JPH0577196B2 - - Google Patents
Info
- Publication number
- JPH0577196B2 JPH0577196B2 JP421286A JP421286A JPH0577196B2 JP H0577196 B2 JPH0577196 B2 JP H0577196B2 JP 421286 A JP421286 A JP 421286A JP 421286 A JP421286 A JP 421286A JP H0577196 B2 JPH0577196 B2 JP H0577196B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- mold
- heat
- printed wiring
- wiring board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、簡易金型の一種である硬質の樹脂型
により製造した裏表導通用の多数の小孔を有する
耐熱性熱可塑性樹脂成形体に公知の方法で配線網
を形成してなるプラスチツク成形プリント配線板
の製造法であり、小量多品種生産に好適なもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a heat-resistant thermoplastic resin molded article having a large number of small holes for conduction between the front and back sides, which is manufactured using a hard resin mold that is a type of simple mold. This is a method of manufacturing a plastic molded printed wiring board in which a wiring network is formed by a known method, and is suitable for small-volume, high-mix production.
小孔を形成した耐熱性プラスチツク成形品を製
造する方法に使用される金型としては、通常の金
属製の金型や低融点金属による簡易金型が使用さ
れているが、型が複雑で高価となるため、製品の
耐熱性プラスチツク成形品が高価となるという欠
点があつた。
The molds used to manufacture heat-resistant plastic molded products with small holes are ordinary metal molds or simple molds made of low-melting point metals, but these molds are complex and expensive. Therefore, there was a drawback that the heat-resistant plastic molded product was expensive.
本発明は、以上の問題点を解決し、多種、複雑
な小孔を形成可能な型を容易に低価格、短時間で
製造し、より低価格の耐熱性プラスチツク成形プ
リント配線板の製造法について鋭意検討した結果
完成したものである。 The present invention solves the above problems and provides a method for manufacturing a heat-resistant plastic molded printed wiring board at a lower cost by easily manufacturing a mold capable of forming a wide variety of complicated small holes at a low cost and in a short time. This was completed after careful consideration.
すなわち、本発明は、表裏導通用の多数の小孔
を形成したプラスチツク成形プリント配線板用の
成形体を作成し、該成形体に導体層を形成して配
線網を作成する表裏導通プリント配線板を製造す
る方法において、該成形体として、硬化前の組成
物が100℃以下の温度で流動化する性質を有し、
かつ硬化樹脂のガラス転移温度が150℃以上で金
属粉体若しくは金属繊維を70重量%以上含有する
耐熱性付加重合型熱硬化性樹脂組成物で作成さ
れ、小孔部分には硬質ピンを埋めこんでなる樹脂
型を用い、耐熱性熱可塑性樹脂を成形して製造し
た成形体を使用することを特徴とするプラスチツ
ク成形プリント配線板の製造法である。
That is, the present invention provides a front-back conductive printed wiring board in which a molded body for a plastic molded printed wiring board is formed with a large number of small holes for front-back conduction, and a conductor layer is formed on the molded body to create a wiring network. In the method for producing the molded article, the composition before curing has a property of being fluidized at a temperature of 100 ° C. or less,
It is made from a heat-resistant addition-polymerizable thermosetting resin composition with a glass transition temperature of 150°C or higher and containing 70% by weight or more of metal powder or metal fibers, and hard pins are embedded in the small holes. This method of manufacturing a plastic molded printed wiring board is characterized by using a molded body produced by molding a heat-resistant thermoplastic resin using a resin mold consisting of:
以下、本発明について説明する。 The present invention will be explained below.
本発明のプラスチツク成形プリント配線板と
は、半田付けの可能な耐熱性プラスチツクスを用
い圧縮成形又は射出成形により成形した表裏導通
用の多数の小孔を有する平板状若しくは部分的に
凹凸部のある平板、曲面を持つ板、折れ曲がりの
ある板などの形状の成形体に、必要に応じて溶剤
による表面の膨潤化、酸化その他の表面処理を行
い、Pd、Ag、Cuなどを含む公知の活性化剤で活
性化した後、無電解鍍金してCuやNi層を表面に
形成し、電解鍍金し、適宜レジスト塗布しパター
ンを焼付しエチツングする方法;表面処理した
後、公知の光活性触媒を塗布し光照射して選択的
に活性化し、活性化部分のみ無電解鍍金する方
法;その他の公知方法で配線網を形成してなるプ
リント配線板である。 The plastic molded printed wiring board of the present invention is a flat plate having a large number of small holes for front and back conduction, or a partially uneven board, which is made of solderable heat-resistant plastic and molded by compression molding or injection molding. Molded objects in shapes such as flat plates, curved plates, bent plates, etc. are subjected to surface swelling, oxidation, and other surface treatments using solvents as necessary, and known activation methods including Pd, Ag, Cu, etc. After activation with a chemical agent, electroless plating is performed to form a Cu or Ni layer on the surface, electrolytic plating is applied, a resist is applied as appropriate, and a pattern is baked and etched; after surface treatment, a known photoactive catalyst is applied. This is a printed wiring board in which a wiring network is formed by a method of selectively activating by irradiation with light and electroless plating only the activated portion; or by other known methods.
ここに、半田付け可能な耐熱性プラスチツクス
としては、ポリサルフオン、ポリエーテルイミ
ド、ポリエーテルスルホン、ポリフエニレンサル
フアイド、ポリフエニレンエーテルなどの耐熱性
熱可塑性樹脂類やポリカーボネート、ポリフエニ
レンエーテル、ポリアセタールなどの熱可塑性樹
脂とシアン酸エステル化合物類とを30/70〜70/
30程度の比率で混合し、触媒を添加してなるイン
ターネツトワークポリマー(特開昭54−142297号
公報)など及びこれらの樹脂に適宜、ガラス繊
維、ウオラストナイト、炭酸カルシウム、マイカ
その他の補強基材、充填剤などを添加してなる組
成物類が挙げられ、そのままで又は加熱硬化した
後の耐熱性が、260℃の半田付け工程に耐えられ
る程度のものである。 Here, heat-resistant plastics that can be soldered include heat-resistant thermoplastic resins such as polysulfone, polyetherimide, polyether sulfone, polyphenylene sulfide, polyphenylene ether, polycarbonate, polyphenylene ether, Thermoplastic resin such as polyacetal and cyanate ester compounds are mixed in 30/70 to 70/
Internetwork polymers (Japanese Unexamined Patent Publication No. 142297/1983) made by mixing at a ratio of about 30% and adding a catalyst, and these resins are appropriately reinforced with glass fiber, wollastonite, calcium carbonate, mica, etc. Examples include compositions to which base materials, fillers, etc. are added, and the heat resistance as is or after heat curing is such that it can withstand a soldering process at 260°C.
上記した成形体を成形するために使用する本発
明の金型は、硬化前の組成物が100℃以下の温度
で流動化する性質を有し、かつ硬化樹脂のガラス
転移温度が150℃以上で金属粉を70重量%以上含
有する耐熱性付加重合型熱硬化性樹脂組成物で作
成され、小孔部分には硬質ピンを埋めこんでなる
樹脂型である。 The mold of the present invention used to mold the above-mentioned molded article has the property that the composition before curing becomes fluid at a temperature of 100°C or lower, and the glass transition temperature of the cured resin is 150°C or higher. It is a resin mold made from a heat-resistant addition-polymerizable thermosetting resin composition containing 70% by weight or more of metal powder, and has hard pins embedded in the small holes.
先ず、硬化前の組成物が100℃以下の温度で流
動化する性質を有し、かつ硬化樹脂のガラス転移
温度が150℃以上の耐熱性付加重合型熱硬化性樹
脂としては、具体的にはシアナト樹脂(特公昭41
−1928号、同45−11712号、同44−1222号、ドイ
ツ特許第1190184号等)、シアン酸エステル−マレ
イミド樹脂、シアン酸エステル−マレイミド−エ
ポキシ樹脂(特公昭54−30440号等、特公昭52−
31279号、USP−4110364等)、シアン酸エステル
−エポキシ樹脂(特公昭46−41112号)、多官能性
マレイミドとエポキシ化合物やイソシアネート化
合物などとを主成分とする変性マレイミド樹脂
(特公昭48−8279号)、イソシアネート化合物とエ
ポキシ化合物とを主成分とするイソシアネート−
オキサゾリドン樹脂(特開昭55−75418号)、三官
能以上の多官能エポキシ化合物を主成分とする多
官能エポキシ樹脂、変性1,2−ポリブタジエン
樹脂、ジアリルフタレート樹脂、シリコーン樹脂
などが例示され、特に、シアナト樹脂(特公昭41
−1928号、同45−11712号、同44−1222号、ドイ
ツ特許第1190184号等)、シアン酸エステル−マレ
イミド樹脂、シアン酸エステル−マレイミドエポ
キシ樹脂(特公昭54−30440号等、特公昭52−
31279号、USP−4110364等)、シアン酸エステル
−エポキシ樹脂(特公昭46−41112号)等のシア
ン酸エステルを必須成分として含むものが好まし
い。これらの熱硬化性樹脂には各樹脂に公知の添
加剤類を適宜併用するものであり、例えば、アミ
ン類、酸無水物類、有機金属塩類、有機過酸化物
類などの触媒や硬化剤;公知のシリコーン系、フ
ツ素系などの離型剤やワツクス類;ジエン系ゴ
ム、低結晶性乃至非結晶性の飽和ポリエステル樹
脂、ポリウレタンなどの高分子量のエラストマー
類などの可撓性賦与剤;シリコーン系などの公知
の消泡剤やカツプリング剤などが例示される。 First, as a heat-resistant addition polymerization type thermosetting resin whose composition before curing has the property of fluidizing at a temperature of 100°C or lower and the glass transition temperature of the cured resin is 150°C or higher, specifically, Cyanato resin (Special Publication 1977)
-1928, 45-11712, 44-1222, German Patent No. 1190184, etc.), cyanate ester-maleimide resin, cyanate ester-maleimide-epoxy resin (Japanese Patent Publication No. 54-30440, etc.) 52−
31279, USP-4110364, etc.), cyanate ester-epoxy resin (Japanese Patent Publication No. 46-41112), modified maleimide resin whose main components are polyfunctional maleimide, epoxy compounds, isocyanate compounds, etc. (Japanese Patent Publication No. 48-8279) No.), isocyanate whose main components are an isocyanate compound and an epoxy compound.
Examples include oxazolidone resin (JP-A-55-75418), polyfunctional epoxy resin whose main component is a trifunctional or higher polyfunctional epoxy compound, modified 1,2-polybutadiene resin, diallyl phthalate resin, silicone resin, etc. , cyanato resin (Special Publication Showa 41)
-1928, German Patent No. 45-11712, German Patent No. 44-1222, German Patent No. 1190184, etc.), cyanate ester-maleimide resin, cyanate ester-maleimide epoxy resin (Japanese Patent Publication No. 54-30440, etc., German Patent No. 52 −
31279, USP-4110364, etc.), cyanate ester-epoxy resin (Japanese Patent Publication No. 46-41112), etc., containing cyanate ester as an essential component are preferred. These thermosetting resins are appropriately combined with known additives for each resin, such as catalysts and curing agents such as amines, acid anhydrides, organic metal salts, and organic peroxides; Known silicone-based and fluorine-based mold release agents and waxes; flexibility agents such as diene rubber, low-crystalline to non-crystalline saturated polyester resins, and high-molecular-weight elastomers such as polyurethane; silicone Examples include well-known antifoaming agents and coupling agents such as A-type antifoaming agents.
上記の樹脂に70重量%以上の量で配合する本発
明の金属粉体もしくは金属繊維Bとは、主に樹脂
型に熱伝導性を付与する目的に使用するものであ
り特に限定されないが、具体的に例示すれば、
鉄、アルミニウム、銅、銅合金、アルミニウム合
金、鉄合金、銀などである。 The metal powder or metal fiber B of the present invention, which is blended into the above resin in an amount of 70% by weight or more, is mainly used for the purpose of imparting thermal conductivity to the resin mold, and is not particularly limited. For example,
These include iron, aluminum, copper, copper alloy, aluminum alloy, iron alloy, silver, etc.
以上の成分を温度20〜130℃で、ロール、バン
バリーミキサー、ヘンシエルミキサー、押出機そ
の他の公知の混練機で1分〜10時間の範囲で混合
し、均一な組成物と成つた段階で混練を終了して
本発明の100℃以下、例えば50〜90℃程度の温度
に於いて、粘調な液状又はペースト状である耐熱
性付加重合型熱硬化性樹脂組成物とし、樹脂型の
製造に使用する。 The above ingredients are mixed at a temperature of 20 to 130°C using a roll, Banbury mixer, Henschel mixer, extruder, or other known kneading machine for a period of 1 minute to 10 hours, and kneaded when a uniform composition is obtained. After completion of the process, the heat-resistant addition polymerizable thermosetting resin composition of the present invention, which is in a viscous liquid or paste form at a temperature of 100°C or less, for example, about 50 to 90°C, is prepared and used for manufacturing a resin mold. use.
本発明の樹脂型は、この組成物をそのまま、又
はこれに補強材を適宜併用して、所望のモデルを
用い、注型成形し予備硬化若しくは硬化させ、所
望により後硬化させ、適用する成形方法に適合し
た部品、例えばゲートなどを後加工して装着する
ことにより製造する。 The resin mold of the present invention can be produced using a molding method in which this composition is used as it is or in combination with a reinforcing material as appropriate, using a desired model, cast, precured or cured, and optionally postcured. It is manufactured by post-processing and installing parts that are compatible with the system, such as gates.
所望のモデルとは、表裏導通用の多数の小孔を
有する平板状若しくは部分的に凹凸部のある平
板、曲面を持つ板、折れ曲がりのある板などの形
状の成形体と同形のもので、注型並びに予備硬化
時の加熱に耐えるものであれば特に制限はない。 The desired model is one that has the same shape as a molded object, such as a flat plate with many small holes for front and back conduction, a flat plate with partially uneven parts, a curved plate, a bent plate, etc. There is no particular restriction as long as it can withstand the mold and the heating during preliminary curing.
注型方法の典型的な一例を示せば、
工程:先ず、モデルの材質と注形樹脂との性質
を懸案して所望により離型剤を該モデルの小孔
を含む全面に塗布し、乾燥する。 A typical example of the casting method is as follows: First, depending on the properties of the material of the model and the casting resin, a release agent is applied to the entire surface of the model, including the small holes, and dried. .
工程:通常、適宜真空吸引可能で、適宜加熱可
能とした容器の中に、長方形の板の上に石膏な
ど型取り用等に使用される硬化性のねりつち状
物を所定の厚み敷き、工程で準備したモデル
を、装着する硬質ピンの固定側が上面となるよ
うにしてその上に密着させた後、モデルの小孔
部に該小孔と同径でモデルの両面に端がはみ出
しかつ樹脂型の一方で充分に固定されるように
硬質ピンを装着し、ねりつち状物の周囲を長方
形柱状に板状物で囲い、ねりつち状物を硬化さ
せ、更にその上に型冷却用の媒体流路とする金
属パイプなどを配置する。Process: Usually, in a container that can be vacuum-suctioned and heated as appropriate, a hardening paste-like material used for molding, such as plaster, is spread on a rectangular plate to a predetermined thickness. After fitting the model prepared in the process tightly onto the hard pin to be attached with the fixed side facing upward, insert a small hole into the model with the same diameter as the small hole with the ends protruding from both sides of the model and the resin. Attach a hard pin to one side of the mold so that it is sufficiently fixed, surround the sticky material with a rectangular column-shaped plate, harden the sticky material, and place a plate on top of it for cooling the mold. Place a metal pipe, etc. as a medium flow path.
工程:本発明の耐熱性付加重合型熱硬化性樹脂
組成物を上部より注ぎ込み、真空吸引して脱気
或いは脱泡した後、成形圧力0〜30Kg/cm2、温
度60℃以上、180℃以下、特に60〜150℃程度の
範囲で加熱・加圧してゲル化或いは半硬化乃至
硬化させて自己保持性とする。Process: Pour the heat-resistant addition-polymerizable thermosetting resin composition of the present invention from above, degas or defoam by vacuum suction, and then apply a molding pressure of 0 to 30 Kg/cm 2 and a temperature of 60°C or higher and 180°C or lower. In particular, it is heated and pressurized in a range of about 60 to 150°C to gel or semi-cure or harden it to make it self-retentive.
工程:容器から取り出して、硬化したねりつち
状物を完全に取り除き、モデル及び注型樹脂面
に離型剤を塗布し、適宜、硬質ピンと同径の孔
を有する1〜10mm程度の金属板や金属棒を補強
のためにセツトし、再び工程で使用した容器
内にセツトし、更にその上に型冷却用の媒体流
路とする金属パイプなどを配置した後、本発明
の耐熱性付加重合型熱硬化性樹脂組成物を上部
より注ぎ込み、真空吸引して脱気或いは脱泡し
た後、工程と同様にして自己保持性とする。Process: Remove from the container, completely remove the hardened glue, apply a mold release agent to the model and casting resin surface, and prepare a metal plate of approximately 1 to 10 mm with a hole of the same diameter as the hard pin. After setting the mold and metal rods for reinforcement, placing it again in the container used in the process, and placing a metal pipe etc. as a medium flow path for mold cooling on top of it, the heat-resistant addition polymerization process of the present invention is carried out. The thermosetting resin composition is poured from the top of the mold, and after degassing or defoaming by vacuum suction, it is made self-retaining in the same manner as in the process.
工程:以上で得た樹脂型は、通常は完全硬化し
ていないものであるので、後硬化して硬化した
樹脂型とする。後硬化の条件は使用する本発明
の耐熱性付加重合型熱硬化性樹脂組成物により
適宜選択するが、例えば、温度150〜250℃で1
〜20時間程度、恒温槽中などで硬化させる。Process: Since the resin mold obtained above is usually not completely cured, it is post-cured to obtain a hardened resin mold. The post-curing conditions are appropriately selected depending on the heat-resistant addition polymerizable thermosetting resin composition of the present invention to be used, but for example,
Cure in a constant temperature bath for about 20 hours.
工程:後加工してゲートその他の部品を装着す
る。Process: Post-process and attach gates and other parts.
である。It is.
なお、上記工程においては、割型を2段階の注
型、ゲル化或いは半硬化乃至硬化する方法によつ
たが、注型用の容器にモデル、硬質ピン、媒体流
路など、更に、成形用のゲートなどの部品及び適
宜離型用の薄いフイルムなどをセツトし、一回の
注型で行う方法などもとることが出来るものであ
る。 In the above process, the split mold was cast in two stages, gelled or semi-cured or hardened, but the casting container was filled with a model, hard pins, medium flow path, etc. It is also possible to use a method in which parts such as gates and a thin film for releasing the mold are set, and the molding is performed in one casting.
以上の方法により製造した樹脂型を使用して、
上記で説明した耐熱性熱可塑性樹脂を成形して本
発明のプラスチツク成形プリント配線板用の成形
体を成形する。 Using the resin mold manufactured by the above method,
The heat-resistant thermoplastic resin described above is molded to form a molded body for a plastic molded printed wiring board of the present invention.
成形は、用いる半田付け可能な耐熱性熱可塑性
樹脂の条件によるが、成形サイクルは、使用する
樹脂型の成形体に接する面側の温度が樹脂型の樹
脂のガラス転移温度を超えないように通常の金属
金型よりも長いサイクルとする。 Molding depends on the conditions of the solderable heat-resistant thermoplastic resin used, but the molding cycle is usually such that the temperature of the side of the resin mold used that is in contact with the molded object does not exceed the glass transition temperature of the resin in the resin mold. The cycle is longer than that of metal molds.
以下、実施例によつて本発明をさらに具体的に
説明する。尚、実施例中の部は特に断らない限り
重量基準である。
Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, parts in the examples are based on weight unless otherwise specified.
実施例 1
モデルの作成
50mm×50mmで厚み2mmのガラス布基材エポキシ
樹脂積層板に、孔径0.9mmの小孔を2.54mmピツチ
で格子状に100個開け、弗素系離型剤(商品名;
ダイフリーMS−743、ダイキン工業(株)製)を塗
布し乾燥した。Example 1 Creating a model 100 small holes with a hole diameter of 0.9 mm were opened in a grid pattern at a pitch of 2.54 mm in a 50 mm x 50 mm and 2 mm thick glass cloth base epoxy resin laminate, and a fluorine-based mold release agent (product name;
Daifree MS-743 (manufactured by Daikin Industries, Ltd.) was applied and dried.
移動側樹脂型の注型型の準備
100mm×100mmの板の上に、石膏と酢酸ビニルエ
ルマジヨンとの混合物よりなるねりつち状物を厚
さ30mmで敷、その中央にモデルを密着させた後、
直径0.9mm、長さ4cmのハイスピンを小孔に、モ
デルよりの突出長さが30mmとなるように差し込
み、厚み5mmのポリカーボネート板に冷却用銅パ
イプの出入り用孔を形成したもの及びしていない
ものを高さ130mmに立てて箱状とし、内面に離型
剤を塗布した。ついで冷却用の内径5mmのU字に
数回曲げた銅パイプをこのハイスピンの周囲に配
置し、冷却媒体流路部分を前記の出入り用孔から
引出す様に配置した。Preparing the casting mold for the moving resin mold A 30 mm thick paste made of a mixture of plaster and vinyl acetate was spread on a 100 mm x 100 mm plate, and the model was placed tightly in the center. rear,
A high-spin rod with a diameter of 0.9 mm and a length of 4 cm is inserted into a small hole so that the protrusion length from the model is 30 mm, and a 5 mm thick polycarbonate plate is made with and without holes for the entry and exit of the cooling copper pipe. The object was erected to a height of 130 mm to form a box shape, and a mold release agent was applied to the inner surface. Next, a cooling copper pipe having an inner diameter of 5 mm and bent several times into a U-shape was placed around this high spin, and the cooling medium flow path was placed so as to be drawn out from the above-mentioned entrance/exit hole.
注型様の耐熱性付加重合型熱硬化性樹脂組成物の
製造
2,2−ビス(4−シアナトフエニル)プロパ
ン30部と150メツシユのアルミニウム粉体70部と
を粉体で混合した後、80℃で5分間加熱撹拌して
流動性の組成物(以下、組成物A1と記す)を得
た。Production of cast-like heat-resistant addition-polymerizable thermosetting resin composition After mixing 30 parts of 2,2-bis(4-cyanatophenyl)propane and 70 parts of 150 mesh aluminum powder in powder form, the mixture was heated to 80°C. The mixture was heated and stirred for 5 minutes to obtain a fluid composition (hereinafter referred to as composition A1).
アセチルアセトン鉄0.03部を予め溶解したビス
フエノールA型のエポキシ樹脂(商品名;エピコ
ート828、粘度120〜150PS at25℃、エポキシ当
量184〜194、油化シエルエポキシ(株)製)25部と
300メツシユの銅粉体75部と室温で混合し、流動
性の組成物(以下、硬化剤B1と記す)を得た。 25 parts of bisphenol A type epoxy resin (trade name: Epicote 828, viscosity 120-150 PS at 25°C, epoxy equivalent 184-194, manufactured by Yuka Ciel Epoxy Co., Ltd.) in which 0.03 part of iron acetylacetonate was dissolved in advance;
It was mixed with 75 parts of 300 mesh copper powder at room temperature to obtain a fluid composition (hereinafter referred to as curing agent B1).
前記で得たA1 75部とB1 25部とを60℃で溶融
混合して、注型用樹脂組成物(以下、R1と記す)
とした。 75 parts of A1 and 25 parts of B1 obtained above were melted and mixed at 60°C to form a casting resin composition (hereinafter referred to as R1).
And so.
移動側の注型及び固定側の注型
上記で調製したR1を60℃に加熱し、上記の注
型用型にハイスピンが全て埋め込まれるまで注ぎ
込み、60℃で3mmHgまで真空吸引し一時間脱泡
した後、60℃で10時間加熱し、注型樹脂をゲル化
させた。Casting on the movable side and casting on the fixed side Heat the R1 prepared above to 60℃, pour it into the above casting mold until all of the high spin is embedded, and vacuum it to 3 mmHg at 60℃ to defoam for 1 hour. After that, it was heated at 60°C for 10 hours to gel the casting resin.
ついでポリカーボネートの箱より内容物を取り
出し、硬化したねりつち状物を全て除去した後、
注型樹脂がポリカーボネートの箱の下面となるよ
うに配置し、ポリカーボネートの箱の内面、注型
樹脂及びモデルの全面に上記で使用したと同様の
離型剤を塗布し、更に冷却用の同様の銅パイプを
配置した後、再び上記と同様にして注型、真空脱
泡、加熱ゲル化をした。 Then, after removing the contents from the polycarbonate box and removing all the hardened sticky material,
Place the casting resin on the bottom surface of the polycarbonate box, apply the same mold release agent as used above to the inside surface of the polycarbonate box, the casting resin, and the entire surface of the model, and apply the same mold release agent for cooling. After placing the copper pipe, casting, vacuum degassing, and heating gelation were performed again in the same manner as above.
後硬化及び後加工
上記で注型した型を開き、モデルを取り出した
後、180℃の恒温槽で10時間後硬化した。尚、型
に使用した注型樹脂の硬化物のガラス転移温度は
175℃、熱変形温度は200℃であつた。Post-curing and post-processing After opening the mold cast above and taking out the model, it was cured in a constant temperature bath at 180°C for 10 hours. Furthermore, the glass transition temperature of the cured product of the casting resin used in the mold is
The heat distortion temperature was 175°C and 200°C.
ついで、この硬化した樹脂型に、射出成形用の
ゲート等を加工製作し、これを金属製の保持具に
注型用樹脂R1で固定し、射出成形用の樹脂型を
得た。 Next, a gate for injection molding and the like was fabricated on this cured resin mold, and this was fixed to a metal holder with casting resin R1 to obtain a resin mold for injection molding.
成形体の製造
上記で得た樹脂型を射出成形機にセツトし、ポ
リスルホン樹脂(ユニオンカーバイト製、品名;
P−1700)を、射出圧力1200Kg/cm2、シリンダー
温度340℃、成形サイクル2分で、樹脂型を冷却
しつつ成形した。Manufacture of molded article The resin mold obtained above was set in an injection molding machine, and polysulfone resin (manufactured by Union Carbide, product name;
P-1700) was molded at an injection pressure of 1200 Kg/cm 2 , a cylinder temperature of 340° C., and a molding cycle of 2 minutes while cooling the resin mold.
プラスチツク成形プリント配線板の製造
上記で得た成形体を35%の過酸化水素50容量
%、98%硫酸50容量%の混合溶液に40℃、10分間
浸漬し、中和、水洗した。Manufacture of plastic molded printed wiring board The molded body obtained above was immersed in a mixed solution of 50% by volume of 35% hydrogen peroxide and 50% by volume of 98% sulfuric acid at 40°C for 10 minutes, neutralized, and washed with water.
該成形体を乾燥した後、塩化錫、塩化パラジウ
ム液を使用して、全面をパラジウムで活性化した
後、厚付無電解銅鍍金によつて厚さ20μmの銅層
を析出させ、フオトエツチング法により両面導通
プリント配線板とした。 After drying the molded body, the entire surface was activated with palladium using a tin chloride and palladium chloride solution, and a 20 μm thick copper layer was deposited by thick electroless copper plating, followed by photoetching. This resulted in a double-sided conductive printed wiring board.
実施例 2
実施例1において、注型用耐熱性付加重合型熱
硬化性樹脂組成物として、ビス(4−マレイミド
フエニル)プロパン30部、実施例1と同様のビス
フエノールA型エポキシ樹脂60部及びジフエニル
メタンジイソシアネート(商品名;MDI−CR、
三井東圧化学(株)製)50部を均一に混合し、この混
合物に、150メツシユのアルミニウム粉400部及び
2−エチル−4−メチルイミダゾール0.5部を添
加し、60℃で混合し注型用樹脂(以下、R2と言
う)を得た。Example 2 In Example 1, 30 parts of bis(4-maleimidophenyl)propane and 60 parts of the same bisphenol A type epoxy resin as in Example 1 were used as a heat-resistant addition polymerizable thermosetting resin composition for casting. and diphenylmethane diisocyanate (trade name: MDI-CR,
50 parts of Mitsui Toatsu Chemical Co., Ltd.) were mixed uniformly, 400 parts of 150 mesh aluminum powder and 0.5 part of 2-ethyl-4-methylimidazole were added to this mixture, mixed at 60°C, and cast. A resin (hereinafter referred to as R2) was obtained.
上記のR2を使用して、箱体用のポリカーボネ
ート板に代えてアルミニウム板を使用し、ゲル化
温度を170℃とする他は同様にして樹脂型を得た。
ガラス転移温度は220℃であつた。 A resin mold was obtained in the same manner using R2 above, except that an aluminum plate was used in place of the polycarbonate plate for the box, and the gelation temperature was changed to 170°C.
The glass transition temperature was 220°C.
実施例 3
実施例1において、注型用耐熱製付加重合型熱
硬化製樹脂組成物として、ビス(4−マレイミド
フエニル)プロパン30部と実施例1と同様のビス
フエノールA型エポキシ樹脂70部とを120℃、30
分間混合した後、50℃まで冷却し、ジクロルジア
ミノジフエニルメタン5部及びジクミルパーオキ
サイド0.5部、鉄粉300部を混合し注型用樹脂(以
下、R3と言う)を得た。Example 3 In Example 1, 30 parts of bis(4-maleimidophenyl)propane and 70 parts of the same bisphenol A type epoxy resin as in Example 1 were used as a heat-resistant addition polymerization type thermosetting resin composition for casting. and 120℃, 30
After mixing for a minute, the mixture was cooled to 50° C., and 5 parts of dichlorodiaminodiphenylmethane, 0.5 parts of dicumyl peroxide, and 300 parts of iron powder were mixed to obtain a casting resin (hereinafter referred to as R3).
上記のR3を使用して、箱体用のポリカーボネ
ート板に代えて鉄板を使用し、ゲル化温度を160
℃とする他は同様にして樹脂型を得た。ガラス転
移温度は200℃であつた。 Using R3 above, use an iron plate instead of the polycarbonate plate for the box, and set the gelling temperature to 160
A resin mold was obtained in the same manner except that the temperature was changed to ℃. The glass transition temperature was 200°C.
実施例 4
実施例1において、注型用耐熱製付加重合型熱
硬化製樹脂組成物として、ジアリルフタレートプ
レポリマー25部とジアリルフタレートモノマー75
部とを80℃、均一に混合した後、冷却し、銅粉
350部を均一に混合し、次いでt−ブチルパーオ
キシベンゾエート2部を40℃で20分間混合し注型
用樹脂(以下、R4と言う)を得た。Example 4 In Example 1, 25 parts of diallyl phthalate prepolymer and 75 parts of diallyl phthalate monomer were used as a heat-resistant addition polymerization type thermosetting resin composition for casting.
After uniformly mixing at 80℃, cool and add copper powder.
350 parts were mixed uniformly, and then 2 parts of t-butyl peroxybenzoate were mixed at 40°C for 20 minutes to obtain a casting resin (hereinafter referred to as R4).
上記のR4を使用して、箱体用のポリカーボネ
ート板に代えて鉄板を使用し、ゲル代温度を150
℃とする他は同様にして樹脂型を得た。ガラス転
移温度は160℃であつた。 Using R4 above, use an iron plate instead of the polycarbonate plate for the box, and set the gel temperature to 150.
A resin mold was obtained in the same manner except that the temperature was changed to ℃. The glass transition temperature was 160°C.
実施例 5
注型用モデルとして、50mm×30mmで厚み3mmの
アクリル樹脂板に、孔径0.7mmの小孔を2.54mmピ
ツチで格子状に50個開け、弗素系離型剤(商品
名;ダイフリーMS−743、ダイキン工業(株)製)
を塗布し乾燥したものを使用し、これに0.7mm径
のハイスピン、実施例1と同様の銅パイプ等を配
置したものを使用し、注型用樹脂組成物として、
2,2ビス(4−シアナトフエニル)プロパン27
部、ビス(4−マレイミドフエニル)メタン3
部、150メツシユのステンレス鋼粉体70部及びワ
ツクス0.5部とを粉体で混合した後、80℃で5分
間加熱撹拌して流動性の組成物を得、この組成物
75部と実施例1と同様にして得た硬化剤B1 25部
とを60℃で溶融混合して、注型用樹脂組成物(以
下、R2と記す)としたものを使用する他は実施
例1と同様として、ガラス転移温度178℃の樹脂
型を得た。Example 5 As a casting model, 50 small holes with a hole diameter of 0.7 mm were drilled in a grid pattern at a pitch of 2.54 mm on a 50 mm x 30 mm and 3 mm thick acrylic resin plate, and a fluorine-based mold release agent (product name: Daifree) was used. MS-743, manufactured by Daikin Industries, Ltd.)
A resin composition for casting was prepared by coating and drying the resin composition, using a 0.7 mm diameter high-spin, and placing copper pipes similar to those in Example 1.
2,2bis(4-cyanatophenyl)propane27
part, bis(4-maleimidophenyl)methane 3
150 mesh of stainless steel powder and 0.5 part of wax were mixed in powder form, and heated and stirred at 80°C for 5 minutes to obtain a fluid composition.
Example except that a casting resin composition (hereinafter referred to as R2) was prepared by melt-mixing 75 parts of curing agent B1 and 25 parts of curing agent B1 obtained in the same manner as in Example 1 at 60°C. A resin mold having a glass transition temperature of 178°C was obtained in the same manner as in 1.
上記で得た樹脂型を射出成形機にセツトし、ポ
リエーテルスルホン樹脂(米国ICI社製、品名;
420P)を、射出圧力1300Kg/cm2、シリンダー温
度350℃、成形サイクル2.5分で、樹脂型を冷却し
つつ成形した他は同様とした。 The resin mold obtained above was set in an injection molding machine, and polyether sulfone resin (manufactured by ICI, USA, product name:
420P) was molded at an injection pressure of 1300 Kg/cm 2 , a cylinder temperature of 350° C., and a molding cycle of 2.5 minutes while cooling the resin mold.
以上の如くである本発明のプラスチツク成形プ
リント配線板の製造法は、型として金属製に代え
て硬質樹脂型を使用するものでるので、型の作成
が極めて容易であり、かつ樹脂型は耐熱性(Tg、
熱劣化)、耐摩耗性などにも優れており、作業性
にも優れたものであることから、従来の金属型に
比較して多品種少量生産が極めて低価格で、生産
性よく実施できるものであり、プラスチツク成形
プリント配線板の新規な用途を開くものである。
The method for manufacturing a plastic molded printed wiring board of the present invention as described above uses a hard resin mold instead of a metal mold, so the mold is extremely easy to create, and the resin mold is heat resistant. (Tg,
It has excellent properties such as thermal deterioration) and abrasion resistance, as well as excellent workability, making it possible to produce a wide variety of products in small quantities at an extremely low cost and with high productivity compared to conventional metal molds. This opens up new uses for plastic molded printed wiring boards.
Claims (1)
ツク成形プリント配線板用の成形体を作成し、該
成形体に導体層を形成して配線網を作成する表裏
導通プリント配線板を製造する方法において、該
成形体として、硬化前の組成物が100℃以下の温
度で流動化する性質を有し、かつ硬化樹脂のガラ
ス転移温度が150℃以上で金属粉体若しくは金属
繊維を70重量%以上含有する耐熱性付加重合型熱
硬化性樹脂組成物で作成され、小孔部分には硬質
ピンを埋めこんでなる樹脂型を用い、耐熱性熱可
塑性樹脂を成形して製造した成形体を使用するこ
とを特徴とするプラスチツク成形プリント配線板
の製造法。1. In a method for manufacturing a printed wiring board with front and back conductivity, which involves creating a molded body for a plastic molded printed wiring board in which a large number of small holes are formed for front and back conduction, and forming a conductor layer on the molded body to create a wiring network. , as the molded article, the composition before curing has the property of being fluidized at a temperature of 100°C or lower, the cured resin has a glass transition temperature of 150°C or higher, and contains 70% by weight or more of metal powder or metal fiber. Using a molded body made from a heat-resistant addition polymerizable thermosetting resin composition, using a resin mold with hard pins embedded in the small holes, and molding a heat-resistant thermoplastic resin. A method for producing a plastic molded printed wiring board characterized by:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP421286A JPS62163388A (en) | 1986-01-14 | 1986-01-14 | Manufacture of plastic molded printed wiring board |
DE19863613006 DE3613006A1 (en) | 1985-04-17 | 1986-04-17 | Rigid resin form |
DE19873700902 DE3700902A1 (en) | 1986-01-14 | 1987-01-14 | METHOD OF MANUFACTURING PLASTIC MOLDED PRINTED CIRCUIT PANELS |
US07/003,344 US4764327A (en) | 1986-01-14 | 1987-01-14 | Process of producing plastic-molded printed circuit boards |
US07/029,581 US4740343A (en) | 1985-04-17 | 1987-03-25 | Method for producing rigid resin molds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP421286A JPS62163388A (en) | 1986-01-14 | 1986-01-14 | Manufacture of plastic molded printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62163388A JPS62163388A (en) | 1987-07-20 |
JPH0577196B2 true JPH0577196B2 (en) | 1993-10-26 |
Family
ID=11578316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP421286A Granted JPS62163388A (en) | 1985-04-17 | 1986-01-14 | Manufacture of plastic molded printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62163388A (en) |
-
1986
- 1986-01-14 JP JP421286A patent/JPS62163388A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62163388A (en) | 1987-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4740343A (en) | Method for producing rigid resin molds | |
EP1435376A1 (en) | Toughened thermosetting resins and preparation of the same | |
CN106189087B (en) | Low dielectric POSS type ring epoxy resin composite materials and preparation method thereof | |
CN102585443A (en) | Light high-strength buoyancy material and preparation method thereof | |
CN102351170B (en) | Preparation method of high strength resin base foam charcoal material | |
JPWO2016152623A1 (en) | Resin molded body and method for producing the same | |
DE3700902A1 (en) | METHOD OF MANUFACTURING PLASTIC MOLDED PRINTED CIRCUIT PANELS | |
JPH0577196B2 (en) | ||
DE2355858C3 (en) | Moldable composition based on thermosetting resin | |
JPS62286298A (en) | Manufacture of plastic molded printed wiring board | |
CN111154232A (en) | Preparation method of epoxy resin wear-resistant composite material | |
TWI747202B (en) | Manufacturing method of precision three-dimensional circuit parts | |
JP4126575B2 (en) | Manufacturing method of electronic component sealing material | |
CN104910353B (en) | Preparation method of high-temperature-resistant epoxy resin adopting polyborosilazane as curing agent | |
JP4224907B2 (en) | Method for producing sheet-shaped epoxy resin composition | |
JPS63307908A (en) | Preparation of resin mold | |
JPS63148698A (en) | Manufacture of plastic molded printed wiring board | |
JPH05295083A (en) | Epoxy resin composition for mold and resin mold made thereof | |
CN116425977B (en) | Preparation method of low-temperature curing phthalonitrile type bismaleimide-triazine resin | |
CN116041901B (en) | PEEK alloy and preparation method thereof | |
JPH0525253A (en) | Epoxy resin composition | |
CN107498967A (en) | A kind of easy processing heat-preserving complex material and preparation method thereof | |
JP2849590B2 (en) | Method of manufacturing metal surface cement products | |
JPS5839040A (en) | Forming material for sealing with epoxy resin | |
JPH0191492A (en) | Manufacture of circuit board |