[go: up one dir, main page]

JP2556055B2 - Hot wire insulation diagnostic device - Google Patents

Hot wire insulation diagnostic device

Info

Publication number
JP2556055B2
JP2556055B2 JP62242247A JP24224787A JP2556055B2 JP 2556055 B2 JP2556055 B2 JP 2556055B2 JP 62242247 A JP62242247 A JP 62242247A JP 24224787 A JP24224787 A JP 24224787A JP 2556055 B2 JP2556055 B2 JP 2556055B2
Authority
JP
Japan
Prior art keywords
deterioration
insulating layer
remaining life
degree
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62242247A
Other languages
Japanese (ja)
Other versions
JPS6484162A (en
Inventor
嘉房 坪根
美勝 中村
孜 押山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP62242247A priority Critical patent/JP2556055B2/en
Publication of JPS6484162A publication Critical patent/JPS6484162A/en
Application granted granted Critical
Publication of JP2556055B2 publication Critical patent/JP2556055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、実動機器の運転を停止することなく絶縁の
劣化度を連続監視し、電気機器絶縁の劣化度や余寿命を
求める活線絶縁診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention continuously monitors the degree of deterioration of insulation without stopping the operation of production equipment, and determines the degree of deterioration of electrical equipment and the remaining life of a live line. The present invention relates to an insulation diagnostic device.

〔従来の技術〕[Conventional technology]

電気機器の絶縁は、熱,放電,その他の因子により劣
化し、究極的には絶縁破壊に至る。そのため、電気機の
信頼性ひいては電気機器を装備した設備の信頼性を維持
するため、予防・保全の一環として定期的に運転を停止
して絶縁診断を行うことが多い。
The insulation of electrical equipment deteriorates due to heat, discharge, and other factors, eventually leading to dielectric breakdown. Therefore, in order to maintain the reliability of the electric machine and the reliability of the equipment equipped with the electric machine, the insulation diagnosis is often performed by regularly stopping the operation as a part of prevention and maintenance.

ところが、従来から行われている直流試験法,交流電
流試験法,誘電正接試験法,部分放電試験法等の電気的
試験による絶縁診断法では、被測定機器の定格電圧まで
の試験電圧しか印加できないため、得られる諸特性の変
化は小さい。しかも、その試験結果は、試験時の環境条
件、特に湿度の影響を受けるため、絶縁劣化との安定し
た対応がとれないまま、経験的に劣化状況を推測してい
るに過ぎない。また、機器の運転を停止させて測定を行
うことから、劣化状況を連続的に監視することもできな
い。
However, in the conventional insulation diagnostic methods such as direct current test method, alternating current test method, dielectric loss tangent test method, partial discharge test method and the like, only the test voltage up to the rated voltage of the device under test can be applied. Therefore, changes in the obtained characteristics are small. Moreover, since the test result is affected by the environmental conditions at the time of the test, particularly the humidity, it is only empirically inferring the deterioration state without being able to stably cope with the insulation deterioration. In addition, since the operation of the equipment is stopped and the measurement is performed, it is not possible to continuously monitor the deterioration status.

これらの問題を解決するために、高圧機器の絶縁層の
表面に電極を設置し、絶縁破壊の前駆現象としての部分
放電パルスを、機器の運転を停止することなく連続的に
検出する方法や、絶縁層に超音波発振子を埋設し、超音
波探傷により絶縁劣化を連続的に検出する方法等が提案
されている。
In order to solve these problems, electrodes are installed on the surface of the insulating layer of high-voltage equipment, and partial discharge pulses as a precursor phenomenon of dielectric breakdown, a method of continuously detecting without stopping the operation of the equipment, There has been proposed a method of embedding an ultrasonic oscillator in an insulating layer and continuously detecting insulation deterioration by ultrasonic flaw detection.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、これらの方法は、導電性の材料を絶縁層の表
面に設置したり、導電性の材料を絶縁層の内部に埋設
し、リードを取り出しているため、絶縁に悪影響を及ぼ
す場合がある。また、絶縁劣化との対応も未だ充分でな
い。
However, in these methods, a conductive material is placed on the surface of the insulating layer, or a conductive material is embedded inside the insulating layer to take out the leads, which may adversely affect the insulation. Moreover, the countermeasure against insulation deterioration is still insufficient.

更に、接地線に流れる漏洩電流を連続的に検出する方
法も提案されているが、機器の運転電圧下での上方であ
り、その変化は小さい。
Further, a method of continuously detecting the leakage current flowing through the ground line has been proposed, but it is above the operating voltage of the device and its change is small.

このように、従来の方法は、試験中の機器の運転を停
止しなければならないこと、実際の絶縁劣化との対応が
採れないこと等、種々の問題を含むものである。
As described above, the conventional method includes various problems such as the operation of the device under test has to be stopped, and the actual insulation deterioration cannot be dealt with.

本発明は、これらの問題を解消し、電気機器等の保全
における修理や更新等の処理を、データベースに信頼度
高く行うことができる活線絶縁診断装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems and to provide a hot wire insulation diagnostic apparatus that can perform repair and update processing for maintenance of electric devices and the like with high reliability in a database.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の活線絶縁診断装置は、その目的を達成するた
め、絶縁層の内部又は外周に設けた照明用光ファイバー
及び受光用光ファイバーを備えた光検出プローブと、前
記光検出プローブに接続された標準光源と、前記受光用
光ファイバーに接続され標準光の波長に対応した被測定
面からの反射光を受光する光電変換素子と、該光電変換
素子の出力が入力される表色演算部からなる測色システ
ムと、 予め求めておいた色の変化と前記絶縁層の劣化度との
関係を記憶した函数発生部と、 該函数発生部からの出力と前記測色システムの表色演
算部からの出力に基づいて、前記絶縁層の劣化度及び余
寿命を算出する劣化度・余寿命演算部と、 該劣化度・余寿命演算部による劣化度・余寿命の演算
結果に基づき所定の信号を発生する警報・表示部とを備
えていることを特徴とする。
In order to achieve the object, the hot wire insulation diagnostic device of the present invention has a photodetection probe provided with an optical fiber for illumination and an optical fiber for receiving light provided inside or around an insulating layer, and a standard connected to the photodetection probe. A light source, a photoelectric conversion element which is connected to the light receiving optical fiber and receives reflected light from a surface to be measured corresponding to a wavelength of standard light, and a colorimetric operation section to which an output of the photoelectric conversion element is input. The system, a function generator that stores the relationship between the previously obtained color change and the degree of deterioration of the insulating layer, an output from the function generator, and an output from the colorimetric calculator of the color measurement system. Based on the above, the deterioration degree / remaining life calculation section for calculating the deterioration degree and remaining life of the insulating layer, and an alarm for generating a predetermined signal based on the calculation result of the deterioration degree / remaining life by the deterioration degree / remaining life calculation section・ Includes display And wherein the are.

〔作用〕[Action]

電気機器の絶縁劣化は、主として熱劣化によりもたら
される。一般に、絶縁層の熱劣化による化学構造量の変
化は、化学反応速度論に従い、絶縁材料の色の変化は化
学構造量で一義的に定まる。
Insulation deterioration of electrical equipment is mainly caused by heat deterioration. In general, the change in the chemical structure amount due to the thermal deterioration of the insulating layer follows the chemical reaction kinetics, and the change in the color of the insulating material is uniquely determined by the chemical structure amount.

そこで、熱劣化による絶縁材料の化学構造量Xの変化
が化学反応速度論に従うとすれば、化学構造量Xは、次
式(1)で表される。
Therefore, if the change in the chemical structure amount X of the insulating material due to thermal deterioration follows the chemical reaction kinetics, the chemical structure amount X is represented by the following equation (1).

ここで、tは劣化時間,Aは頻度因子,ΔEは活性化エ
ネルギー,Rはガス定数,Tは劣化の絶対温度,g(X)は反
応機構を表す函数である。
Here, t is the deterioration time, A is the frequency factor, ΔE is the activation energy, R is the gas constant, T is the absolute temperature of deterioration, and g (X) is a function representing the reaction mechanism.

絶縁材料の劣化が時間0からtまで進み、化学構造量
がX0からXまで変化したとして、式(1)を積分する
と、次式(2)が得られる。
Assuming that the deterioration of the insulating material progresses from time 0 to t and the chemical structure amount changes from X 0 to X, the following expression (2) is obtained by integrating the expression (1).

この式(2)における右辺の積分は、時間の次元とな
ることから、換算時間θと呼ばれている。
The integration on the right side of this equation (2) is called the conversion time θ because it has a dimension of time.

したがって、式(2)は、次のよう書き換えられる。 Therefore, the equation (2) can be rewritten as follows.

他方、反応機構を表す函数g(X)と頻度因子Aが一
定の劣化領域では、種々の温度条件下で劣化が生じて
も、換算時間θが等しければ化学構造量Xの変化も等し
くなり、次式(5)が成立する。
On the other hand, in the deterioration region where the function g (X) representing the reaction mechanism and the frequency factor A are constant, even if the deterioration occurs under various temperature conditions, if the conversion time θ is equal, the change in the chemical structure amount X is also equal, The following expression (5) is established.

θ=f(X) ……(5) 更に、絶縁材料の色を定量的に表す値、すなわち表色
値Pが化学構造で一義的に定まるとすると、 P=h(X) ……(6) となり、換算時間θと表色値Pとの間に次式(7)が成
立する。
θ = f (X) (5) Further, if the value that quantitatively represents the color of the insulating material, that is, the colorimetric value P is uniquely determined by the chemical structure, P = h (X) (6) ), The following equation (7) is established between the conversion time θ and the color specification value P.

θ=f{h-1(P)} ……(7) したがって、絶縁材料の表色値Pの変化を測定するこ
とによって、熱劣化度の尺度となる換算時間θを求める
ことができる。更に、予め求めておいた同一絶縁構成の
寿命点での換算時間をθとするとき、色の変化から求
めた換算時間θとの差Δθが余寿命に相当する換算時間
となる。すなわち、この余寿命Δθは、次式(8)で表
される。
θ = f {h −1 (P)} (7) Therefore, by measuring the change in the colorimetric value P of the insulating material, the converted time θ that is a measure of the degree of thermal deterioration can be obtained. Furthermore, when the conversion time at the life point of the same insulation configuration obtained in advance is θ e , the difference Δθ from the conversion time θ obtained from the color change is the conversion time corresponding to the remaining life. That is, this remaining life Δθ is expressed by the following equation (8).

この式(8)みられるように、余寿命は、温度と時間
の函数として求められる。したがって、時間t以降の温
度条件が定まれば、余寿命の時間Δt(=te−t)を求
めることができる。
As seen from this equation (8), the remaining life is obtained as a function of temperature and time. Therefore, if the temperature condition after time t is determined, the remaining life time Δt (= t e −t) can be obtained.

〔実施例〕〔Example〕

以下に、回転機絶縁線輪の絶縁層内に光検出プローブ
を埋設し、絶縁層内に含浸された樹脂の熱劣化に伴う色
の変化による活線絶縁診断装置の実施例により、本発明
を具体的に説明する。
In the following, by embedding the light detection probe in the insulating layer of the rotating machine insulating wire ring, the present invention will be described with reference to an example of a live line insulation diagnostic device due to a color change due to thermal deterioration of the resin impregnated in the insulating layer. This will be specifically described.

第1図は本実施例の活線絶縁診断装置の概略図であ
り、第2図はそのI−I線断面図である。
FIG. 1 is a schematic diagram of a hot-line insulation diagnostic apparatus of this embodiment, and FIG. 2 is a sectional view taken along line I-I thereof.

この活線絶縁診断装置では、導体1と保護絶縁層2と
の間の主絶縁層3に光検出プローブ4をセットした後
で、エポキシ樹脂を含浸させている。そして、光検出プ
ローブ4の照明用光ファイバー5を標準光源6に、受光
用光ファイバー7を光電変換素子8に接続し、光電変換
素子8の出力を表色演算部9に入力する。更に予め求め
ておいた色の変化及び絶縁層の劣化度を記憶した函数発
生部10からの出力と表色演算部9からの出力とを劣化度
・余寿命演算部11に入力し、この劣化度・余寿命演算部
11の出力を警報・表示部12に接続している。
In this live line insulation diagnostic device, the photodetection probe 4 is set on the main insulating layer 3 between the conductor 1 and the protective insulating layer 2 and then impregnated with epoxy resin. Then, the illumination optical fiber 5 of the light detection probe 4 is connected to the standard light source 6, the light receiving optical fiber 7 is connected to the photoelectric conversion element 8, and the output of the photoelectric conversion element 8 is input to the colorimetric calculation unit 9. Further, the output from the function generator 10 and the output from the colorimetric calculator 9 that store the color change and the degree of deterioration of the insulating layer that have been obtained in advance are input to the deterioration / remaining life calculator 11 and the deterioration is calculated. Degree / remaining life calculator
The output of 11 is connected to the alarm / display unit 12.

この構成の活線絶縁診断装置において、機器の運転に
より線輪の温度が上昇すると、主絶縁層3に含浸された
エポキシ樹脂が変色する。この変色状態は、標準光源6
から照明用光ファイバー5を経由した光が主絶縁層3に
照射され、その反射光を受光用光ファイバー7を介して
光電変換素子8に受光することにより、検出することが
できる。
In the hot-wire insulation diagnostic device having this configuration, when the temperature of the wire ring rises due to the operation of the equipment, the epoxy resin with which the main insulating layer 3 is impregnated changes color. This discolored state is the standard light source 6
The light can be detected by irradiating the main insulating layer 3 with light from the illuminating optical fiber 5 and receiving the reflected light on the photoelectric conversion element 8 via the light receiving optical fiber 7.

第3図は、主絶縁層3に含浸されたエポキシ樹脂の劣
化による色の変化を、(L,a,b)表色系における
未劣化エポキシ樹脂の色に対する色差(ΔEab)で表
したものである。同図において、○は180℃で、●は200
℃でそれぞれ劣化させた場合の値を示している。
FIG. 3 shows the color change due to the deterioration of the epoxy resin impregnated in the main insulating layer 3 with respect to the color of the undegraded epoxy resin in the (L * , a * , b * ) color system (ΔE * ab). It is represented by. In the figure, ○ is 180 ℃, ● is 200
Values are shown when they are deteriorated at each temperature.

第3図から明らかなように、エポキシ樹脂の劣化が進
むにつれて、色差ΔEabが大きくなる。そして、劣化
の尺度となる換算時間θと色との間には前述の式(7)
で示したように一義的な関係があることから、この色の
変化に基づいて劣化の尺度となる換算時間θを求めるこ
とができる。
As is clear from FIG. 3, the color difference ΔE * ab increases as the epoxy resin deteriorates. Then, between the conversion time θ, which is a measure of deterioration, and the color, the above equation (7)
Since there is a unique relationship as indicated by, the conversion time θ that is a measure of deterioration can be obtained based on this color change.

更に、同一絶縁構成での寿命点における換算時間θ
を求めておけば、余寿命に相当する換算時間Δθ(=θ
−θ)が求まり、以降の温度条件が定まれば式(8)
からの余寿命の時間Δt(te−t)を求めることができ
る。たとえば、所定時間稼動後の色差ΔEabが26であ
るとすると、第3図の曲線Aからの劣化の換算時間θ
は、1.2×10-8秒となる。
Furthermore, the conversion time θ e at the life point with the same insulation configuration
Is calculated, the conversion time Δθ (= θ
e- θ) is obtained, and if the temperature conditions thereafter are determined, equation (8)
The time Δt (t e −t) of the remaining life can be calculated. For example, if the color difference ΔE * ab after operating for a predetermined time is 26, the conversion time θ of deterioration from the curve A in FIG.
Is 1.2 × 10 -8 seconds.

また、同一絶縁構成の絶縁線輪の耐熱寿命が、155℃
で4×10-4時間であるとすると、寿命点における換算時
間θは、式(3)から2.1×10-8秒となる。このとき
の劣化の活性化エネルギーΔEは、31kcal/molである。
したがって、余寿命の換算時間Δθ(θ−θ)は9×
10-9秒となり、引き続き155℃で機器が運転されたとす
ると、式(8)から余寿命の時間Δt=(te−t)は1.
7×104時間となる。
In addition, the insulated wires with the same insulation structure have a heat resistant life of 155 ° C.
Assuming that it is 4 × 10 −4 hours, the converted time θ e at the life point is 2.1 × 10 −8 seconds from the equation (3). The activation energy ΔE for deterioration at this time is 31 kcal / mol.
Therefore, the conversion time Δθ (θ e −θ) of the remaining life is 9 ×
Assuming that the equipment is operated at 155 ° C for 10 -9 seconds, the remaining life time Δt = (t e -t) is 1.
It will be 7 × 10 4 hours.

劣化度・余寿命演算部11においてこのような演算を行
い、この結果を警報・表示部12に送り、絶縁層の劣化状
況を知らせる信号を発生する。したがって、作業者は、
この信号によって絶縁層の状態を把握することができ
る。
The deterioration degree / remaining life calculation unit 11 performs such calculation, sends the result to the alarm / display unit 12, and generates a signal notifying the deterioration state of the insulating layer. Therefore, the worker
The state of the insulating layer can be grasped by this signal.

なお、光検出プローブ4用の光ファイバーは絶縁物で
あるので、これを主絶縁層3に埋め込んだことにより絶
縁性が劣化することはない。また、この光検出プローブ
4は絶縁層の外周に取り付けることもでき、表色法とし
ては前述の(L,a,b)表色系以外の表色系を用い
ることや、標準光の反射光量を直接使用することも可能
である。
Since the optical fiber for the photodetection probe 4 is an insulator, the insulating property is not deteriorated by embedding the optical fiber in the main insulating layer 3. The light detection probe 4 can also be attached to the outer periphery of the insulating layer, and the color system other than the (L * , a * , b * ) color system described above can be used as the color system. It is also possible to directly use the reflected light amount of.

更に、本発明の活線絶縁診断装置は、電気機器絶縁以
外に使用される材料の熱劣化診断にも適用できる。
Furthermore, the hot-wire insulation diagnosis apparatus of the present invention can be applied to heat deterioration diagnosis of materials used for insulation other than electric equipment insulation.

〔発明の効果〕〔The invention's effect〕

以上に説明したように、本発明の活線絶縁診断装置に
よれば、絶縁層内に埋設又は絶縁層の外周に取り付けた
光検出プローブで測定した絶縁層の色の変化から、絶縁
層劣化の直接的な情報である劣化の換算時間が得られる
と共に、機器の運転を止めることなく劣化度を電気信号
として連続的に取り出すことができる。そのため、保全
における修理や更新等の処置を、データベースに信頼度
高く且つタイムリーに行うことができる。
As described above, according to the hot-line insulation diagnostic device of the present invention, from the change in the color of the insulating layer measured by the photodetection probe embedded in the insulating layer or attached to the outer periphery of the insulating layer, the deterioration of the insulating layer The deterioration conversion time, which is direct information, can be obtained, and the deterioration degree can be continuously taken out as an electric signal without stopping the operation of the device. Therefore, it is possible to perform repairs and updates in maintenance in the database with high reliability and in a timely manner.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の活線絶縁診断装置を示す概略図
であり、第2図は第1図I−I線断面図であり、第3図
は色差ΔEabと換算時間θとの関係を示すグラフであ
る。 1:導体、2:保護絶縁層 3:主絶縁層、4:光検出プローブ 5:照明用光ファイバー、6:標準光源 7:受光用光ファイバー、8:光電変換素子 9:表色演算部、10:函数発生部 11:劣化度・余寿命演算部、12:警報・表示部
FIG. 1 is a schematic diagram showing a hot-line insulation diagnostic apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line II of FIG. 1, and FIG. 3 is a color difference ΔE * ab and a conversion time θ. It is a graph which shows the relationship of. 1: Conductor, 2: Protective insulation layer 3: Main insulation layer, 4: Photo-detection probe 5: Optical fiber for illumination, 6: Standard light source 7: Optical fiber for light reception, 8: Photoelectric conversion element 9: Colorimetric calculator, 10: Function generation part 11: Deterioration degree / remaining life calculation part, 12: Alarm / display part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁層の内部又は外周に設けた照明用光フ
ァイバー及び受光用光ファイバーを備えた光検出プロー
ブと、前記光検出プローブに接続された標準光源と、前
記受光用光ファイバーに接続され標準光の波長に対応し
た被測定面からの反射光を受光する光電変換素子と、該
光電変換素子の出力が入力される表色演算部からなる測
色システムと、 予め求めたおいた色の変化と前記絶縁層の劣化度との関
係を記憶した函数発生部と、 該函数発生部からの出力と前記測色システムの表色演算
部からの出力に基づいて、前記絶縁層の劣化度及び余寿
命を算出する劣化度・余寿命演算部と、 該劣化度・余寿命演算部による劣化度・余寿命の演算結
果に基づき所定の信号を発生する警報・表示部とを備え
ていることを特徴とする活線絶縁診断装置。
1. A photodetection probe provided with an optical fiber for illumination and an optical fiber for receiving light provided inside or around an insulating layer, a standard light source connected to the photodetecting probe, and a standard light connected to the optical fiber for receiving light. Of the photoelectric conversion element that receives the reflected light from the surface to be measured corresponding to the wavelength of, the colorimetric system consisting of the colorimetric calculation unit to which the output of the photoelectric conversion element is input, and the change of the color obtained in advance A function generator that stores the relationship with the degree of deterioration of the insulating layer, and the degree of deterioration and remaining life of the insulating layer based on the output from the function generator and the output from the colorimetric calculator of the colorimetric system. And a warning / display unit for generating a predetermined signal based on the calculation result of the deterioration degree / remaining life by the deterioration degree / remaining life calculation unit. Live line insulation diagnostic device
JP62242247A 1987-09-26 1987-09-26 Hot wire insulation diagnostic device Expired - Lifetime JP2556055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62242247A JP2556055B2 (en) 1987-09-26 1987-09-26 Hot wire insulation diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62242247A JP2556055B2 (en) 1987-09-26 1987-09-26 Hot wire insulation diagnostic device

Publications (2)

Publication Number Publication Date
JPS6484162A JPS6484162A (en) 1989-03-29
JP2556055B2 true JP2556055B2 (en) 1996-11-20

Family

ID=17086432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62242247A Expired - Lifetime JP2556055B2 (en) 1987-09-26 1987-09-26 Hot wire insulation diagnostic device

Country Status (1)

Country Link
JP (1) JP2556055B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025839A (en) * 2000-07-04 2002-01-25 Fuji Electric Co Ltd Degradation diagnosis device for oil-filled electric equipment
CN101925420A (en) * 2008-04-24 2010-12-22 东芝三菱电机产业系统株式会社 Deterioration diagnosing apparatus for induction heating unit
KR101012462B1 (en) * 2008-09-09 2011-02-08 한국전력공사 Diagnosis of Mold Transformer Epoxy Insulation by Ultrasonic Scanning
EP3382378B1 (en) * 2017-03-29 2022-10-26 Mitsubishi Electric R&D Centre Europe B.V. Optical monitoring

Also Published As

Publication number Publication date
JPS6484162A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
KR101887992B1 (en) ESS system having arc detector function and temperature detection and condensation detection and ground fault detection
US20120133146A1 (en) Detecting apparatus for detecting lightning strike, wind turbine blade equipped with the same, wind turbine generator, method for detecting lightning strike
JP2001141683A (en) Method and apparatus for monitoring crack
KR920002832Y1 (en) Insulation degradation monitoring device
KR102573955B1 (en) Switchboard self-diagnostic system capable of smart monitoring for arc and coronal discharge
CN111551286A (en) Passive wireless temperature detection device
JP2556055B2 (en) Hot wire insulation diagnostic device
KR101879743B1 (en) Connection board of photovoltaic power having function of temperature and condensation detection
HU215627B (en) Pre-warning device for the breakings of melted metal carrying out on ceramic furnace linings of melting furnaces particularly induction furnaces
US6087836A (en) Apparatus for and method of monitoring the status of the insulation on the wire in a winding
CN102736650A (en) Online temperature monitoring early-warning system for high-voltage electric power equipment
WO2002054029A1 (en) Temperature monitor for electro-mechanical part
Muhr et al. Sensors and sensing used for non-conventional PD detection
CN117607626A (en) Cable partial discharge and cable temperature on-line integrated monitoring method
JPH03115835A (en) Diagnostic apparatus for insulation of live wire
US11099079B2 (en) Device and method for monitoring electrical equipment for electrical contact overheating
CN210514507U (en) fault monitoring system
KR19980061560U (en) Fault detection device of power cable and junction box
KR20020091878A (en) An Insulators Damage Monitoring Device
JPS6327771A (en) Residual life meter
KR101803854B1 (en) Temperature detecting system for power distributing board having an insulator
JPH03226651A (en) Live wire insulation diagnostic apparatus
KR102561859B1 (en) Switchboard self-diagnostic system capable of smart monitoring for degradation
JPH06118120A (en) Insulation monitor device
KR100383177B1 (en) Sensor and system for measuring oil deterioration in distribution transformer