JPS62163388A - Manufacture of plastic molded printed wiring board - Google Patents
Manufacture of plastic molded printed wiring boardInfo
- Publication number
- JPS62163388A JPS62163388A JP421286A JP421286A JPS62163388A JP S62163388 A JPS62163388 A JP S62163388A JP 421286 A JP421286 A JP 421286A JP 421286 A JP421286 A JP 421286A JP S62163388 A JPS62163388 A JP S62163388A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- printed wiring
- mold
- wiring board
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、簡易金型の−firfである硬質の樹脂型に
より製造した表裏導通用の多数の小孔を有する耐熱性熱
可塑性樹脂成形体に公知の方法で配線網を形成してなる
プラスチック成形プリント配線板の製造法であり、少量
多品種生産に好適なものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat-resistant thermoplastic resin molded article having a large number of small holes for conduction between the front and back sides, which is manufactured using a hard resin mold that is a -firf of a simple mold. This is a method of manufacturing a plastic molded printed wiring board in which a wiring network is formed by a method known in the art, and is suitable for small-lot, high-mix production.
小孔を形成した耐熱性プラスチック成形品を製造する方
法に使用される金型としては、通常の金属製の金型や低
融点金属による簡易金型が使用されているが、型が複雑
で高価となるため、製品の耐熱性プラスチック成形品が
高価となるという欠点があった。The molds used in the method of manufacturing heat-resistant plastic molded products with small holes are ordinary metal molds or simple molds made of low-melting point metals, but the molds are complex and expensive. Therefore, there was a drawback that the heat-resistant plastic molded product was expensive.
本発明は、以上の問題点を解決し、多種、複雑な小孔を
形成可能な型を容易に低価格、短時間で製造し、より低
価格の耐熱性プラスチック成形プリント配線板の製造法
について鋭意検討した結果完成したものである。The present invention solves the above problems and provides a method for manufacturing a heat-resistant plastic molded printed wiring board at a lower cost by easily manufacturing a mold capable of forming a wide variety of complicated small holes at a low cost and in a short time. This was completed after careful consideration.
すなわち、本発明は、表裏導通用の多数の小孔を形成し
たプラスチック成形プリント配線板用の成形体を作成し
、該成形体に導体層を形成して配線網を作成する表裏導
通プリント配線板を製造する方法において、該成形体と
して、硬化前の組成物が100°C以下の温度で流動化
する性質を有し、かつ硬化樹脂のガラス転移温度が15
0℃以上で金属’′5′J体若しくは金属繊維を70重
量%以上含有する耐熱性付加重合型熱硬化性樹脂組成物
で作成され、小孔部分には硬質ピンを埋めこんでなる樹
脂型を用い、耐熱性熱可塑性樹脂を成形して製造した成
形体を使用することを特徴とするプラスチック成形プリ
ント配線板の製造法である。That is, the present invention provides a front-back conductive printed wiring board in which a molded body for a plastic molded printed wiring board is formed with a large number of small holes for front-back conduction, and a conductor layer is formed on the molded body to create a wiring network. In the method for producing the molded article, the composition before curing has a property of being fluidized at a temperature of 100°C or less, and the glass transition temperature of the cured resin is 15°C.
A resin mold made of a heat-resistant addition-polymerizable thermosetting resin composition containing 70% by weight or more of metal ``5''J bodies or metal fibers at 0°C or higher, with hard pins embedded in the small holes. This is a method for producing a plastic molded printed wiring board characterized by using a molded body produced by molding a heat-resistant thermoplastic resin using the above method.
以下、本発明について説明する。The present invention will be explained below.
本発明のプラスチック成形プリント配線板とは、半田付
けの可能な耐熱性プラスチックスを用い圧縮成形又は射
出成形により成形した表裏導通用の多数の小孔を有する
平板状若しくは部分的に凹凸部のある平板、曲面を持つ
仮、折れ曲がりのある仮などの形状の成形体に、必要に
応じて溶剤による表面の膨潤化、酸化その他の表面処理
を行い、Pd、Ag、 Cuなどを含む公知の活性化剤
で活性化した後、無電解i止金してCuやNi層を表面
に形成し、電解鍍金し、適宜レジスト塗布しバクーンを
焼付しエツチングする方法;表面処理した後、公知の光
活性触媒を塗布し光照射して選択的に活性化し、活性化
部分のみ無電解鍍金する方法;その池の公知方法で配線
網を形成してなるプリント配線板である。The plastic molded printed wiring board of the present invention is made of solderable heat-resistant plastic and is molded by compression molding or injection molding. Molded objects in the shape of flat plates, curved surfaces, bent shapes, etc. are subjected to surface swelling, oxidation, and other surface treatments using solvents as necessary, and are then subjected to known activation methods including Pd, Ag, Cu, etc. After activation with a chemical agent, a Cu or Ni layer is formed on the surface by electroless plating, electrolytic plating is applied, a resist is applied as appropriate, and Bakun is baked and etched; after surface treatment, a known photoactive catalyst is applied. This is a printed wiring board in which a wiring network is formed by a method known in the art, in which a wiring network is formed by a method known in the art, in which a method is applied, selectively activated by irradiation with light, and electroless plating is applied only to the activated portions.
ここに、半田付は可能な耐熱性プラスチックスとしては
、ポリサルフォン、ポリエーテルイミド、ポリエーテル
スルホン、ポリフェニレンサルファイド、ポリフェニレ
ンエーテルなどの耐熱性熱可塑性樹脂類やポリカーボネ
ート、ポリフェニレンエーテル、ポリアセタールなどの
熱可塑性樹脂とシアン酸エステル化合物類とを30/7
0〜70/30程度の比率で混合し、触媒を添加してな
るインク−ネットワークポリマー(特開昭54−142
297号公報)など及びこれらの樹脂に適宜、ガラス繊
維、ウオラストナイト、炭酸カルシウム、マイカその他
の補強基材、充填剤などを添加してなる組成物類が挙げ
られ、そのままで又は加熱硬化した後の耐熱性が、26
0°Cの半田付は工程に耐えられる程度のものである。Heat-resistant plastics that can be soldered include heat-resistant thermoplastic resins such as polysulfone, polyetherimide, polyether sulfone, polyphenylene sulfide, and polyphenylene ether, and thermoplastic resins such as polycarbonate, polyphenylene ether, and polyacetal. and cyanate ester compounds 30/7
Ink network polymer prepared by mixing in a ratio of 0 to 70/30 and adding a catalyst (Japanese Patent Application Laid-Open No. 54-142
No. 297 Publication), and compositions made by adding glass fiber, wollastonite, calcium carbonate, mica, other reinforcing materials, fillers, etc. to these resins as appropriate, or as they are or heat-cured. The heat resistance after is 26
Soldering at 0°C is enough to withstand the process.
上記した成形体を成形するために使用する本発明の金型
は、硬化前の組成物が100℃以下の温度で流動化する
性質を有し、かつ硬化樹脂のガラス転移温度が150℃
以上で金属粉を70重量%以上含有する耐熱性付加重合
型熱硬化性樹脂組成物で作成され、小孔部分には硬質ビ
ンを埋めこんでなる樹脂型である。The mold of the present invention used for molding the above molded article has a property that the composition before curing becomes fluid at a temperature of 100°C or lower, and a glass transition temperature of the cured resin of 150°C.
The resin mold is made of a heat-resistant addition polymerizable thermosetting resin composition containing 70% by weight or more of metal powder, and has hard bottles embedded in the small holes.
先ず、硬化前の組成物が100℃以下の温度で流動化す
る性質を有し、かつ硬化樹脂のガラス転移温度が150
°C以上の耐熱性イ]加重合型熱硬化性樹脂としては、
具体的にはシアナト樹脂(特公昭41−1928号、同
45−11712号、同44−1222号、ドイツ特許
第1190184号等)、シアン酸エステル−マレイミ
ド樹脂、シアン酸エステル−マレイミド−エポキシ樹脂
(特公昭54−30440号等、特公昭52−3127
9号、IJSP−4110364等)、シアン酸エステ
ル−エポキシ樹脂(特公昭46−41112号)、多官
能性マレイミドとエポキシ化合物やイソシアネート化合
物などとを主成分とする変性マレイミド樹脂(特公昭4
8−8279号)、イソシアネート化合物とエポキシ化
合物とを主成分とするイソシアネート−オキサゾリドン
樹脂(特開昭55−75418号)、三官能以上の多官
能エポキシ化合物を主成分とする多官能エポキシ樹脂、
変性1,2−ポリブタジェン樹脂、ジアリルフタレート
樹脂、シリコーン樹脂などが例示され、特に、シアナト
樹脂(特公昭41−1928号、同45−11712号
、同44−1222号、ドイツ特許第1190184号
等)、シアン酸エステル−マレイミド樹脂、シアン酸エ
ステル−マレイミド−エポキシ樹脂(特公昭54−30
440号等、特公昭52−31279号、USP−41
10364等)、シアン酸エステル−エポキシ樹脂(特
公昭46−41112号)等のシアン酸エステルを必須
成分として含むものが好ましい。これらの熱硬化性樹脂
には各樹脂に公知の添加剤類を適宜併用するものであり
、例えば、アミン類、酸無水物頚、有機金属塩類、有機
過酸化物頚などの触媒や硬化剤;公知のシリコーン系、
フン素糸などの離型剤やワックス類;ジエン系ゴム、低
結晶性乃至非結晶性の飽和ポリエステル樹脂、ポリウレ
タンなどの高分子量のエラストマー類などの可撓性賦与
剤;シリコーン系などの公知の消泡剤やカップリング剤
などが例示される。First, the composition before curing has the property of being fluidized at a temperature of 100°C or lower, and the glass transition temperature of the cured resin is 150°C.
Heat resistance above °C] As a polymerized thermosetting resin,
Specifically, cyanato resin (Japanese Patent Publication No. 41-1928, 45-11712, 44-1222, German Patent No. 1190184, etc.), cyanate ester-maleimide resin, cyanate ester-maleimide-epoxy resin ( Special Publication No. 54-30440, etc., Special Publication No. 52-3127
No. 9, IJSP-4110364, etc.), cyanate ester-epoxy resin (Japanese Patent Publication No. 46-41112), modified maleimide resin whose main components are polyfunctional maleimide and epoxy compounds, isocyanate compounds, etc.
8-8279), isocyanate-oxazolidone resin containing an isocyanate compound and an epoxy compound as main components (JP-A-55-75418), polyfunctional epoxy resin containing as a main component a trifunctional or higher polyfunctional epoxy compound,
Modified 1,2-polybutadiene resin, diallyl phthalate resin, silicone resin, etc. are exemplified, and in particular, cyanato resin (Japanese Patent Publication No. 41-1928, 45-11712, 44-1222, German Patent No. 1190184, etc.) , cyanate ester-maleimide resin, cyanate ester-maleimide-epoxy resin (Special Publication No. 54-30
No. 440, etc., Special Publication No. 52-31279, USP-41
10364, etc.), cyanate ester-epoxy resin (Japanese Patent Publication No. 46-41112), etc., containing cyanate ester as an essential component are preferred. These thermosetting resins are appropriately combined with known additives for each resin, such as catalysts and curing agents such as amines, acid anhydride necks, organic metal salts, and organic peroxide necks; Known silicone type,
Mold release agents and waxes such as fluorine thread; Flexibility agents such as diene rubber, low-crystalline to non-crystalline saturated polyester resins, and high molecular weight elastomers such as polyurethane; Known materials such as silicone-based Examples include antifoaming agents and coupling agents.
上記の樹脂に70重量%以上の量で配合する本発明の金
属粉体もしくは金属繊維(B)とは、主に樹脂型に熱伝
導性を付与する目的に使用するものであり特に限定され
ないが、具体的に例示すれば、鉄、アルミニウム、銅、
銅合金、アルミニウム合金、鉄合金、銀などである。The metal powder or metal fiber (B) of the present invention, which is blended into the above resin in an amount of 70% by weight or more, is mainly used for the purpose of imparting thermal conductivity to the resin mold, and is not particularly limited. , Specific examples include iron, aluminum, copper,
These include copper alloys, aluminum alloys, iron alloys, and silver.
以上の成分を温度20〜130 ’Cで、ロール、バン
バリーミキサ−、ヘンシェルミキサー、押出機その他の
公知の混練機で1分〜10時間の範囲で混合し、均一な
組成物と成った段階で混練を終了して本発明の100°
C以下、例えば50〜90℃程度の温度に於いて、粘羽
な液状又はペースト状である耐熱性付加重合型熱硬化性
樹脂組成物とし、樹脂型の製造に使用する。The above ingredients are mixed at a temperature of 20 to 130'C using a roll, Banbury mixer, Henschel mixer, extruder, or other known kneading machine for 1 minute to 10 hours to form a uniform composition. After finishing the kneading, the temperature is 100° according to the present invention.
A heat-resistant addition-polymerizable thermosetting resin composition that is in the form of a sticky liquid or paste at temperatures below C, for example, about 50 to 90°C, is used for manufacturing resin molds.
本発明の樹脂型は、この組成物をそのまま、又はこれに
補強材を適宜併用して、所望のモデルを用い、注型成形
し予備硬化若しくは硬化させ、所望により後硬化させ、
適用する成形方法に適合−だ部品、例えばゲートなどを
後加工して装着することにより製造する。The resin mold of the present invention can be made by casting the composition as it is or using a reinforcing material in combination with a desired model, pre-curing or curing, and post-curing if desired.
It is manufactured by post-processing parts that are compatible with the applied molding method, such as gates, and attaching them.
所望のモデルとは、表裏導通用の多数の小孔を有する平
板状若しくは部分的に凹凸部のある平板、曲面を持つ仮
、折れ曲がりのある板などの形状の成形体と同形のもの
で、注型並びに予備硬化時の加熱に耐えるものであれば
特に制限はない。The desired model is one that has the same shape as a molded object, such as a flat plate with many small holes for front and back conduction, a flat plate with partially uneven parts, a temporary plate with a curved surface, a bent plate, etc. There is no particular restriction as long as it can withstand the mold and the heating during preliminary curing.
注型方法の典型的な一例を示せば、
工程■:先ず、モデルの材質と注形樹脂との性質を懸案
して所望により離型剤を該モデルの小孔を含む全面に塗
布し、乾燥する。A typical example of the casting method is as follows: Step 1: First, depending on the properties of the material of the model and the casting resin, a release agent is applied to the entire surface of the model, including the small holes, and dried. do.
工程■:通常、適宜真空吸引可能で、適宜加熱可能とし
た容器の中に、長方形の仮の上に石膏など型取り用等に
使用される硬化性のねりつち状物を所定の厚み敷き、工
程■で準備したモデルを、装着する硬質ビンの固定側が
上面となるようにしてその上に密着させた後、モデルの
小孔部に該小孔と同径でモデルの両面に端がはみ出しか
つ樹脂型の一方で充分に固定されるように硬質ビンを装
着し、ねりつち状物の周囲を長方形柱状に板状物で囲い
、ねりつち状物を硬化させ、更にその上に型冷却用の媒
体流路とする金属パイプなどを配置する。Process ■: Usually, in a container that can be vacuum-suctioned and heated as appropriate, a hardening paste-like material used for making molds, such as plaster, is spread on a rectangular temporary to a predetermined thickness. , After placing the model prepared in step (2) tightly on top of the hard bottle to be attached, with the fixed side facing upward, insert a small hole in the model with the same diameter as the small hole, with the ends protruding from both sides of the model. Attach a hard bottle to one side of the resin mold so that it is sufficiently fixed, surround the paste-like material with a rectangular column-shaped plate, harden the paste-like material, and then place the mold on top of it. A metal pipe or the like will be placed as a cooling medium flow path.
工程■:本発明の耐熱性付加重合型熱硬化性樹脂組成物
を上部より注ぎ込み、真空吸引して脱気或いは脱泡した
後、成形圧力0〜30 kg / cJ 、温度60℃
以上、180°C以下、特に60〜150℃程度の範囲
で加熱・加圧してゲル化或いは半硬化乃至硬化させて自
己保持性とする。Step ①: The heat-resistant addition-polymerizable thermosetting resin composition of the present invention is poured from the top, and after degassing or defoaming by vacuum suction, the molding pressure is 0 to 30 kg/cJ, and the temperature is 60°C.
As described above, it is heated and pressurized at a temperature of 180° C. or less, particularly in the range of about 60 to 150° C., to gel or semi-cure or harden it, thereby making it self-retentive.
工程■:容器から取り出して、硬化したねりつち状物を
完全に取り除き、モデル及び注型樹脂面に離型剤を塗布
し、適宜、硬質ビンと同径の孔を有する1〜1o11程
度の金属板や金属棒を補強のためにセントし、再び工程
■で使用した容器内にセントし、更にその上に型冷却用
の媒体流路とする金属パイプなどを配置した後、本発明
の耐熱性付加重合型熱硬化性樹脂組成物を上部より注ぎ
込み、真空吸引して脱気或いは脱泡した後、工程■と同
様にして自己保持性とする。Step ■: Take it out of the container, completely remove the hardened glue, apply a mold release agent to the model and casting resin surface, and place a mold of about 1 to 1 o 11 with holes of the same diameter as the hard bottle. After inserting a metal plate or metal rod for reinforcement, placing it again into the container used in step ①, and placing a metal pipe etc. as a medium flow path for mold cooling on top of it, the heat-resistant The addition polymerization type thermosetting resin composition is poured from the top, and after degassing or defoaming by vacuum suction, it is made self-retaining in the same manner as in step (2).
工程■:以上で得た樹脂型は、通常は完全硬化していな
いものであるので、後硬化して硬化した樹脂型とする。Step (2): The resin mold obtained above is usually not completely cured, so it is post-cured to obtain a hardened resin mold.
後硬化の条件は使用する本発明の耐熱性付加重合型熱硬
化性樹脂組成物により適宜選択するが、例えば、温度1
50〜250°Cで1〜20時間程度、恒温槽中などで
硬化させる。The conditions for post-curing are appropriately selected depending on the heat-resistant addition polymerization type thermosetting resin composition of the present invention to be used.
It is cured at 50 to 250°C for about 1 to 20 hours in a constant temperature bath.
工程■:後加工してゲートその他の部品を装着する。Process ■: Post-process and attach gates and other parts.
である。It is.
なお、上記工程においては、割型を2段階の注型、ゲル
化或いは半硬化乃至硬化する方法によったが、注型用の
容器にモデル、硬質ビン、媒体流路など、更に、成形用
のゲートなどの部品及び適宜離型用の薄いフィルムなど
をセットし、−回の注型で行う方法などもとることが出
来るものである。In the above process, the split mold was cast in two stages, gelled, or semi-cured or hardened. It is also possible to set parts such as a gate and a thin film for mold release as appropriate, and perform the casting process in two steps.
以上の方法により製造した樹脂型を使用して、上記で説
明した耐熱性熱可塑性樹脂を成形して本発明のプラスチ
ック成形プリント配線板用の成形体を成形する。Using the resin mold manufactured by the above method, the heat-resistant thermoplastic resin described above is molded to form a molded body for a plastic molded printed wiring board of the present invention.
成形は、用いる半田付は可能な耐熱性熱可塑性樹脂の条
件によるが、成形サイクルは、使用する樹脂型の成形体
に接する面側の温度が樹脂型の樹脂のガラス転移温度を
超えないように通常の金属金型よりも長いサイクルとす
る。Molding depends on the conditions of the heat-resistant thermoplastic resin that can be soldered, but the molding cycle must be such that the temperature of the side of the resin mold used that contacts the molded object does not exceed the glass transition temperature of the resin in the resin mold. The cycle is longer than normal metal molds.
以下、実施例によって本発明をさらに具体的に説明する
。尚、実施例中の部は特に断らない限り重囲基準である
。Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, the parts in the examples are based on the enclosed standard unless otherwise specified.
実施例−1
モデルの作成
50 is X 50 mmで厚み2龍のガラス布基材
エポキシ樹脂積層板に、孔径0 、9 inの小孔を2
.54 mmピンチで格子状に100個開け、弗素系離
型剤(商品名;ダイフリー?’1S−743、ダイキン
工業a′4製)を塗布し乾燥した。Example-1 Creating a model Two small holes with a hole diameter of 0 and 9 inches were made in a glass cloth base epoxy resin laminate of 50 is x 50 mm and 2 mm thick.
.. 100 pieces were opened in a grid pattern using a 54 mm pinch, and a fluorine-based mold release agent (trade name: Daifree?'1S-743, manufactured by Daikin Kogyo A'4) was applied and dried.
隻七貫1JI諺近U鷹)I叫(資)
100111+1X100 mmの板の上に、石膏と酢
酸ビニルエマルジョンとの混合物よりなるねりつち状物
を厚さ30關で敷、その中央にモデルを密着させた後、
直径0.9龍、長さ4cmのハイスピンを小孔に、モデ
ルよりの突出長さが30IImとなるように差し込み、
厚み5龍のポリカーボネート仮に冷却用銅パイプの出入
り用孔を形成したもの及びしていないものを高さ130
m5に立てて箱状とし、内面に離型剤を塗布した。つい
で冷却用の内径5■のU字に数回曲げた銅パイプをこの
ハイスピンの周囲に配置し、冷却媒体流路部分を前記の
出入り用孔から引出す様に配置した。A paste-like material made of a mixture of plaster and vinyl acetate emulsion was spread 30 mm thick on a 100111+1x100 mm board, and the model was placed in the center. After bringing it into close contact,
Insert a high spin with a diameter of 0.9 mm and a length of 4 cm into the small hole so that the protrusion length from the model is 30 II m.
Polycarbonate with a thickness of 5 mm, with and without holes for the entrance and exit of the cooling copper pipe, and a height of 130 mm.
It was erected to a height of m5 to form a box shape, and a mold release agent was applied to the inner surface. Next, a cooling copper pipe having an inner diameter of 5 cm and bent into a U-shape several times was placed around this high spin, and the cooling medium flow path portion was placed so as to be drawn out from the above-mentioned entrance/exit hole.
2.2−ビス(4−シアナトフェニル)プロパン30部
と150メソシユのアルミニウム粉体 70部とを粉体
で混合した後、80℃で5分間加熱攪拌して流動性の組
成物(以下、組成物A1と記す)を得た。2. After mixing 30 parts of 2-bis(4-cyanatophenyl)propane and 70 parts of 150 mSO aluminum powder, the mixture was heated and stirred at 80°C for 5 minutes to form a fluid composition (hereinafter referred to as A composition A1) was obtained.
アセチルアセトン鉄0.03部を予め溶解したビスフェ
ノールA型のエポキシ樹脂(商品名;エピコート828
、粘度120〜150PS at25°C、エポキシ当
量184〜194、油化シェルエポキシ(株製)25部
と300メツシユの銅粉体 75部とを室温で混合し、
流動性の組成物(以下、硬化剤B1と記す)を得た。Bisphenol A type epoxy resin (trade name: Epicote 828) in which 0.03 part of iron acetylacetonate is dissolved in advance.
, viscosity 120-150PS at 25°C, epoxy equivalent 184-194, 25 parts of Yuka Shell Epoxy Co., Ltd. and 75 parts of 300 mesh copper powder are mixed at room temperature,
A fluid composition (hereinafter referred to as curing agent B1) was obtained.
前記で得たA175部と8125部とを60℃で溶融混
合して、注型用樹脂組成物(以下、R1と記す)とした
。175 parts of A obtained above and 8125 parts of A were melt-mixed at 60° C. to obtain a casting resin composition (hereinafter referred to as R1).
lt’l (’h (!1.’lの注型及び固定側の注
型上記で調製したR1を60°Cに加熱し、上記の注型
用型にハイスピンが全て埋め込まれるまで注ぎ込み、6
0℃で3 mm If gまで真空吸引し一時間脱泡し
た後、60°Cで10時間加熱し、注型樹脂をゲル化さ
せた。lt'l ('h (!1.'l Casting and Fixed Side Casting) Heat the R1 prepared above to 60°C and pour it into the above casting mold until all the high spin is embedded.
After defoaming by vacuum suction to 3 mm If g at 0°C for 1 hour, the resin was heated at 60°C for 10 hours to gel the casting resin.
ついでポリカーボネートの箱より内容物を取り出し、硬
化したねりつち状物を全て除去した後、注型樹脂がポリ
カーボネートの箱の下面となるように配置し、ポリカー
ボネートの箱の内面、注型tA+脂及びモデルの全面に
上記で使用したと同様の離型剤を塗布し、更に冷却用の
同様の洞パイプを配置した後、再び上記と同様にして注
型、真空脱泡、加熱ゲル化をした。Next, take out the contents from the polycarbonate box, remove all the hardened glue, and place the casting resin on the bottom surface of the polycarbonate box. A mold release agent similar to that used above was applied to the entire surface of the model, and a similar hollow pipe for cooling was placed, followed by casting, vacuum degassing, and heating gelation in the same manner as above.
上記で注型した型を開き、モデルを取り出した後、18
0°Cの恒温槽で10時間後硬化した。尚、型に使用し
た注型樹脂の硬化物のガラス転移温度は175℃、熱変
形温度は200℃であった。After opening the mold cast above and taking out the model, 18
It was cured after 10 hours in a constant temperature bath at 0°C. Incidentally, the glass transition temperature of the cured product of the casting resin used in the mold was 175°C, and the heat distortion temperature was 200°C.
ついで、この硬化した樹脂型に、射出成形用のゲート等
を加工製作し、これを金属製の保持具に注型用樹脂R1
で固定し、射出成形用の樹脂型を得た。Next, a gate for injection molding, etc. is processed into this cured resin mold, and this is placed in a metal holder with casting resin R1.
to obtain a resin mold for injection molding.
威J1■(社)W遣
上記で得た樹脂型を射出成形機にセットし、ポリスルホ
ン樹脂(ユニオンカーバイト製、品名;P−17Qo)
を、射出圧力1 、200 kg / c++I、シリ
ンダ一温度340℃、成形サイクル2分で、樹脂型を冷
却しつつ成形した。Set the resin mold obtained above in an injection molding machine and use polysulfone resin (manufactured by Union Carbide, product name: P-17Qo).
was molded at an injection pressure of 1, 200 kg/c++I, a cylinder temperature of 340° C., and a molding cycle of 2 minutes while cooling the resin mold.
プラスチック成形プリント配線板の製造上記で得た成形
体を35%の過酸化水素50容量%、98%硫酸50容
量%の混合溶液に40゛C110分間浸漬し、中和、水
洗した。Manufacture of plastic molded printed wiring board The molded body obtained above was immersed in a mixed solution of 50% by volume of 35% hydrogen peroxide and 50% by volume of 98% sulfuric acid at 40°C for 110 minutes, neutralized, and washed with water.
該成形体を乾燥した後、塩化錫、塩化パラジウム液を使
用して、全面をパラジウムで活性化した後、厚付無電解
銅i度合によって厚さ20声の銅層を析出させ、フォト
エッチツク法により両面導通プリント配線板とした。After drying the molded body, the entire surface was activated with palladium using a tin chloride and palladium chloride solution, and a copper layer with a thickness of 20 degrees was deposited using a thick electroless copper layer, followed by photoetching. A double-sided conductive printed wiring board was created using the method.
実施例−2
実施例−1において、注型用耐熱性付加重合型熱硬化性
樹脂組成物として、ビス(4−マレイミドフェニル)プ
ロパン 30部、実施例−1と同様のビスフェノールA
型エポキシ樹脂60部及びジフェニルメタンジイソシア
ネート(商品名、 MDI−CR1三井東圧化学01製
)50部を均一に混合し、この混合物に、150メツシ
ユのアルミニウム粉400部及び2−エチル−4−メチ
ルイミダゾール 0.5部を添加し、60°Cで混合し
注型用樹脂(以下、R2と言う)を得た。Example-2 In Example-1, 30 parts of bis(4-maleimidophenyl)propane and the same bisphenol A as in Example-1 were used as a heat-resistant addition-polymerizable thermosetting resin composition for casting.
60 parts of type epoxy resin and 50 parts of diphenylmethane diisocyanate (trade name, MDI-CR1 manufactured by Mitsui Toatsu Kagaku 01) were mixed uniformly, and to this mixture, 400 parts of 150 mesh aluminum powder and 2-ethyl-4-methylimidazole were added. 0.5 part was added and mixed at 60°C to obtain a casting resin (hereinafter referred to as R2).
上記のR2を使用して、箱体用のポリカーボネート板に
代えてアルミニウム板を使用し、ゲル化温度を170℃
とする他は同様にして樹脂型を得た。Using R2 above, use an aluminum plate instead of the polycarbonate plate for the box, and set the gelation temperature to 170℃.
A resin mold was obtained in the same manner except that.
ガラス転移温度は220°Cであった。The glass transition temperature was 220°C.
実施例−3
実施例−1において、注型用耐熱性付加重合型熱硬化性
樹脂組成物として、ビス(4−マレイミドフェニル)プ
ロパン 30部と実施例−1と同様のビスフェノールA
型エポキシ樹脂70部とを120°C130分間混合し
た後、50°Cまで冷却し、ジクロルジアミノジフェニ
ルメタン5部及びジクミルパーオキサイド0.5部、鉄
粉300部を混合し注型用樹脂(以下、R3と言う)を
得た。Example-3 In Example-1, 30 parts of bis(4-maleimidophenyl)propane and the same bisphenol A as in Example-1 were used as a heat-resistant addition polymerizable thermosetting resin composition for casting.
After mixing with 70 parts of mold epoxy resin at 120°C for 130 minutes, it was cooled to 50°C, and 5 parts of dichlorodiaminodiphenylmethane, 0.5 parts of dicumyl peroxide, and 300 parts of iron powder were mixed to form a casting resin ( Hereinafter referred to as R3) was obtained.
上記のR3を使用して、箱体用のポリカーボネート仮に
代えて鉄板を使用し、ゲル化温度を160°Cとする他
は同様にして樹脂型を得た。ガラス転移温度は200°
Cであった。A resin mold was obtained in the same manner using R3 above, except that an iron plate was used in place of the polycarbonate for the box, and the gelling temperature was changed to 160°C. Glass transition temperature is 200°
It was C.
実施例−4
実施例−1において、注型用耐熱性付加重合型熱硬化性
樹脂組成物として、ジアリルフタレートプレポリマー
25部とジアリルフタレートモノマー75部とを80°
C1均一に混合した後、冷却し、銅粉350部を均一に
混合し、次いでt−プチルパーオキシヘンヅエート 2
部を40°Cで20分間混合し注型用樹脂(以下、R4
と言う)を得た。Example-4 In Example-1, diallylphthalate prepolymer was used as a heat-resistant addition polymerizable thermosetting resin composition for casting.
25 parts and 75 parts of diallyl phthalate monomer at 80°
After uniformly mixing C1, it was cooled, 350 parts of copper powder was uniformly mixed, and then t-butyl peroxyhenzuate 2
The mixture was mixed at 40°C for 20 minutes to form a casting resin (hereinafter referred to as R4).
) was obtained.
上記のR4を使用して、箱体用のポリカーボネート仮に
代えて鉄板を使用し、ゲル化温度を150“Cとする他
は同様にして樹脂型を得た。ガラス転移温度は160°
Cであった。Using the above R4, a resin mold was obtained in the same manner except that an iron plate was used in place of the polycarbonate for the box, and the gelation temperature was 150"C.The glass transition temperature was 160°
It was C.
実施例−5
注型用モデルとして、50 龍X 3Q 婁■で厚み3
mm(7)アクリル樹脂板に、孔径0 、7 mmの小
孔を2.54 amピンチで格子状に50個開け、弗素
系離型剤(商品名;ダイフリーMS−743、ダイキン
工業■製)を塗布し乾燥したものを使用し、これに0.
7龍径のハイスピン、実施例−1と同様の銅パイプ等を
配置したものを使用し、注型用樹脂組成物として、2゜
2−ヒス(4−シアナトフェニル)プロパン27部、ビ
ス(4−マレイミドフェニル)メタン3部、150メツ
シユのステンレス鋼粉体 70部及びワックス0.5部
とを粉体で混合し゛た後、80°Cで5分間加熱攪拌し
て流動性の組成物を得、この組成物 75部と実施例−
1と同様にして得た硬化剤8125部とを60°Cで溶
融混合して、注型用樹脂組成物(以下、R2と記す)と
したものを使用する他は実施例=1と同様として、ガラ
ス転移温度178℃の樹脂型を得た。Example-5 As a casting model, the thickness is 3 with 50 dragon
mm(7) acrylic resin plate, 50 small holes with hole diameters of 0 and 7 mm were made in a grid pattern using a 2.54 am pinch, and a fluorine-based mold release agent (trade name: Daifree MS-743, manufactured by Daikin Industries, Ltd.) was added. ) was applied and dried, and then 0.
Using a high-spin with a diameter of 7 mm and equipped with copper pipes similar to those in Example 1, a casting resin composition containing 27 parts of 2°2-his(4-cyanatophenyl)propane and bis( After mixing 3 parts of 4-maleimidophenyl methane, 70 parts of 150 mesh stainless steel powder, and 0.5 part of wax, the mixture was heated and stirred at 80°C for 5 minutes to form a fluid composition. 75 parts of this composition and Examples
Example 1 was carried out in the same manner as in Example 1, except that a resin composition for casting (hereinafter referred to as R2) was obtained by melt-mixing 8125 parts of a curing agent obtained in the same manner as in Example 1 at 60 °C. A resin mold having a glass transition temperature of 178°C was obtained.
上記で得た樹脂型を射出成形機にセントし、ポリエーテ
ルスルホン樹脂(米国ICI社製、品名;420P)を
、射出圧力1 、300 kg / crA、シリンダ
一温度350℃、成形サイクル2.5分で、樹脂型を冷
却しつつ成形した他は同様とした。The resin mold obtained above was placed in an injection molding machine, and polyether sulfone resin (manufactured by ICI, USA, product name: 420P) was added at an injection pressure of 1, 300 kg/crA, a cylinder temperature of 350°C, and a molding cycle of 2.5. The procedure was the same except that the resin mold was molded while cooling.
以上の如くである本発明のプラスチック成形プリント配
線板の製造法は、型として金属製に代えて硬質樹脂型を
使用するものでるので、型の作成が極めて容易であり、
かつ樹脂型は耐熱性(Tg、熱劣化)、耐摩耗性などに
も優れており、作業性にも優れたものであることから、
従来の金属型に比較して多品種少量生産が極めて低価格
で、生産性よ〈実施できるものであり、プラスチック成
形プリント配線板の新規な用途を開くものである。The method for manufacturing a plastic molded printed wiring board of the present invention as described above uses a hard resin mold instead of a metal mold, so it is extremely easy to create the mold.
In addition, the resin mold has excellent heat resistance (Tg, thermal deterioration), abrasion resistance, etc., and is also excellent in workability.
Compared to conventional metal molds, high-mix, low-volume production is extremely low-cost and highly productive, opening up new uses for plastic molded printed wiring boards.
Claims (1)
プリント配線板用の成形体を作成し、該成形体に導体層
を形成して配線網を作成する表裏導通プリント配線板を
製造する方法において、該成形体として、硬化前の組成
物が100℃以下の温度で流動化する性質を有し、かつ
硬化樹脂のガラス転移温度が150℃以上で金属粉体若
しくは金属繊維を70重量%以上含有する耐熱性付加重
合型熱硬化性樹脂組成物で作成され、小孔部分には硬質
ピンを埋めこんでなる樹脂型を用い、耐熱性熱可塑性樹
脂を成形して製造した成形体を使用することを特徴とす
るプラスチック成形プリント配線板の製造法。In a method for manufacturing a printed wiring board with front and back conductivity, the method includes creating a molded body for a plastic molded printed wiring board in which a large number of small holes are formed for front and back conduction, and forming a conductor layer on the molded body to create a wiring network, The molded article has the property that the composition before curing becomes fluid at a temperature of 100°C or lower, and the cured resin has a glass transition temperature of 150°C or higher and contains 70% by weight or more of metal powder or metal fiber. It is made from a heat-resistant addition-polymerizable thermosetting resin composition, using a resin mold with hard pins embedded in the small holes, and using a molded body made by molding a heat-resistant thermoplastic resin. A unique manufacturing method for plastic molded printed wiring boards.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP421286A JPS62163388A (en) | 1986-01-14 | 1986-01-14 | Manufacture of plastic molded printed wiring board |
DE19863613006 DE3613006A1 (en) | 1985-04-17 | 1986-04-17 | Rigid resin form |
DE19873700902 DE3700902A1 (en) | 1986-01-14 | 1987-01-14 | METHOD OF MANUFACTURING PLASTIC MOLDED PRINTED CIRCUIT PANELS |
US07/003,344 US4764327A (en) | 1986-01-14 | 1987-01-14 | Process of producing plastic-molded printed circuit boards |
US07/029,581 US4740343A (en) | 1985-04-17 | 1987-03-25 | Method for producing rigid resin molds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP421286A JPS62163388A (en) | 1986-01-14 | 1986-01-14 | Manufacture of plastic molded printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62163388A true JPS62163388A (en) | 1987-07-20 |
JPH0577196B2 JPH0577196B2 (en) | 1993-10-26 |
Family
ID=11578316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP421286A Granted JPS62163388A (en) | 1985-04-17 | 1986-01-14 | Manufacture of plastic molded printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62163388A (en) |
-
1986
- 1986-01-14 JP JP421286A patent/JPS62163388A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0577196B2 (en) | 1993-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4740343A (en) | Method for producing rigid resin molds | |
CN109265922B (en) | A kind of high toughness autocatalytic epoxy resin and preparation method thereof | |
CN103146141A (en) | Low dielectric constant polyhedral oligomeric silsesquioxane (POSS)/ epoxy resin hybrid material and preparation method | |
CN110396210A (en) | A kind of preparation method of low dielectric high glass transition temperature polyarylether nitrile resin | |
CN104945624A (en) | Modified thermosetting resin and preparation method thereof | |
TW484347B (en) | Wiring substrate material and the substrate material for the printed circuit using the same | |
CN111925543A (en) | Low-humidity low-thermal expansion coefficient polyimide composite film material and preparation method thereof | |
TWI647797B (en) | Sealing material with semiconductor sealing substrate, semiconductor device, and method of manufacturing semiconductor device | |
JPS62163388A (en) | Manufacture of plastic molded printed wiring board | |
CN101068851A (en) | Polyimides, polyimide films and laminates | |
JPS62286298A (en) | Manufacture of plastic molded printed wiring board | |
CN108997577A (en) | It is a kind of amino-terminated containing polyarylether cured dose of method for preparing o-phthalonitrile resin solidfied material of diazanaphthalene terphenyl structure | |
JPS5911325A (en) | Composition useful for manufacturing circuit substrate and electric connector | |
CN106589832A (en) | Cage-like silsesquioxane modified epoxy adhesive solution for high-Tg low-dielectric copper-clad plate and preparation method of adhesive solution | |
JP4224907B2 (en) | Method for producing sheet-shaped epoxy resin composition | |
CN116425977B (en) | Preparation method of low-temperature curing phthalonitrile type bismaleimide-triazine resin | |
JP2000136290A (en) | Resin composition for sealing and semiconductor-sealed device | |
JPS6314880A (en) | Metal plating treatment | |
JP2892433B2 (en) | Sealing resin composition and semiconductor sealing device | |
JPS62207322A (en) | Thermosetting resin composition | |
CN104910353B (en) | Preparation method of high-temperature-resistant epoxy resin adopting polyborosilazane as curing agent | |
JPH05295083A (en) | Epoxy resin composition for mold and resin mold made thereof | |
JP2000136291A (en) | Resin composition for sealing and semiconductor-sealed device | |
JPH0525253A (en) | Epoxy resin composition | |
CN114854176A (en) | A kind of high Tg temperature epoxy resin for aviation and its production process |