[go: up one dir, main page]

JPS62167451A - X-ray spectrometer - Google Patents

X-ray spectrometer

Info

Publication number
JPS62167451A
JPS62167451A JP60287083A JP28708385A JPS62167451A JP S62167451 A JPS62167451 A JP S62167451A JP 60287083 A JP60287083 A JP 60287083A JP 28708385 A JP28708385 A JP 28708385A JP S62167451 A JPS62167451 A JP S62167451A
Authority
JP
Japan
Prior art keywords
wavelength
ray
spectrometer
peak
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60287083A
Other languages
Japanese (ja)
Inventor
Akio Hori
彰男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60287083A priority Critical patent/JPS62167451A/en
Publication of JPS62167451A publication Critical patent/JPS62167451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明は、X線分光器に関する。[Detailed description of the invention] B Industrial application field The present invention relates to an X-ray spectrometer.

口、従来の技術 X線分光法には、分光結晶を用いる波長分散法と、半導
体検出器などに代表されるエネルギー分散法とがある。
Conventional techniques X-ray spectroscopy includes wavelength dispersive methods using spectroscopic crystals and energy dispersive methods typified by semiconductor detectors.

波長分散法では、11λ=2ds inθ<n:M数、
λ1分光波長、d・分光結晶の格子間隔、θ・入射角)
に示されるフラッグの条件を満たすθを設定することで
、未知試料から発生する特定波長の特性X線を検出して
いる。ところが、この条件式から解るように、この条件
は回折次数n=1.2,3.  ・・・を含んでおり、
nが1以外の高次X線も同時に検出されるために、検出
されたX線が上記高次線の影響を受けているかどうかを
測定しなければならない。第3図に波長分散形で測定し
た複数成分(A、B成分)の試料から放射されるX線の
波長と検出強度の関係曲線を示す。同図に示すように、
A成分の特性X線の1次線の現れる位置とB成分の特性
X線の2次線の現れる位置が近いときは、A成分の検出
強度■1に、A成分より高エネルギーのB DE分の2
次線のピークの裾の部分がX線検出強度に影響を与え、
A成分だけの検出強度11が不明になっており、A成分
だけの検出強度■1を入手するためには、何等かの方法
で上記2次線の影響分■2を除外する必要がある。池方
エネルギー分散法では、波長に対応してX線検出パルス
の波高値が違うことを利用して分析を行っているなめに
このようなことは起きない。しかし、波長分散法の方が
、工ネルイー分散法より波長分解能、安定性が優れた方
法であるので、汎用的に使用されている。波長分散法で
測定するためには、上記高次線の影響を除去する必要性
があるので、従来はその高次線の影響を除去する方法と
して、検出しようとしている元素の一次線の近傍に高次
回折線を現すような池元素の基本線が存在するかどうか
を波長スキャンによる測定を行って調べ、上記高次線の
影響を測定し、基の測定値を補正して測定成分の測定値
を求めていたが、波長走査を行うのでリアルタイム性に
欠け、測定に手数がかかり、特に波長固定の分光器を使
用する場合は、補正不能であるという問題点があった6 ハ、発明が解決しようとする問題点 本発明は、波長分散型X線分光法において、従来の高次
線の影響補正がリアルタイム性に欠け、測定に手数がか
かり、特に波長固定の分光器を使用する場合は補正不能
であったという問題点を解消するのを目的とする 二 問題点解決のための手段 波長分散型分光部、検出器部からなるX線分光器におい
て、X線検出器をエネルギー応答型の計数素子とし、同
検出器の検出出力を指定したエネルギーバンドに分析す
るエネルギー分析器、同エネルギー分析器の出力を計数
する手段を設けた。
In the wavelength dispersion method, 11λ=2ds inθ<n: M number,
λ1 spectral wavelength, d・spectral crystal lattice spacing, θ・incident angle)
By setting θ that satisfies the flag conditions shown in , characteristic X-rays of a specific wavelength generated from an unknown sample are detected. However, as can be seen from this conditional expression, this condition only applies to diffraction orders n=1.2, 3. It includes...
Since higher-order X-rays with n other than 1 are also detected at the same time, it is necessary to measure whether the detected X-rays are influenced by the above-mentioned higher-order rays. FIG. 3 shows a relationship curve between the wavelength of X-rays emitted from a sample of multiple components (A and B components) measured using a wavelength dispersion method and the detected intensity. As shown in the figure,
When the position where the primary line of the characteristic X-ray of the A component appears and the position where the secondary line of the characteristic 2
The tail part of the peak of the next line affects the X-ray detection intensity,
The detection intensity 11 of only the A component is unknown, and in order to obtain the detection intensity 11 of only the A component, it is necessary to exclude the influence of the secondary line 2 by some method. With the Ikegata energy dispersive method, this problem does not occur because the analysis takes advantage of the fact that the peak value of the X-ray detection pulse differs depending on the wavelength. However, the wavelength dispersion method has better wavelength resolution and stability than the Tunnel-E dispersion method, so it is widely used. In order to perform measurements using the wavelength dispersion method, it is necessary to remove the effects of the above-mentioned higher order lines. Measurement is performed using a wavelength scan to determine whether there is a basic line of the element that shows a higher-order diffraction line, and the influence of the above-mentioned higher-order line is measured, and the basic measured value is corrected to obtain the measured value of the measured component. However, since it performs wavelength scanning, it lacks real-time performance, takes time to measure, and especially when using a fixed wavelength spectrometer, it cannot be corrected. 6 C. The invention solves the problem. Problems to be Solved by the Invention The present invention solves the problem that, in wavelength dispersive X-ray spectroscopy, conventional correction for the influence of high-order rays lacks real-time performance and is time-consuming for measurement, especially when using a spectrometer with a fixed wavelength. 2. Means for solving the problem In an X-ray spectrometer consisting of a wavelength dispersive spectrometer section and a detector section, the X-ray detector is replaced with an energy responsive counting system. An energy analyzer for analyzing the detection output of the detector into a designated energy band, and a means for counting the output of the energy analyzer were provided.

ホ 作用 本発明によれば、波長走査を行うことなく、高次線の補
正値を検出することができるようになった。
E. Effect According to the present invention, it has become possible to detect correction values for higher-order lines without performing wavelength scanning.

へ、実施例 第1図に本発明の一実施例を示す。第1図において、S
は試料、1は分光結晶、2は比例計数型X線検出器、3
はアンプ、4はマルチチャンネルパルス波高値アナライ
ザーで、X線検出器2の出力パルスの波高値を多段階に
選別して、各段階毎のパルス数を計数する装置、5はC
PUで、上記アナライザー4で測定した各段階波高値の
ヒストグラムを記録して、表示部6に分光されたX線の
エネルギーと強度の関係曲線或は、上記ヒス1−グラム
において検出しようとしているX線波長に対応するピー
クの高さを、検出しようとしているX線の強度として表
示させる。
Embodiment FIG. 1 shows an embodiment of the present invention. In Figure 1, S
is the sample, 1 is the spectroscopic crystal, 2 is the proportional counting type X-ray detector, 3
is an amplifier, 4 is a multi-channel pulse peak value analyzer, which is a device that sorts the peak value of the output pulse of the X-ray detector 2 into multiple stages and counts the number of pulses at each stage; 5 is a C
The PU records a histogram of the peak values of each stage measured by the analyzer 4, and shows the relationship curve between energy and intensity of the separated X-rays on the display section 6, or the X-ray that is to be detected in the histogram. The height of the peak corresponding to the line wavelength is displayed as the intensity of the X-ray to be detected.

測定方法について説明を行う。分光器を測定しようとす
る元素の特性X線の波長λ1に設定し、電子ビーム照射
によって、試料Sから放出されたX線を分光結晶1で分
光し、分光されたX線をX線検出器2で検出する。その
検出信号をアンプ3で増幅して、マルチチャンネルパル
ス波高値アナライザー4に入力する。同アナライザ11
は各波高値の段階毎にX線検出パルスを計数して、第2
図に示すようなパルス波高値のヒストグラムのデータを
形成する。パルス波高値とX線エネルギーとの関係から
II’が検出しようとしている元素の特性X線のピーク
であり、I2が波長λ2の他元素の特性X線の2次回折
線のピークであることは明らかである。CPU5は波高
値アナライザ4か形成したヒストグラムのデータ分取込
み、上記した判定を行い、波長λ1のX線に対応するT
1″のピークについての全計数値を算出し、これを検出
しようとする元素の特性X線のデータとする。
The measurement method will be explained. The spectrometer is set to the characteristic X-ray wavelength λ1 of the element to be measured, and the X-rays emitted from the sample S are separated by the spectroscopic crystal 1 by electron beam irradiation, and the separated X-rays are transferred to the X-ray detector. Detect with 2. The detection signal is amplified by an amplifier 3 and inputted to a multichannel pulse peak value analyzer 4. Analyzer 11
counts the X-ray detection pulses at each wave height level, and calculates the second
Form a histogram of pulse height values as shown in the figure. From the relationship between the pulse height value and the X-ray energy, it is clear that II' is the peak of the characteristic X-ray of the element we are trying to detect, and I2 is the peak of the second-order diffraction line of the characteristic X-ray of another element with wavelength λ2. It is. The CPU 5 takes in the data of the histogram formed by the peak value analyzer 4, performs the above-mentioned judgment, and calculates the T value corresponding to the X-ray of wavelength λ1.
The total count value for the 1'' peak is calculated and used as characteristic X-ray data of the element to be detected.

この場合、第2図のヒストグラムは既に分光器で波長選
別が行われたX線についてのパルス波高値の分布なので
、II’のピーク全面積は波長λ1のX線の検出パルス
だけで形成されているので、このピークの面精が測定し
ようとしている元素の検出強度分与えるのである。
In this case, the histogram in Figure 2 is the distribution of pulse height values for X-rays that have already been wavelength-selected by a spectrometer, so the total area of the peak II' is formed only by the detected pulse of X-rays with wavelength λ1. Therefore, the surface quality of this peak provides the detected intensity of the element to be measured.

ト、効果 本発明によれば、波長スキャンをせずに、1次線2次線
が区別されて、定量的に測定が可能になったことで、分
析精度が向上し、しかもリアルタイムに測定結果を得る
ことができるようになったことで、測定効率が向上した
Effects According to the present invention, the primary line and the secondary line are distinguished without wavelength scanning, making it possible to perform quantitative measurements, improving analysis accuracy and providing measurement results in real time. The measurement efficiency has improved.

【図面の簡単な説明】[Brief explanation of drawings]

第]121は本発明の一実施例のブロック図、第2図は
マルチチャンネルパルス波高値アナライザーで測定され
るパルス波高値のヒストグラム、第3図は、波長分散法
において波長スキャンしてR定して得られた特性X線波
長と強度との関係曲線図である。
121 is a block diagram of an embodiment of the present invention, FIG. 2 is a histogram of pulse peak values measured by a multi-channel pulse peak value analyzer, and FIG. FIG. 2 is a diagram showing a relationship curve between characteristic X-ray wavelength and intensity obtained by the method.

Claims (1)

【特許請求の範囲】[Claims] 波長分散型分光部、検出器部からなるX線分光器におい
て、X線検出器をエネルギー応答型の計数素子とし、同
検出器の検出出力を指定したエネルギーバンドに分析す
るエネルギー分析器、同エネルギー分析器の出力を計数
する手段を設けたことを特徴とするX線分光器。
In an X-ray spectrometer consisting of a wavelength-dispersive spectrometer and a detector, the X-ray detector is an energy-responsive counting element, and an energy analyzer that analyzes the detection output of the detector into a specified energy band; An X-ray spectrometer characterized by comprising means for counting the output of the analyzer.
JP60287083A 1985-12-20 1985-12-20 X-ray spectrometer Pending JPS62167451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60287083A JPS62167451A (en) 1985-12-20 1985-12-20 X-ray spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287083A JPS62167451A (en) 1985-12-20 1985-12-20 X-ray spectrometer

Publications (1)

Publication Number Publication Date
JPS62167451A true JPS62167451A (en) 1987-07-23

Family

ID=17712829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287083A Pending JPS62167451A (en) 1985-12-20 1985-12-20 X-ray spectrometer

Country Status (1)

Country Link
JP (1) JPS62167451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058015A (en) * 2004-08-17 2006-03-02 Jeol Ltd X-ray analyzer with wave height distribution display function
JP2009264926A (en) * 2008-04-25 2009-11-12 Shimadzu Corp Wavelength dispersion type x-ray spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058015A (en) * 2004-08-17 2006-03-02 Jeol Ltd X-ray analyzer with wave height distribution display function
JP2009264926A (en) * 2008-04-25 2009-11-12 Shimadzu Corp Wavelength dispersion type x-ray spectrometer

Similar Documents

Publication Publication Date Title
USRE49543E1 (en) Fine particle measuring apparatus
US20140085630A1 (en) Spectroscopic apparatus and methods for determining components present in a sample
US5497407A (en) Contaminating-element analyzing method
US5005146A (en) Signal processing method for nuclear spectrometers
US4796284A (en) Polycrystalline X-ray spectrometer
JP2821656B2 (en) Multiple conditions X-ray fluorescence qualitative analysis method
JPS62167451A (en) X-ray spectrometer
JP3610256B2 (en) X-ray fluorescence analyzer
JP3192846B2 (en) Pollutant element concentration analysis method and analyzer
JP2713120B2 (en) X-ray fluorescence analyzer
JPH0247542A (en) Quantitative analysis method using X-ray spectrometer
US4467199A (en) Macroanalyzer system
KR0172623B1 (en) Method and apparatus for analyzing contaminative element concentrations
JP3266896B2 (en) X-ray fluorescence analyzer
US4171912A (en) Element analyzer exploiting a magneto-optic effect
JP2564930B2 (en) X-ray fluorescence analyzer
JP2926857B2 (en) X-ray qualitative analyzer
JP2569500B2 (en) X-ray analyzer
JPH06308058A (en) Rutherford backscattering spectroscopic analyzer
JPH05322809A (en) Instrument and method for total-reflection x-ray fluorescence analysis
JPH05340897A (en) X-ray spectrometer
JPS6179144A (en) Metal sample analysis method
JP2002090319A (en) X-ray fluorescence analyzer
JPH08145891A (en) Emission spectroscopy analyzer
JP2751378B2 (en) Peak detection method of measurement output