[go: up one dir, main page]

JPS62163954A - Detection of thermal deterioration - Google Patents

Detection of thermal deterioration

Info

Publication number
JPS62163954A
JPS62163954A JP579886A JP579886A JPS62163954A JP S62163954 A JPS62163954 A JP S62163954A JP 579886 A JP579886 A JP 579886A JP 579886 A JP579886 A JP 579886A JP S62163954 A JPS62163954 A JP S62163954A
Authority
JP
Japan
Prior art keywords
time
deterioration
degree
temperature
thermal deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP579886A
Other languages
Japanese (ja)
Other versions
JPH068793B2 (en
Inventor
Yoshifusa Tsubone
嘉房 坪根
Tsutomu Oshiyama
押山 孜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP579886A priority Critical patent/JPH068793B2/en
Publication of JPS62163954A publication Critical patent/JPS62163954A/en
Publication of JPH068793B2 publication Critical patent/JPH068793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable the detection of the degree of thermal deterioration an extensive range, by determining the degree of thermal deterioration of material to be measured as function of temperature and/or time from changes in a melting heat curve of a sample sampled from material to be measured previously thermally deteriorated beforehand to detect the degree of thermal deterioration of an actual equipment by comparing the results to the melting heat curve obtained by a differential scanning calorific measurement of the material being measured sampled from the actual equipment. CONSTITUTION:An insulating material the same as a sample is used as insulating coil of an electric equipment and after the electric equipment is operated for a required time, a very small amount of the insulating material is sampled from the insulating coil. Based on a melting heat curve obtained by a differential scanning calorific measurement, the depth Cb of the peak newly generated owing to a deterioration is determined and to obtain conver sion time thetab from the coordinate of the point crossing between Cb on the vertical axis and a master curve A. The conversion time thetab is a function of temperature and time. Therefore, the average temperature (equivalent temperature) during the period can be calculated if the operating time of the electric equipment is determined or the operating time can be calculated if the temperature at the operating is determined. Thus, it is possible to calculate the degree of thermal deterioration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気機器絶縁に用いられる絶縁材料等の熱劣
化を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting thermal deterioration of insulating materials used for electrical equipment insulation.

〔従来の技術〕[Conventional technology]

電気機器の絶縁には、通常、固定絶縁材料、液体絶縁材
料及び気体絶縁材料が単独に又は組合わせて使用されて
いる。
Fixed insulating materials, liquid insulating materials, and gas insulating materials are commonly used alone or in combination to insulate electrical equipment.

そして、油入変圧器等における液体絶縁やガス絶縁開閉
装置等における気体絶縁の場合にあっては、分解生成ガ
ス分析等の物理化学的手法により絶縁劣化を判定する方
法が提案され、一部実用化されている。しかし、回転機
等における固体絶縁にあっては、電気的試験による方法
、いわゆる「絶縁診断法」が判定方法の中心となってい
る。
In the case of liquid insulation in oil-immersed transformers and gas insulation in gas-insulated switchgear, methods have been proposed to determine insulation deterioration using physicochemical methods such as decomposition gas analysis, and some of them have been put into practical use. has been made into However, when it comes to solid insulation in rotating machines and the like, electrical testing methods, so-called "insulation diagnostic methods" are the main method of determination.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、現状の電気的試験による直流試験法、交流試験
法、誘電正接試験法、部分放電試験法等の絶縁診断法で
は、被測定機器の定格電圧を越えて試験電圧を印加する
ことはできない、したがって、得られる緒特性の変化は
小さく、しかもその試験結果は試験時の環境条件、特に
湿度の影響を受ける。そのため、絶縁劣化に対する安定
した対応がとれないまま、経験的に劣化状況を推測する
にとどまっている。
However, with current insulation diagnostic methods such as DC test method, AC test method, dielectric loss tangent test method, and partial discharge test method using electrical tests, it is not possible to apply a test voltage exceeding the rated voltage of the device under test. Therefore, the changes in the obtained properties are small, and the test results are influenced by the environmental conditions at the time of the test, especially humidity. For this reason, it is not possible to take stable measures against insulation deterioration, and the state of deterioration can only be estimated empirically.

また、物理科学的方法としては、絶縁材料の動的粘弾性
特性の変化、たとえば動的弾性率と損失弾性率との比で
表されるメカニカル−tanδの変化、或いは赤外線分
光分析の赤外線吸収スペクトルの変化を判定基準とする
劣化度判定法が提唱され、一部実用化されている。
In addition, physical science methods include changes in the dynamic viscoelastic properties of insulating materials, such as changes in mechanical tan δ expressed as the ratio of dynamic elastic modulus to loss elastic modulus, or infrared absorption spectra in infrared spectroscopy. A method for determining the degree of deterioration that uses changes in the deterioration level as a criterion has been proposed, and some of it has been put into practical use.

ところが、メカニカル−tanδの変化を判定基準とす
る劣化度判定法においては、適用できる試料としてはフ
ィルム材が主体で、更にフィルム材であっても、材料の
脆化が著しい高劣化度領域においては、測定中に試料が
破壊し易く、劣化度の判定ができなくなる。他方、赤外
線分光分析の赤外線吸収スペクトルの変化を判定基準と
する劣化度判定法においては、黒色の材料や劣化により
黒変した材料等の明度の低い材料では、赤外線吸収率が
高く、劣化度の判定が困難である。
However, in the deterioration degree determination method that uses the change in mechanical tan δ as a criterion, film materials are the main applicable samples, and even with film materials, in the high deterioration region where the material is significantly brittle, , the sample is easily destroyed during measurement, making it impossible to determine the degree of deterioration. On the other hand, in the deterioration degree determination method that uses changes in the infrared absorption spectrum of infrared spectroscopy as a criterion, materials with low brightness, such as black materials or materials that have turned black due to deterioration, have a high infrared absorption rate, which indicates that the degree of deterioration is high. Difficult to judge.

本発明は、このような欠点を取り除くために案出された
ものであり、電気機器等の保全における修理、更新等の
処置を、予め試料に基づいて求めた熱劣化度合に関する
データに対して信頬度高く行うことができるように、熱
劣化の程度を広範囲にわたって検出することを目的とす
る。
The present invention was devised to eliminate such drawbacks, and is based on the reliability of data regarding the degree of thermal deterioration determined in advance based on samples when performing repairs, updates, etc. during the maintenance of electrical equipment, etc. The purpose is to detect the degree of thermal deterioration over a wide range so that it can be carried out with high precision.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、その目的を達成すべく、予め熱劣化させた被
測定物質から採取した試料の融解熱曲線の変化から、被
測定物質の熱劣化度を温度及び/又は時間の関数として
求め、実働機器から採取した被測定物質の示差走査熱量
測定による融解熱曲線との対比により、実働機器の熱劣
化度を検出することを特徴とする。
In order to achieve the object, the present invention calculates the degree of thermal deterioration of a measured substance as a function of temperature and/or time from the change in the heat of fusion curve of a sample taken from a measured substance that has been thermally degraded in advance, and It is characterized by detecting the degree of thermal deterioration of the actual equipment by comparing it with the heat of fusion curve obtained by differential scanning calorimetry of the substance to be measured taken from the equipment.

〔作用〕[Effect]

一般に、熱劣化による電気機器の絶縁材料の化学構造的
な変化は、化学反応速度論に従う。他方、一定濃度での
溶液の粘度は、化学構造によって一義的に決まる。すな
わち、結晶性ポリマーの熱劣化による結晶構造の変化が
反応速度論に従うとすると、結晶構造量Xの変化は、次
式(1)で表される。
Generally, changes in the chemical structure of insulating materials of electrical equipment due to thermal degradation follow chemical reaction kinetics. On the other hand, the viscosity of a solution at a given concentration is primarily determined by its chemical structure. That is, assuming that the change in crystal structure due to thermal deterioration of the crystalline polymer follows reaction kinetics, the change in the amount of crystal structure X is expressed by the following formula (1).

dx/dt= A−exp(−ΔE / RT ) −
g (xl ・−−−−−−(D但し、t:劣化時間。
dx/dt=A-exp(-ΔE/RT)-
g (xl ・---------(D, however, t: deterioration time.

A:頻度因子 ΔE:活性化エネルギー R:ガス定数 T:劣化の絶対温度 g (Xl :劣化機構を表す関数 材料の劣化が時間0からtまで進み、結晶構造量がxo
からXtまで変化したとして式(1)を積”分すると、
次式(2)となる。
A: Frequency factor ΔE: Activation energy R: Gas constant T: Absolute temperature of deterioration g
If we integrate equation (1) assuming that it changes from to Xt, we get
The following equation (2) is obtained.

ここで、右辺の積分は時間の次元となっているので、換
算時間θと呼ばれている。すなわち、換算時間θは、次
式(3)で表される。
Here, since the integral on the right side is in the time dimension, it is called the converted time θ. That is, the converted time θ is expressed by the following equation (3).

従って(2)式は、次式(4)に変換される。Therefore, equation (2) is converted to the following equation (4).

劣化機構を示す関数g (X)と頻度因子Aが一定の劣
化領域では、種々の温度条件で劣化が生じても換算時間
θが等しければ、結晶構造量の変化も等しくなる。すな
わち、両者の関係は、次式(5)で表される。
In a deterioration region where the function g (X) indicating the deterioration mechanism and the frequency factor A are constant, even if deterioration occurs under various temperature conditions, if the converted time θ is the same, the changes in the amount of crystal structure will be the same. That is, the relationship between the two is expressed by the following equation (5).

θ−f txt  −・・・・−・・・・・・・−・・
・・・・・−・・−・・・・・・・−・+51更に、示
差走査熱量測定による融解熱曲線における融解エネルギ
ーQが結晶構造量により一義的に決まるものとすると、
融解エネルギーQは次式%式% すなわち、換算時間θと融解エネルギーQとの間には、
次式(7)の関係が成り立つ。
θ-f txt −・・・−・・・・・・・
・・・・・・−・・−・・・・・・・−・+51 Furthermore, assuming that the melting energy Q in the heat of fusion curve determined by differential scanning calorimetry is uniquely determined by the amount of crystal structure,
The melting energy Q is calculated using the following formula% formula% In other words, between the conversion time θ and the melting energy Q,
The following equation (7) holds true.

θツr  (h−’ (Q) l  −・−・−・・−
・・(7)したがって、熱劣化の換算時間θは、式(7
)に示すように融解エネルギーQの変化から求めること
ができる。
θtsur (h-' (Q) l −・−・−・・−
...(7) Therefore, the conversion time θ of thermal deterioration is calculated by the formula (7)
), it can be determined from the change in melting energy Q.

〔実施例〕〔Example〕

以下に、電気絶縁材料として多用されているポリエチレ
ンテレフタレートを試料として用いた実施例により、本
発明の特徴を具体的に説明する。
The features of the present invention will be specifically explained below using examples using polyethylene terephthalate, which is widely used as an electrical insulating material, as a sample.

槽内温度が160℃、180℃1200℃の熱風循環式
恒温槽内で劣化させた試料の示差走査熱量測定による融
解熱曲線の一例を第1図に示す。ボ°リエチレンテレフ
タレートは、異なる融解温度の結晶の分布に対応した温
度幅T、−”rzをもって融解している。そして、劣化
によりメイン融解ピークのやや低温度側に新たな融解ピ
ークが現れ、そのビーりは劣化の進行と共に深くなって
いる。
FIG. 1 shows an example of a heat of fusion curve obtained by differential scanning calorimetry of a sample deteriorated in a hot air circulation constant temperature bath with an internal temperature of 160° C., 180° C., and 1200° C. Polyethylene terephthalate melts with a temperature width T, -''rz that corresponds to the distribution of crystals with different melting temperatures.As a result of deterioration, a new melting peak appears on the slightly lower temperature side of the main melting peak. The beeping becomes deeper as the deterioration progresses.

第2図は、この各劣化温度160℃、180℃、200
°Cにおける劣化時間と劣化により新たに生成した融解
ピークの深さとの関係を示している。ピークの深さは、
劣化時間の対数に比例して直線的に深くなっていること
がわかる。
Figure 2 shows these deterioration temperatures of 160°C, 180°C, and 200°C.
It shows the relationship between the deterioration time at °C and the depth of the melting peak newly generated due to deterioration. The depth of the peak is
It can be seen that the depth increases linearly in proportion to the logarithm of the deterioration time.

次に、第2図の劣化温度をパラメータとした、劣化によ
り新たに生成した融解ピークの増加直線から、劣化の換
算時間θを用いたマスターカーブを作成する。まず、第
2図の回帰直線から求めた融解ピークの深さが0.5m
J/mg−sec、 1mJ/mg−secになるまで
の劣化温度と劣化時間との関係を、第3図に示すアレニ
ウスの式に基づく座標点プロットで表す。この第3図に
示された関係線図の勾配ΔE/Rから活性化エネルギー
ΔEを求め、該活性化エネルギーΔEを式(3)に代入
する。このようにして、換算時間θを算出する。そして
、第4図に示すように、横軸に換算時間θ及び劣化度を
とり、縦軸に新たに生成する融解ピークの深さをとり、
試料の熱劣化によって新たに生成する融解ピークの深さ
に関するマスターカーブAを得た。
Next, a master curve is created using the conversion time θ of deterioration from the increasing straight line of the melting peak newly generated due to deterioration using the deterioration temperature shown in FIG. 2 as a parameter. First, the depth of the melting peak determined from the regression line in Figure 2 is 0.5 m.
The relationship between the deterioration temperature and deterioration time up to 1 mJ/mg-sec and 1 mJ/mg-sec is represented by a coordinate point plot based on the Arrhenius equation shown in FIG. The activation energy ΔE is determined from the slope ΔE/R of the relationship diagram shown in FIG. 3, and the activation energy ΔE is substituted into equation (3). In this way, the converted time θ is calculated. Then, as shown in Fig. 4, the horizontal axis represents the converted time θ and the degree of deterioration, and the vertical axis represents the depth of the newly generated melting peak.
A master curve A regarding the depth of the melting peak newly generated due to thermal deterioration of the sample was obtained.

第4図から明らかなように、例示した各劣化温度160
°C、180℃、200℃において新たに生成する融解
ピークの深さは、それぞれ同一線上に乗っている。すな
わち、新たに生成する融解ピークの深さと劣化の換算時
間θとの間には、非常に強い相関関係があることが判る
As is clear from FIG. 4, each of the illustrated deterioration temperatures 160
The depths of newly generated melting peaks at °C, 180 °C, and 200 °C are on the same line. That is, it can be seen that there is a very strong correlation between the depth of the newly generated melting peak and the converted time θ of deterioration.

たとえば、電気機器絶縁線輪の耐熱寿命が130℃の温
度雰囲気中で20 、000時間であるとすると、式(
3)から寿命点の換算時間θ、は3X10−19となり
、この換算時間θ、を横軸の劣化度軸上に1.0を目盛
って寿命点として示しておく。次に、試料と同じくポリ
エチレンテレフタレートからなる絶縁材料を電気機器の
絶縁線輪(図示せず)に用い、該電気機器を所要時間稼
働した後で、前記絶縁材料を前記絶縁線輪から微少量採
取する。そして、示差走査熱量測定による融解熱曲線に
基づき、劣化により新たに生成したピークの深さC5を
求め、第4図の縦軸上のC1とマスターカーブAとの交
叉する点の座標から換算時間θ、を得る。この換算時間
θ、は、温度及び時間の関数である。したがって、電気
機器の運転時間が判ればその間の゛平均的な温度(等価
温度)を、或いは運転時の温度が判れば運転時間を、式
(3)によって算出することができる。このようにして
、熱劣化の度合を算出することが可能となる。また、換
算時間θ、を横軸の劣化度の目盛に対応させると、電気
機器絶縁線輪の余寿命を知ることができる。
For example, if the heat-resistant life of an electrical equipment insulated wire ring is 20,000 hours in an atmosphere at a temperature of 130°C, then the formula (
From 3), the converted time θ of the life point is 3×10−19, and this converted time θ is shown as the life point on the horizontal axis of deterioration degree with a scale of 1.0. Next, an insulating material made of polyethylene terephthalate, like the sample, is used for an insulated wire ring (not shown) of an electrical device, and after the electrical device has been operated for a required time, a small amount of the insulating material is collected from the insulated wire ring. do. Then, based on the heat of fusion curve obtained by differential scanning calorimetry, the depth C5 of the peak newly generated due to deterioration is determined, and the converted time is calculated from the coordinates of the point where C1 and master curve A intersect on the vertical axis in FIG. Obtain θ. This converted time θ is a function of temperature and time. Therefore, if the operating time of the electrical equipment is known, the average temperature (equivalent temperature) during that time can be calculated, or if the temperature during operation is known, the operating time can be calculated using equation (3). In this way, it becomes possible to calculate the degree of thermal deterioration. Furthermore, by making the converted time θ correspond to the scale of the degree of deterioration on the horizontal axis, the remaining life of the electrical equipment insulating wire can be known.

上記実施例では、ポリエチレンテレフタレートについて
述べたが、この他にも、ケーブル絶縁洋に多く用いられ
ているポリエチレンなどの結晶性ポリマーに適用できる
In the above embodiment, polyethylene terephthalate was described, but other crystalline polymers such as polyethylene, which are often used in cable insulation, can be used.

また、本発明の熱劣化検出方法は、電気機器絶縁物に限
ることなく、他の分野で使用されている結晶性ポリマー
の熱劣化検出にも応用ができることは言うまでもない。
It goes without saying that the thermal deterioration detection method of the present invention is not limited to electrical equipment insulators, but can also be applied to thermal deterioration detection of crystalline polymers used in other fields.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の熱劣化検出方法におい
ては、微小量試料の示差走査熱量測定による融解熱曲線
の変化から、被測定物質の熱劣化量を温度と時間の関数
として求め、実働機器から採取した被測定物質の示唆走
査熱量測定による融解熱曲線と対比させることにより、
実働機器の熱劣化度合を検出するようにしたものである
。したがって、電気機器等の保全における修理、更新等
の処置を、予め蓄積しておいたデータベースに基づいて
、高い信頼性で行うことができ、また、電気機器の絶縁
設計を直接的に検証し、絶縁設計にフィードバックする
ことにより電気機器の信頼性向上を図ることができると
いう効果を奏する。
As explained above, in the thermal deterioration detection method of the present invention, the amount of thermal deterioration of the substance to be measured is determined as a function of temperature and time from the change in the heat of fusion curve obtained by differential scanning calorimetry of a minute sample. By comparing the heat of fusion curve with the suggested scanning calorimetry of the substance to be measured taken from the equipment,
This is designed to detect the degree of thermal deterioration of the actual equipment. Therefore, repairs, updates, and other maintenance procedures for electrical equipment can be carried out with high reliability based on a pre-stored database, and the insulation design of electrical equipment can be directly verified. This has the effect of improving the reliability of electrical equipment by providing feedback to insulation design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は劣化させた試料の示差走査熱量測定による融解
熱曲線の一例を示し、第2図は融解ピークの深さと劣化
時間との関係を示し、第3図は劣化温度と劣化時間との
関係をアレニウスの式に基づく座標点プロットで表した
ものであり、第4図は融解ピークの深さと換算時間及び
劣化度との関係を示す図である。
Fig. 1 shows an example of a heat of fusion curve obtained by differential scanning calorimetry of a degraded sample, Fig. 2 shows the relationship between the depth of the melting peak and the deterioration time, and Fig. 3 shows the relationship between the deterioration temperature and the deterioration time. The relationship is expressed by a coordinate point plot based on the Arrhenius equation, and FIG. 4 is a diagram showing the relationship between the depth of the melting peak, the converted time, and the degree of deterioration.

Claims (1)

【特許請求の範囲】[Claims] 1、予め熱劣化させた被測定物質から採取した試料の融
解熱曲線の変化から、被測定物質の熱劣化度を温度及び
/又は時間の関数として求め、実働機器から採取した被
測定物質の示差走査熱量測定による融解熱曲線との対比
により、実働機器の熱劣化度を検出することを特徴とす
る熱劣化検出方法。
1. Determine the degree of thermal deterioration of the measured substance as a function of temperature and/or time from the change in the heat of fusion curve of a sample taken from the measured substance that has been thermally degraded in advance, and calculate the difference between the measured substances sampled from the actual equipment. A thermal deterioration detection method characterized by detecting the degree of thermal deterioration of a device in actual use by comparing it with a heat of fusion curve obtained by scanning calorimetry.
JP579886A 1986-01-14 1986-01-14 Thermal deterioration detection method Expired - Fee Related JPH068793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP579886A JPH068793B2 (en) 1986-01-14 1986-01-14 Thermal deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP579886A JPH068793B2 (en) 1986-01-14 1986-01-14 Thermal deterioration detection method

Publications (2)

Publication Number Publication Date
JPS62163954A true JPS62163954A (en) 1987-07-20
JPH068793B2 JPH068793B2 (en) 1994-02-02

Family

ID=11621098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP579886A Expired - Fee Related JPH068793B2 (en) 1986-01-14 1986-01-14 Thermal deterioration detection method

Country Status (1)

Country Link
JP (1) JPH068793B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117230A (en) * 2007-11-08 2009-05-28 Fujitsu Ltd Measuring method of secondary battery separator
JP2013029371A (en) * 2011-07-27 2013-02-07 Sumitomo Wiring Syst Ltd Evaluation method of heat history of molding
JP2015102377A (en) * 2013-11-22 2015-06-04 千代田化工建設株式会社 Evaluation method of resin
JP2018516427A (en) * 2015-03-18 2018-06-21 デイ, ライアンDAY, Ryan Thermal characterization of electrochemical devices
CN109001253A (en) * 2018-07-19 2018-12-14 芜湖籁余新能源科技有限公司 A kind of thermal coefficient detection device of the building energy-saving heat-insulating material of Guarded hot plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117230A (en) * 2007-11-08 2009-05-28 Fujitsu Ltd Measuring method of secondary battery separator
JP2013029371A (en) * 2011-07-27 2013-02-07 Sumitomo Wiring Syst Ltd Evaluation method of heat history of molding
JP2015102377A (en) * 2013-11-22 2015-06-04 千代田化工建設株式会社 Evaluation method of resin
JP2018516427A (en) * 2015-03-18 2018-06-21 デイ, ライアンDAY, Ryan Thermal characterization of electrochemical devices
CN109001253A (en) * 2018-07-19 2018-12-14 芜湖籁余新能源科技有限公司 A kind of thermal coefficient detection device of the building energy-saving heat-insulating material of Guarded hot plate

Also Published As

Publication number Publication date
JPH068793B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
KR100541996B1 (en) A dignosis method of insulation of electric apparatus
Ghunem et al. Erosion of silicone rubber composites in the AC and DC inclined plane tests
Di Noto et al. Mechanism of ionic conductivity in poly (ethylene glycol 400)/(MgCl2) x polymer electrolytes: studies based on electrical spectroscopy
EP0335351A1 (en) Method for monitoring unusual signs in gas-charged apparatus and gas-charged apparatus including unusual sign monitor
Sit et al. A review on characteristics and assessment techniques of high voltage silicone rubber insulator
JPS62163954A (en) Detection of thermal deterioration
Risos et al. In-situ aging monitoring of transformer oil via the relative permittivity and DC conductivity using novel interdigitated dielectrometry sensors (IDS)
CN106248912A (en) A kind of characterizing method of transformer oil ageing
JPH0350977B2 (en)
Mahanta et al. Transformer dielectric liquid: A review
Kanumuri et al. Influence of thermal aging on DC conductivity and breakdown strength of natural ester oils for HVDC applications
JPS6031179B2 (en) How to detect early failure of hydrogen cooled generator
Koch et al. On-site methods for reliable moisture determination in power transformers
Mauntz et al. Continuous condition monitoring of high voltage transformers by direct sensor monitoring of oil aging for a stable power network
JPS6247540A (en) Detection of thermal deterioration
JPH0337557A (en) Temperature-history estimating method
Anandakumaran et al. Determination of PVC cable insulation degradation
JPS6042643A (en) Detection of thermal deterioration
Phalphale et al. Investigation of transformer oil exposed to the atmosphere
JP2556055B2 (en) Hot wire insulation diagnostic device
Freye et al. Investigation on DC conductivity of elastomeric insulating materials considering and reducing influences caused by DC test voltage generation
Wang et al. The multifactor aging characteristics and aging state assessment of epoxy composites for GIS
Lee et al. Radiation effects on dielectric properties of ethylene propylene rubber
JPS6279375A (en) Evaluation of insulation film
Heydon et al. Condition monitoring of transformer oil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees