基合
金の製造法。(3) Weight ratio: C: 0.08% or less, Si: 0.15% or less, Mn: 0.1-1, Ni: 45-75%, C: 20-
30%, 1010% or less, Ti 3.5% or less, Al2 or less, Nb 7 or less, and at least one of rare earth elements, Mg and Ca, each 0.1% or less, and the balance Fe, 980 to 1200 It is characterized by heating and holding at a temperature of 550 to 850 degrees Celsius, cooling it at a cooling rate higher than that of air cooling, cold working with a cross-section reduction ratio of 10 or more, and then aging treatment at a temperature of 550 to 850 degrees Celsius at least once. A method for producing a high-strength Ni-based alloy with excellent stress corrosion cracking resistance in high-temperature, high-pressure water.
(4)重量比でc 0.08’A以下、Sl、15%以
下、Mn 0.1〜1%、Ni45〜75%、Cr20
〜30%、Mo10%以下、Ti3.5チ以下、Al2
チ以下、Nb7%以下並びに希土類元素、Mg及びCa
の各々061%以下を少なくとも1種以上と残部Feを
含む合金に、850〜1250℃で圧下率204以上の
熱間加工を施した後、980〜1200℃に加熱保持し
て空冷以上の冷却速度で冷却し、更に550〜850℃
に加熱保持する時効処理を少なくとも1回以上施すこと
を特徴とする高温高圧水中での耐応力腐食割れ性に優れ
た高強度Ni基合金の製造法。(4) Weight ratio: c 0.08'A or less, Sl, 15% or less, Mn 0.1-1%, Ni 45-75%, Cr20
~30%, Mo10% or less, Ti3.5 or less, Al2
7% or less, Nb 7% or less, rare earth elements, Mg and Ca
After hot working at 850 to 1250°C with a reduction rate of 204 or more to an alloy containing at least one type of each of 061% or less and the balance Fe, the alloy is heated and held at 980 to 1200°C at a cooling rate faster than air cooling. Cool at 550-850℃
A method for producing a high-strength Ni-based alloy having excellent resistance to stress corrosion cracking in high-temperature, high-pressure water, the method comprising performing aging treatment at least once by heating and holding the alloy.
C:CはOrと結合してM23C6なるOr炭化物を結
晶粒界に形成し、結晶粒の粒界結合力を増す働きをなす
。ところが、Cが0.08%を超えるとNbやTiと結
合してNbCやTIGを形成し、NbやTiがNiと結
合して生成するγ′やTi1相を減少させるため強度が
低下する。従って、Cを0.08チ以下とした。C: C combines with Or to form Or carbide M23C6 at the grain boundaries, and serves to increase the grain boundary bonding strength of the crystal grains. However, when C exceeds 0.08%, it combines with Nb and Ti to form NbC and TIG, and reduces the γ' and Ti1 phases produced when Nb and Ti combine with Ni, resulting in a decrease in strength. Therefore, C was set to 0.08 inch or less.
Si : Slは合金中の不純物としての酸素を取除く
作用を持つが、反面0.15%を超えると粒界部におけ
るM、、C,の半連続状析出を阻害し、耐応力腐食割れ
性を低下させる。従って、slをo、15チ以下とした
。Si: Sl has the effect of removing oxygen as an impurity in the alloy, but on the other hand, if it exceeds 0.15%, it inhibits the semi-continuous precipitation of M, C, in the grain boundaries, and reduces stress corrosion cracking resistance. decrease. Therefore, sl was set to o and 15 inches or less.
Mn : Mnは粒界部におけるM23C6の半連続状
析出を促進する元素であり、0.1%以上含有させる必
要があるが、1チを超えて含有することにより延性を損
なう脆代相の析出を助長する。従って、Mnを0.1〜
1%とした。Mn: Mn is an element that promotes the semi-continuous precipitation of M23C6 at grain boundaries, and must be contained in an amount of 0.1% or more, but if it is contained in excess of 1%, the precipitation of a brittle phase impairs ductility. encourage Therefore, Mn is 0.1~
It was set at 1%.
Fe : Feは鋳造時、若しくは塑性加工時の組織の
安定性を高める元素であるが、15%を超えて含有する
と、延性を害する。従ってFeを15%以下とした。Fe: Fe is an element that improves the stability of the structure during casting or plastic working, but if it is contained in an amount exceeding 15%, it impairs ductility. Therefore, the Fe content was set to 15% or less.
Or:Crは耐応力腐食割れ性を保持する上で最も重要
な元素であり、20%以上含有する必要があるが30チ
を超えて含有すると凝固偏析が著しく、鍛造しにくくな
るばかりか、均質なイアーfットが出来にくい。従って
、Orヲ20〜3゜チとした。Or: Cr is the most important element in maintaining stress corrosion cracking resistance and must be contained at 20% or more, but if it is contained in excess of 30%, solidification segregation will be significant and not only will it be difficult to forge, but it will also become homogeneous. It is difficult to have a comfortable ear foot. Therefore, the angle was set at 20 to 3 degrees.
Mo:Moは、耐孔食性、耐すきま腐食性を向上させる
が、10チを超えて含有するとM23C6の粒界析出を
抑制し、逆に耐応力腐食割れ性が低下する。従って、M
oを10チ以下とした。Mo: Mo improves pitting corrosion resistance and crevice corrosion resistance, but if it is contained in an amount exceeding 10 inches, grain boundary precipitation of M23C6 is suppressed, and stress corrosion cracking resistance decreases. Therefore, M
o was set to 10 inches or less.
Ti:Tiは旧と結合してNi3Tiなるγ′を析出し
強度を高(する。3.5チを超えると延性が低下し、η
相が析出して耐応力腐食割れ性が低下する。Ti: Ti combines with the former to precipitate γ', which is Ni3Ti, increasing the strength.
Phases precipitate and stress corrosion cracking resistance decreases.
従って、Tiを3,5%以下とした。Therefore, the Ti content was set to 3.5% or less.
Al:AlはNiと結合してNi3Alなるγ′を析出
し強度を高(するが、2%を超えると耐応力腐食割れ性
が低下する。従って、Alを2チ以下とした。Al: Al combines with Ni to precipitate γ', Ni3Al, increasing the strength (however, if it exceeds 2%, the stress corrosion cracking resistance decreases. Therefore, the Al content was set to 2 or less.
sb:NbはNiと結合してNi3Nbなるγ′l相あ
るいはδ相を析出し、強度を高くするが、7係を超える
と耐応力腐食割れ性が低下する。従って、Nbを7%以
下とした。sb: Nb combines with Ni to precipitate the γ′l phase or δ phase of Ni3Nb, increasing the strength, but when the coefficient exceeds 7, the stress corrosion cracking resistance decreases. Therefore, the Nb content was set to 7% or less.
希土類元素、 Mg、Ca : Hf 、 Y等希土類
元素、Mg及びCaは、合金中の不純物としての0を除
去しうるのみでなく、粒界に析出して粒界結合力を上げ
るが、それぞれ0.1チな超えると耐孔食性が劣化する
。従って、希土類元素、Mg及びCaの各々0.1−以
下を少なくとも1種以上とした。Rare earth elements, Mg, Ca: Rare earth elements such as Hf and Y, Mg and Ca, not only can remove 0 as impurities in the alloy, but also precipitate at grain boundaries and increase grain boundary bonding strength, but each of them If it exceeds .1 inch, the pitting corrosion resistance will deteriorate. Therefore, at least one rare earth element, Mg, and Ca each contained 0.1- or less.
また、熱処理条件としては、高強度を保持し、かつ高い
耐応力腐食割れ性を保持させるために980〜1200
℃に加熱保持して空冷以上の冷却速度で冷却する溶体化
処理後、更に550〜850℃に加熱保持する時効処理
を少なくとも1回以上施こす必要がある。In addition, the heat treatment conditions are 980 to 1200 in order to maintain high strength and high stress corrosion cracking resistance.
After solution treatment in which the material is heated and held at 550 to 850°C and cooled at a cooling rate higher than air cooling, it is necessary to perform an aging treatment at least once in which the material is heated and held at 550 to 850°C.
尚、熱処理時間としては、溶体化処理が5分〜5時間、
時効処理が1〜150時間程度施こすのが好ましい。Note that the heat treatment time is 5 minutes to 5 hours for solution treatment;
It is preferable that the aging treatment be performed for about 1 to 150 hours.
また、一般に、鋳造材の場合、上記の溶体化処理と、時
効処理だけで良いが、更K、冷間加工及び熱間加工を行
う場合は次の条件下で行う。Generally, in the case of cast materials, only the above-mentioned solution treatment and aging treatment are sufficient, but when further treatment, cold working, and hot working are performed, they are carried out under the following conditions.
すなわち、冷間加工の場合、すぐれた耐応力腐食割れ性
を得るために、溶体化処理後に断面縮小率10チ以上の
高い加工率にて均質に加工を行う。That is, in the case of cold working, in order to obtain excellent stress corrosion cracking resistance, the workpiece is uniformly worked at a high working rate of 10 inches or more after the solution treatment.
尚、上記の冷間加工条件によれば、すぐれた耐応力腐食
割れ性に加えて、02%耐力が90Kg/1m1以上、
引張強さが100 Kq/−以上の高強度材となる。According to the above cold working conditions, in addition to excellent stress corrosion cracking resistance, 02% yield strength is 90 kg/1 m1 or more,
It becomes a high-strength material with a tensile strength of 100 Kq/- or more.
また、熱間加工の場合、熱間加工による割れを防止し、
また必要以上の粒成長を防止するために加工温度を85
0〜1250℃で行い、すぐれた耐応力腐食割れ性を保
持するために20チ以上の圧下率で均質に行う。In addition, in the case of hot processing, it prevents cracking due to hot processing,
In addition, the processing temperature was set at 85% to prevent excessive grain growth.
It is carried out at a temperature of 0 to 1250°C, and uniformly carried out at a rolling reduction of 20 inches or more in order to maintain excellent stress corrosion cracking resistance.
尚、上記の熱間加工条件によれば、すぐれた耐応力腐食
割れ性に加えて、室温の0.2チ耐力が70曝−以上、
引張強さが90Kl−以上の高強度材となる。In addition, according to the above hot working conditions, in addition to excellent stress corrosion cracking resistance, the 0.2 inch proof stress at room temperature is 70 exposures or more,
It becomes a high-strength material with a tensile strength of 90 Kl- or more.
1)応力腐食割れ試験
軽水炉環境下で締結部材や、ベロー等に本発明のNi基
合金が用いられた場合の耐応力腐食割れ性を評価するた
め、加圧水型軽水炉−次系水を模擬した表1に示す環境
下で、第1図に示すUベンド試験片を浸漬し、高応力を
負荷した各供試材の応力腐食割れ試験を4000h迄実
施し、割れの有無を調査した。1) Stress corrosion cracking test In order to evaluate stress corrosion cracking resistance when the Ni-based alloy of the present invention is used for fastening members, bellows, etc. in a light water reactor environment, a table simulating secondary water in a pressurized water reactor Under the environment shown in 1, the U-bend test piece shown in FIG. 1 was immersed, and a stress corrosion cracking test was carried out on each specimen under high stress for up to 4000 hours to investigate the presence or absence of cracks.
2)供試材
本試験に用いた供試材の化学成分を表2に、供試材の熱
処理、加工条件の例を表3に示す。2) Test material Table 2 shows the chemical composition of the test material used in this test, and Table 3 shows examples of heat treatment and processing conditions for the test material.
尚、不純物としてp、sがそれぞれ最大0101チ程度
、Cuが最大0.07%程度、またNが最大0.01チ
程度含有していた。The impurities contained p and s at a maximum of about 0.101%, Cu at a maximum of about 0.07%, and N at a maximum of about 0.01%.
3)試験結果
結果は表3、並びに第2図乃至第10図のとおりである
が、表4に示すとおり、図中の記号のうち白ぬきは割れ
なしのもので、黒ぬりは割れ有りのものである。3) Test results are as shown in Table 3 and Figures 2 to 10. As shown in Table 4, the white symbols in the figures indicate those without cracks, and the black symbols indicate those with cracks. It is something.
尚、これらの供試材のうち割れをおこさなかったものの
金属組織を観察したところ、r基地にrI相又はi11
相が分散し、結晶粒界にはMtscsが半連続状に優先
的に析出していた。代表的な例を表5に示す。In addition, when we observed the metallographic structure of these test materials that did not cause cracking, we found that rI phase or i11 was present in the r base.
The phase was dispersed, and Mtscs was preferentially precipitated in a semi-continuous manner at the grain boundaries. Typical examples are shown in Table 5.
各成分元素、熱処理条件と割れの有無は、第2図(al
(bl乃至第4図までのとおりであり、いずれも本発明
の成分範囲、熱処理条件の範囲であれば他にくらべて耐
応力腐食割れにすぐれることがわかる。Each component element, heat treatment conditions, and presence or absence of cracks are shown in Figure 2 (al
(This is as shown in FIGS. 1 to 4), and it can be seen that the stress corrosion cracking resistance is better than that of the others if the composition range and heat treatment conditions are within the range of the present invention.
また、第5図(al l (blには冷間加工率、溶体
化温度と割れの有無の関係を示すが、いずれも本発明の
条件下であれば他にくらべて耐応力腐食割れ性にすぐれ
ることがわかる。In addition, Figure 5 (al l (bl) shows the relationship between cold working rate, solution temperature, and the presence or absence of cracking, and all of them show that under the conditions of the present invention, stress corrosion cracking resistance is better than others. I know it's excellent.
第6図乃至第7図にTi.Al量とNb量とが耐応力腐
食割れ性に及ぼす影響を示すが、いずれも本発明の範囲
内であれば他と比較して耐応力腐食割れ性にすぐれるこ
とがわかる。In FIGS. 6 and 7, Ti. The effect of the amount of Al and the amount of Nb on the stress corrosion cracking resistance is shown, and it can be seen that if both are within the range of the present invention, the stress corrosion cracking resistance is excellent compared to the others.
第8図に機械的性質と、冷間加工率との関係を示すが、
第5図(al l (blに示すとおり、本発明の範囲
では、耐応力腐食割れ性に優れるにもかかわらず、02
チ耐力及び引張強さもすぐれている。Figure 8 shows the relationship between mechanical properties and cold working rate.
As shown in FIG. 5 (al l (bl), within the scope of the present invention, despite having excellent stress corrosion cracking resistance,
It also has excellent yield strength and tensile strength.
第9図及び第10図に、圧下率30%の熱間加工を施こ
した合金の化学成分と機械的性質との関係を示すが、本
発明の範囲では耐応力腐食割れ性にすぐれるにもかかわ
らず、機械的性質がすぐれている。Figures 9 and 10 show the relationship between the chemical composition and mechanical properties of an alloy that has been hot worked at a rolling reduction of 30%. However, it has excellent mechanical properties.
尚、各図において、ta+ 、 fb1図のあるものは
、Moの有無によりデータを区分けしたもので、(at
がMoの無いもの、(blがMoの有るものでちる。In addition, in each figure, some ta+ and fb1 figures are data divided according to the presence or absence of Mo, and (at
is the one without Mo, (bl is the one with Mo.
以上のとおり、本発明によれば、機械的強度と耐応力腐
食割れ性をともに満足するNi基合金を得ることができ
るので、軽水炉等の炉内構造部材をはじめ、締結部材、
スプリング部材等として、きわめて安全に長寿命にて用
いることができる。As described above, according to the present invention, it is possible to obtain a Ni-based alloy that satisfies both mechanical strength and stress corrosion cracking resistance.
It can be used extremely safely and with a long life as a spring member, etc.
第1図fal l (bl I [C1はいずれも本発
明の実施例について試験を行った試験片の説明図、第2
図ta+ 、 fbl乃至第10図は、本発明の実施例
についての実験結果をあられす図である。FIG.
Figures TA+, FBL to FIG. 10 are diagrams showing experimental results regarding the embodiments of the present invention.
Claims (4)
、Mn0.1〜1%、Fe15%以下、Cr20〜30
%、Mo10%以下、Ti3.5%以下、Al2%以下
、Nb7%以下並びに希土類元素、Mg及びCaの各々
0.1%以下を少なくとも1種以上と残部Niを含み、
γ基地にγ′相及びγ″相の少なくともいずれか1種を
有し、結晶粒界にM_2_3C_6が半連続状に優先的
に析出している事を特徴とする高温高圧水中での耐応力
腐食割れ性に優れた高強度Ni基合金。(1) Weight ratio: C0.08% or less, Si0.15% or less, Mn0.1-1%, Fe15% or less, Cr20-30
%, Mo 10% or less, Ti 3.5% or less, Al 2% or less, Nb 7% or less, and at least one of rare earth elements, Mg and Ca 0.1% or less, and the balance Ni,
Stress corrosion resistance in high-temperature, high-pressure water characterized by having at least one of the γ' phase and γ'' phase in the γ base, and M_2_3C_6 preferentially precipitating semi-continuously at the grain boundaries. High strength Ni-based alloy with excellent crackability.
、Mn0.1〜1%、Fe15%以下、Cr20〜30
%、Mo10%以下、Ti3.5%以下、Al2%以下
、Nb7%以下並びに希土類元素、Mg及びCaの各々
0.1%以下を少なくとも1種以上と残部Niを含む合
金に、980〜1200℃に加熱保持して冷却し、更に
550〜850℃に加熱保持する時効処理を少なくとも
1回以上施こすことを特徴とする高温高圧水中での耐応
力腐食割れ性に優れた高強度Ni基合金の製造法。(2) Weight ratio of C0.08% or less, Si0.15% or less, Mn0.1-1%, Fe15% or less, Cr20-30
%, Mo 10% or less, Ti 3.5% or less, Al 2% or less, Nb 7% or less, and at least one or more of rare earth elements, Mg and Ca 0.1% or less, and the balance Ni, at 980 to 1200°C. A high-strength Ni-based alloy with excellent stress corrosion cracking resistance in high-temperature, high-pressure water, characterized by being heated and held at 550 to 850°C, cooled, and then subjected to at least one aging treatment of heating and holding at 550 to 850°C. Manufacturing method.
、Mn0.1〜1%、Fe15%以下、Cr20〜30
%、Mo10%以下、Ti3.5%以下、Al2%以下
、Nb7%以下並びに希土類元素、Mg及びCaの各々
0.1%以下を少なくとも1種以上と残部Niを含む合
金に、980〜1200℃に加熱保持して冷却した後、
断面縮小率で10%以上の冷間加工を施し、更に550
〜850℃に加熱保持する時効処理を少なくとも1回以
上施すことを特徴とする高温高圧水中での耐応力腐食割
れ性に優れた高強度Ni基合金の製造法。(3) Weight ratio: C0.08% or less, Si0.15% or less, Mn0.1-1%, Fe15% or less, Cr20-30
%, Mo 10% or less, Ti 3.5% or less, Al 2% or less, Nb 7% or less, and at least one or more of rare earth elements, Mg and Ca 0.1% or less, and the balance Ni, at 980 to 1200°C. After heating and cooling,
Cold working with a cross-sectional reduction ratio of 10% or more, and further 550
A method for producing a high-strength Ni-based alloy having excellent stress corrosion cracking resistance in high-temperature, high-pressure water, the method comprising performing aging treatment at least once by heating and holding the alloy at ~850°C.
、Mn0.1〜1%、Fe15%以下、Cr20〜30
%、Mo10%以下、Ti3.5%以下、Al2%以下
、Nb7%以下並びに希土類元素、Mg及びCaの各々
0.1%以下を少なくとも1種以上と残部Niを含む合
金に、850〜1250℃で圧下率20%以上の熱間加
工を施した後、980〜1200℃に加熱保持して冷却
し、更に550〜850℃に加熱保持する時効処理を少
なくとも1回以上施すことを特徴とする高温高圧水中で
の耐応力腐食割れ性に優れた高強度Ni基合金の製造法
。(4) Weight ratio: C0.08% or less, Si0.15% or less, Mn0.1-1%, Fe15% or less, Cr20-30
%, Mo 10% or less, Ti 3.5% or less, Al 2% or less, Nb 7% or less, and at least one or more of rare earth elements, Mg and Ca 0.1% or less, and the balance Ni, at 850 to 1250°C. After hot working at a reduction rate of 20% or more, the process is heated and held at 980 to 1200°C, cooled, and further subjected to aging treatment at least once at 550 to 850°C. A method for producing a high-strength Ni-based alloy with excellent stress corrosion cracking resistance in high-pressure water.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP949386A JPS62167838A (en) | 1986-01-20 | 1986-01-20 | Ni-based alloy and its manufacturing method |
EP87730004A EP0235075B1 (en) | 1986-01-20 | 1987-01-19 | Ni-based alloy and method for preparing same |
DE8787730004T DE3778731D1 (en) | 1986-01-20 | 1987-01-19 | NICKEL-BASED ALLOY AND METHOD FOR THEIR PRODUCTION. |
US07/004,410 US4798632A (en) | 1986-01-20 | 1987-01-20 | Ni-based alloy and method for preparing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP949386A JPS62167838A (en) | 1986-01-20 | 1986-01-20 | Ni-based alloy and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62167838A true JPS62167838A (en) | 1987-07-24 |
Family
ID=11721758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP949386A Pending JPS62167838A (en) | 1986-01-20 | 1986-01-20 | Ni-based alloy and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62167838A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198444A (en) * | 1990-11-29 | 1992-07-17 | Agency Of Ind Science & Technol | Ni-base alloy excellent in stress corrosion cracking resistance |
JPH10140272A (en) * | 1996-10-31 | 1998-05-26 | Inco Alloys Internatl Inc | Flexible nickel-base alloy, and parts produced from the same |
EP1433864A3 (en) * | 2002-12-25 | 2004-11-03 | Sumitomo Metal Industries, Ltd. | Nickel alloy and manufacturing method for the same |
JP2005211303A (en) * | 2004-01-29 | 2005-08-11 | Olympus Corp | Endoscope |
CN111868287A (en) * | 2018-03-06 | 2020-10-30 | 日立金属株式会社 | Method for producing Ni-based superalloy and Ni-based superalloy |
-
1986
- 1986-01-20 JP JP949386A patent/JPS62167838A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198444A (en) * | 1990-11-29 | 1992-07-17 | Agency Of Ind Science & Technol | Ni-base alloy excellent in stress corrosion cracking resistance |
JPH10140272A (en) * | 1996-10-31 | 1998-05-26 | Inco Alloys Internatl Inc | Flexible nickel-base alloy, and parts produced from the same |
EP1433864A3 (en) * | 2002-12-25 | 2004-11-03 | Sumitomo Metal Industries, Ltd. | Nickel alloy and manufacturing method for the same |
US7799152B2 (en) | 2002-12-25 | 2010-09-21 | Sumitomo Metal Industries, Ltd. | Method for manufacturing nickel alloy |
JP2005211303A (en) * | 2004-01-29 | 2005-08-11 | Olympus Corp | Endoscope |
CN111868287A (en) * | 2018-03-06 | 2020-10-30 | 日立金属株式会社 | Method for producing Ni-based superalloy and Ni-based superalloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2377336C2 (en) | Alloy for gasturbine engine | |
EP0361524B1 (en) | Ni-base superalloy and method for producing the same | |
US6908518B2 (en) | Nickel base superalloys and turbine components fabricated therefrom | |
US4798632A (en) | Ni-based alloy and method for preparing same | |
JP4037929B2 (en) | Low thermal expansion Ni-base superalloy and process for producing the same | |
US10260137B2 (en) | Method for producing Ni-based superalloy material | |
US8066938B2 (en) | Ni-Cr-Co alloy for advanced gas turbine engines | |
CA2980063C (en) | Method for producing ni-based superalloy material | |
AU626581B2 (en) | Nickel-base single crystal superalloys | |
BR112019021654A2 (en) | SUPERCALINATE BASED ON CLEAN-NICKEL HARDENING BY PRECIPITATION AND ITEM MANUFACTURED FROM THE SUPERLIGA ON COBALT-NICKEL BASED BY PRECIPITATION | |
JPS62167838A (en) | Ni-based alloy and its manufacturing method | |
JPS58120758A (en) | High strength nickel base superalloy product | |
JPS6058773B2 (en) | Ni-Cr-W alloy with improved high temperature fatigue strength and its manufacturing method | |
JP2554049B2 (en) | Ni-based alloy and method for producing the same | |
JP4315582B2 (en) | Co-Ni base heat-resistant alloy and method for producing the same | |
JP2004107777A (en) | Austenitic heat resistant alloy, production method therefor and steam turbine parts | |
JPS62167836A (en) | Ni base alloy and its manufacture | |
JP2554048B2 (en) | Ni-based alloy and method for producing the same | |
JPH03134144A (en) | Nickel-base alloy member and its manufacture | |
JP6745050B2 (en) | Ni-based alloy and heat-resistant plate material using the same | |
JP3794999B2 (en) | Nickel-base alloy, nickel-base alloy heat treatment method, and nuclear component using nickel-base alloy | |
JPS6277448A (en) | Manufacture of high strength nickel alloy member having superior scc resistance | |
JPS6353234A (en) | Structural member having heat resistance and high strength | |
JPS61143567A (en) | Manufacture of high temperature spring | |
JPS62170444A (en) | Precipitation strengthening cast ni alloy having superior resistance to stress corrosion cracking |