[go: up one dir, main page]

JPS62154232A - Production of magnetic iron nitride material - Google Patents

Production of magnetic iron nitride material

Info

Publication number
JPS62154232A
JPS62154232A JP29275485A JP29275485A JPS62154232A JP S62154232 A JPS62154232 A JP S62154232A JP 29275485 A JP29275485 A JP 29275485A JP 29275485 A JP29275485 A JP 29275485A JP S62154232 A JPS62154232 A JP S62154232A
Authority
JP
Japan
Prior art keywords
iron
reactor
iron nitride
gaseous
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29275485A
Other languages
Japanese (ja)
Other versions
JPH06103531B2 (en
Inventor
Yukio Saito
幸雄 斉藤
Hideaki Tanaka
秀明 田中
Kazunori Fujita
一紀 藤田
Kenichi Gomi
五味 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29275485A priority Critical patent/JPH06103531B2/en
Publication of JPS62154232A publication Critical patent/JPS62154232A/en
Publication of JPH06103531B2 publication Critical patent/JPH06103531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent the damage of a plastic substrate and to obtain a medium consisting of iron nitride as a magnetic material at a high speed by bringing a gaseous compd. contg. iron atoms and gaseous compd. contg. nitrogen atoms into reaction at a low temp. near an ordinary temp. by making use of the light energy of a UV region. CONSTITUTION:An ion pentacarbonyl 1 is entrained in carrier gaseous Ar2 and is fed to a reactor 8. The flow rate of the Ar2 is regulated by a control valve 4 and is measured by a mass flow meter 3. Gaseous ammonia 5 is regulated by a control valve 7 and is measured by a mass flow meter 6; thereafter, said gas is supplied to the reactor 8. The pressure in the reactor is reduced by a vacuum pump 13. An ArF laser 12 having a rectangular section is oscillated by pulses from an ArF laser oscillator 11 and is irradiated through a window 13 onto a plastic film 10 placed on a pedestal 9. Active nitrogen atoms and iron atoms are formed by the irradiation of the ArF laser in the reactor 8 and the iron nitride is formed on the film 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐食性及び磁気特性に優れた窒化鉄磁性材料の
製造法に係り、特に100℃以下の低温で磁気記録媒体
をつくるに好適な方法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a iron nitride magnetic material with excellent corrosion resistance and magnetic properties, and is particularly suitable for producing a magnetic recording medium at a low temperature of 100°C or less. It is.

〔従来の技術〕[Conventional technology]

磁気記録再生機器の小型・軽量化及び磁気記録再生の高
性能化を指向して高密度磁気記録媒体に対する要求が高
まっている。このため、従来の針状r−FezOsを磁
性体とする塗布型磁気記録媒体に代ってバインダを使わ
ず直接真空蒸着やスパッタリングにより基板上に金属微
粒子を付着させる方法が検討されている。この方法によ
り磁気記録の高密度化がはかれるが金IRm粒子は酸化
されやすく耐食性に問題がある。
Demand for high-density magnetic recording media is increasing with the aim of making magnetic recording and reproducing equipment smaller and lighter and improving the performance of magnetic recording and reproducing. For this reason, instead of the conventional coated magnetic recording medium using acicular r-FezOs as a magnetic material, methods are being considered in which fine metal particles are deposited directly on a substrate by vacuum evaporation or sputtering without using a binder. Although this method allows for higher density magnetic recording, the gold IRm particles are easily oxidized and have a problem in corrosion resistance.

一方、鉄の窒化物は大気中で安定であり、しかもF84
N窒化鉄で純鉄の0.9倍、FeaN窒化鉄では純鉄の
1.3倍の飽和磁化を有し、保磁力も大きく高密度磁気
記録媒体用の磁性材料として優れたものである。
On the other hand, iron nitride is stable in the atmosphere and F84
FeN iron nitride has a saturation magnetization 0.9 times that of pure iron, and FeN iron nitride has a saturation magnetization 1.3 times that of pure iron, and has a large coercive force, making it an excellent magnetic material for high-density magnetic recording media.

窒化鉄系磁性材料を作製する公知技術として特開昭59
−45911号がある。これは窒素雰囲気中Arイオン
で純鉄をスパッタし、基板上に窒素鉄含有鉄磁性膜を合
成する方法である。FeaN 窒化鉄を10%前後含有
する鉄磁性膜が合成できる点に特長がある。
As a known technique for producing iron nitride-based magnetic materials, JP-A-59
There is No.-45911. This is a method of sputtering pure iron with Ar ions in a nitrogen atmosphere to synthesize a nitrogen-iron-containing iron magnetic film on a substrate. FeaN has the advantage of being able to synthesize iron magnetic films containing around 10% iron nitride.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来技術は、プラスチックベースの磁気記録媒
体の作製についてはあまり配慮がなされていない、すな
わち、この方法では基板にプラスチックシートを用いる
場合、Arイオンによる基板の損傷は避けがたい、また
、窒素分圧の影響が微妙で特性の優れた窒化鉄含有鉄磁
性膜を合成するには2X10一番−7XIO一番T o
rrに維持する必要があり膜の成長速度が1〜2μm/
hと小さく、磁性層厚み0.5〜1.0μmの磁気記録
媒体を合成するに実用的な方法ではない。
The above-mentioned conventional techniques do not give much consideration to the fabrication of plastic-based magnetic recording media. In other words, when a plastic sheet is used for the substrate in this method, damage to the substrate by Ar ions is unavoidable, and To synthesize an iron nitride-containing iron magnetic film with excellent characteristics and subtle influence of partial pressure, 2X10 Ichiban-7XIO Ichiban To
It is necessary to maintain the film growth rate at 1 to 2 μm/
h, which is not a practical method for synthesizing a magnetic recording medium with a magnetic layer thickness of 0.5 to 1.0 μm.

本発明の目的は、プラスチック基板の損傷を防止し、従
来より早い速度で窒化鉄を磁性体とする磁気記録媒体を
作製する方法を提供するにある。
An object of the present invention is to provide a method for manufacturing a magnetic recording medium using iron nitride as a magnetic material at a faster rate than before while preventing damage to a plastic substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、鉄原子を含有するガス状の化合物と窒素原
子を含有するガス状の化合物とを紫外域の光エネルギー
を利用して常温近傍の低温で反応させることにより達成
される。
The above object is achieved by causing a gaseous compound containing an iron atom and a gaseous compound containing a nitrogen atom to react at a low temperature near room temperature using light energy in the ultraviolet region.

〔作用〕[Effect]

鉄ペンタカルボニルは150nm〜250nmの紫外光
を吸収し、加熱なしで分解し活性は鉄原子を生成する。
Iron pentacarbonyl absorbs ultraviolet light of 150 nm to 250 nm, decomposes without heating, and actively produces iron atoms.

一方、アンモニアは170nm〜240nmの紫外光を
吸収し、加熱なしで分解し活性な窒素原子を生成する。
On the other hand, ammonia absorbs ultraviolet light of 170 nm to 240 nm and decomposes without heating to generate active nitrogen atoms.

これら活性な原子は反応し窒化鉄を生成する。また、紫
外光では原子をイオン化する程のエネルギーを有してい
ないので活性な原子はラジカルである。上記したように
These active atoms react to form iron nitride. Furthermore, since ultraviolet light does not have enough energy to ionize atoms, the active atoms are radicals. As mentioned above.

紫外光を使用すればイオン及び熱によるプラスチック基
板の損傷を防止することが可能で良質の窒化鉄磁性膜を
プラスチック基板上に作製することができる。
By using ultraviolet light, it is possible to prevent damage to the plastic substrate due to ions and heat, and a high quality iron nitride magnetic film can be produced on the plastic substrate.

〔実施例〕〔Example〕

以下1本発明を具体的実施例を用いてさらに詳細に説明
する。第1図に本発明の一構成図を示す。
The present invention will be explained in more detail below using specific examples. FIG. 1 shows a configuration diagram of the present invention.

鉄ペンタカルボニル1は、キャリアガスAr2に同伴し
て反応器8へ送られる。八r2の流量はコントロールバ
ルブ4により調整:!れ、質量流量計3により計量され
る。また、アンモニアガス5はコントロールバルブ7に
より調整され、質量流量計6で計量された後反応器8に
供給される0反応器は真空ポンプ13により数T or
rに減圧されている。一方、ArFレーザ発振器11か
ら断面長方形のArFレーザ12がパルスで発振され、
窓13を経て台座9上においたプラスチックフィルム1
0上に照射される。このとき、窓13表面上に窒化鉄が
析出するのを防止するためArガス17がリング状ノズ
ル16から窓表面に噴出される。反応器8内では、Ar
FLノーザ照射により活用な窒素原子及び鉄原子が生成
しプラスチックフィルム1o上に窒化鉄が生成する。
Iron pentacarbonyl 1 is sent to reactor 8 along with carrier gas Ar2. The flow rate of 8r2 is adjusted by control valve 4:! and is measured by the mass flow meter 3. Further, ammonia gas 5 is regulated by a control valve 7, metered by a mass flow meter 6, and then supplied to the reactor 8.
The pressure is reduced to r. On the other hand, an ArF laser 12 having a rectangular cross section is oscillated with pulses from an ArF laser oscillator 11.
Plastic film 1 placed on pedestal 9 through window 13
0 is irradiated. At this time, in order to prevent iron nitride from being deposited on the surface of the window 13, Ar gas 17 is ejected from the ring-shaped nozzle 16 onto the window surface. Inside the reactor 8, Ar
By the FL laser irradiation, useful nitrogen atoms and iron atoms are generated, and iron nitride is generated on the plastic film 1o.

〔実施例1〕 第1図に概略図を示した実順装置を用い、鉄原子を含有
する化合物として鉄ペンタカルボニル、窒素原子を含有
する化合物としてアンモニアを用い、光エネルギーとし
て波長L93nmのA r Fレーザを使用して窒化鉄
の合成実験を行なった。
[Example 1] Using the practical apparatus schematically shown in Fig. 1, iron pentacarbonyl was used as the iron atom-containing compound, ammonia was used as the nitrogen atom-containing compound, and Ar with a wavelength L of 93 nm was used as the light energy. An experiment was conducted to synthesize iron nitride using an F laser.

実験条件は、圧力10Torr、基板温度25〜100
℃、レーザ出力10 m J /パルス、10パルス/
winで30分間反応させた。また、必要に応じ基板を
水冷した。
The experimental conditions were a pressure of 10 Torr and a substrate temperature of 25 to 100 Torr.
°C, laser output 10 mJ/pulse, 10 pulse/
The reaction was carried out for 30 minutes with win. In addition, the substrate was water-cooled as necessary.

実験終了後、析出物の磁気特性1元素組成、X線回折、
耐食性等について測定した。
After the experiment, the magnetic properties of the precipitates, the single-element composition, X-ray diffraction,
Corrosion resistance etc. were measured.

第2図に磁気特性の測定結果を示す、飽和磁化が160
amu / g、保磁力が約10000 eで飽和磁化
及び保磁力ともフェライトより大きく優れた磁性材であ
ることがわかる。
Figure 2 shows the measurement results of magnetic properties.The saturation magnetization is 160.
amu/g and coercive force of about 10,000 e, indicating that it is an excellent magnetic material with both saturation magnetization and coercive force larger than that of ferrite.

元素組成はFea、aNで、鉄と窒素から構成されてい
る。また、X線回折結果はアモルファス構造を示し、電
子顕微鏡による11察では膜厚的3μであった。
The elemental composition is Fea, aN, and is composed of iron and nitrogen. Further, the X-ray diffraction results showed an amorphous structure, and the film thickness was 3 μm when examined using an electron microscope.

60℃の飽和湿度雰囲気中に80時間放置したときの飽
和磁化の変化を第3図に示した。8日間放置した後でも
飽和磁化の変化はほとんどなく、非常に優れた耐食性を
有していることがわかる。
Figure 3 shows the change in saturation magnetization when the sample was left in a 60°C saturated humidity atmosphere for 80 hours. It can be seen that there is almost no change in saturation magnetization even after being left for 8 days, indicating that it has very excellent corrosion resistance.

〔実施例2〕 実施例1と同じ装置を用い、光源を波長248nm、出
力20mJ/パルスのKrFレーザ及び波長L57nm
、出力4 m J /’パルスのFレーザを用い、実施
例1と同一条件下1時間反応させた。
[Example 2] Using the same equipment as in Example 1, the light source was a KrF laser with a wavelength of 248 nm and an output of 20 mJ/pulse, and a wavelength L of 57 nm.
The reaction was carried out for 1 hour under the same conditions as in Example 1 using an F laser with an output of 4 m J/' pulse.

析出速度はArFレーザの場合に比べ1/2〜115に
低減したが実施例1とl1i1等の磁気特性及び耐食性
を有する窒化鉄が得られた。析出速度が低減したのはK
rF及びFレー→〆の波長域での鉄ペンタカルボニル及
びアンモニー2の光吸収率が低減したためと考えられる
Although the precipitation rate was reduced to 1/2 to 115 times that of the ArF laser, iron nitride having magnetic properties and corrosion resistance comparable to those of Example 1 and l1i1 was obtained. The precipitation rate was reduced by K.
This is thought to be due to a decrease in the light absorption rate of iron pentacarbonyl and ammonia 2 in the rF and F ray→〆 wavelength ranges.

〔実施例3〕 実施例1と同じ装置を用い、光源に安価な80Wの水銀
ランプを使用して実施例1と同一条件下1時間反応させ
た。析出速度は実施例2とほぼ同様で、磁気特性は実施
例1と同様の特性を示した。
[Example 3] Using the same apparatus as in Example 1 and using an inexpensive 80 W mercury lamp as a light source, a reaction was carried out for 1 hour under the same conditions as in Example 1. The deposition rate was almost the same as in Example 2, and the magnetic properties were similar to those in Example 1.

以上により、ArF、KrF、Fレーザ及び水銀ランプ
が光源として用いら九ることが明白である。
From the above, it is clear that ArF, KrF, F lasers and mercury lamps can be used as light sources.

〔実施例4〕 鉄原子を含有する化合物として塩化第2鉄、窒素を含有
する化合物としてメチルアミンを用い、光源としてAr
Fを用いて1時間反応させた。析出速度はかなり低減し
たが、析出物の飽和磁化及び保磁力は実施例1とほぼ同
程度のものが得られた。
[Example 4] Ferric chloride was used as the iron atom-containing compound, methylamine was used as the nitrogen-containing compound, and Ar was used as the light source.
F was used to react for 1 hour. Although the precipitation rate was considerably reduced, the saturation magnetization and coercive force of the precipitates were approximately the same as in Example 1.

以上の実験より鉄源は鉄ペンタカルボニルに、窒素源は
アンモニアに限定されたものではなく鉄または窒素を含
有する化合物で、紫外光を吸収し、これらの紫外光で分
解されるものであれば何でもよいことがわかる。たとえ
ば、鉄源としては、ハロゲン化鉄が、また窒素源として
はアミン類がある。
From the above experiments, the iron source is iron pentacarbonyl, and the nitrogen source is not limited to ammonia, but is a compound containing iron or nitrogen that absorbs ultraviolet light and is decomposed by these ultraviolet lights. I know that anything is good. For example, iron sources include iron halides, and nitrogen sources include amines.

第4図に本発明の他の実施例を示す。FIG. 4 shows another embodiment of the invention.

この装置構成の特長は、窒素原子を含有するアンモニア
等のガス21と鉄原子を含有する鉄ペンタカルボニル等
のガス22とを分岐し、分解しても粒子を析出しないガ
ス21でつねに紫外光23が通る窓24をつねにクリー
ニングするようにしたことにある。この方法によれば、
光化学反応物が窓やレンズの表面に析出し光を通さなく
してしまうということを防げる。
The feature of this device configuration is that a gas 21 such as ammonia containing nitrogen atoms and a gas 22 such as iron pentacarbonyl containing iron atoms are separated, and the gas 21 that does not precipitate particles even when decomposed is always used with ultraviolet light 23. The reason is that the window 24 through which the air passes through is always cleaned. According to this method,
This prevents photochemical reactants from depositing on the surfaces of windows and lenses, blocking light from passing through.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁気特性及び耐食性に優れた窒化鉄磁
性材料をプラスチック等の基板を損傷することなく合成
することが可能となり、該記録材は高密度磁気テープ作
製等に利用できる。
According to the present invention, it is possible to synthesize an iron nitride magnetic material with excellent magnetic properties and corrosion resistance without damaging substrates such as plastics, and the recording material can be used for producing high-density magnetic tapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は析出
物の磁気特性についての実測結果を示すグラフ、第3図
は析出物の耐食性試験結果を示すグラフ、及び第4図は
他の実施例を示す図である。 1・・・鉄ペンタカルボニル、2・・・Arガス、5・
・・アンモニアガス、8・・・反応器、10・・・基板
、11・・・ArFレーザ発振器、12・・ArFレー
ザ、14・・・真空ポンプ。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a graph showing actual measurement results of magnetic properties of precipitates, Fig. 3 is a graph showing results of corrosion resistance test of precipitates, and Fig. 4 is a graph showing results of a corrosion resistance test of precipitates. FIG. 3 is a diagram showing another embodiment. 1... Iron pentacarbonyl, 2... Ar gas, 5...
... Ammonia gas, 8... Reactor, 10... Substrate, 11... ArF laser oscillator, 12... ArF laser, 14... Vacuum pump.

Claims (1)

【特許請求の範囲】 1、反応器内に鉄原子を含有するガス状の分子及び窒素
原子を含有するガス状の分子を導入し、該ガスにレーザ
光、紫外光等の光エネルギーを印加して化学反応を生起
せしめ100℃以下の低温でプラスチック等の基板上に
窒化鉄磁性材料を製造する方法。 2、前記鉄原子を含有するガス状の分子が鉄カルボニル
化合物であることを特長とする特許請求の範囲第1項に
記載の窒化鉄磁性材料の製造法。 3、前記窒素原子を含有するガス状の分子がアンモニア
であることを特徴とする特許請求の範囲第1項に記載の
窒化鉄磁性材料の製造法。 4、前記光エネルギーがArF、KrF又はF_2レー
ザであることを特徴とする特許請求の範囲第1項に記載
の窒化鉄磁性材料の製造法。
[Claims] 1. Gaseous molecules containing iron atoms and gaseous molecules containing nitrogen atoms are introduced into a reactor, and light energy such as laser light or ultraviolet light is applied to the gases. A method of manufacturing iron nitride magnetic material on a substrate such as plastic at a low temperature of 100°C or less by causing a chemical reaction. 2. The method for producing an iron nitride magnetic material according to claim 1, wherein the gaseous molecule containing iron atoms is an iron carbonyl compound. 3. The method for producing a iron nitride magnetic material according to claim 1, wherein the gaseous molecule containing nitrogen atoms is ammonia. 4. The method for producing an iron nitride magnetic material according to claim 1, wherein the optical energy is ArF, KrF or F_2 laser.
JP29275485A 1985-12-27 1985-12-27 Manufacturing method of iron nitride magnetic material Expired - Lifetime JPH06103531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29275485A JPH06103531B2 (en) 1985-12-27 1985-12-27 Manufacturing method of iron nitride magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29275485A JPH06103531B2 (en) 1985-12-27 1985-12-27 Manufacturing method of iron nitride magnetic material

Publications (2)

Publication Number Publication Date
JPS62154232A true JPS62154232A (en) 1987-07-09
JPH06103531B2 JPH06103531B2 (en) 1994-12-14

Family

ID=17785900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29275485A Expired - Lifetime JPH06103531B2 (en) 1985-12-27 1985-12-27 Manufacturing method of iron nitride magnetic material

Country Status (1)

Country Link
JP (1) JPH06103531B2 (en)

Also Published As

Publication number Publication date
JPH06103531B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US4980198A (en) Laser CVD and plasma CVD of CrO2 films and cobalt doped CrO2 films using organometallic precursors
US4975324A (en) Perpendicular magnetic film of spinel type iron oxide compound and its manufacturing process
US4868005A (en) Method and apparatus for photodeposition of films on surfaces
US4748045A (en) Method and apparatus for photodeposition of films on surfaces
JPS62154232A (en) Production of magnetic iron nitride material
Welch et al. Pulsed laser deposition of polycrystalline NiZn ferrite films
DE3885711T2 (en) Magneto-optical recording medium.
JPS62281413A (en) Manufacture of magnetic film of iron nitride
JPS6154041A (en) Manufacture of magnetic recording medium
JPS60231924A (en) Production of thin film type magnetic recording medium
JPS61287032A (en) Production of thin magnetic material film
Bäuerle Laser induced chemical vapor deposition
JPS60178622A (en) Manufacturing method of semiconductor device
JPH0125139B2 (en)
JPH0444812B2 (en)
JPS60143460A (en) Optothermomagnetic recording medium and its production
JPH01220216A (en) Magnetic recording medium
JPS61288071A (en) Production of ferromagnetic material
Bäuerle Laser induced chemical vapour deposition
JPS63251931A (en) Production of thin film type magnetic recording medium
EP0436219A2 (en) Method for making magnetic recording media
JPS63251930A (en) Production of thin film type magnetic recording medium
JPS6076021A (en) Method for manufacturing magnetic recording media
JPH07192264A (en) Manufacture of perpendicular magnetic recording medium
JPS60125933A (en) Production of magnetic medium