[go: up one dir, main page]

JPS61287032A - Production of thin magnetic material film - Google Patents

Production of thin magnetic material film

Info

Publication number
JPS61287032A
JPS61287032A JP12740685A JP12740685A JPS61287032A JP S61287032 A JPS61287032 A JP S61287032A JP 12740685 A JP12740685 A JP 12740685A JP 12740685 A JP12740685 A JP 12740685A JP S61287032 A JPS61287032 A JP S61287032A
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
film according
producing
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12740685A
Other languages
Japanese (ja)
Other versions
JPH0664738B2 (en
Inventor
Masaki Aoki
正樹 青木
Hideo Torii
秀雄 鳥井
Hideyuki Okinaka
秀行 沖中
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12740685A priority Critical patent/JPH0664738B2/en
Priority to US06/826,386 priority patent/US4717584A/en
Priority to DE8686300848T priority patent/DE3685346D1/en
Priority to EP86300848A priority patent/EP0194748B1/en
Publication of JPS61287032A publication Critical patent/JPS61287032A/en
Publication of JPH0664738B2 publication Critical patent/JPH0664738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a thin hexagonal ferrite film having small coercive force at a low temp. of <=350 deg.C and large satd. magnetic flux density by using a plasma CVD method. CONSTITUTION:Bubblers 16-19 contg. diethoxy iron, diethoxy barium, diethoxy cobalt and diethoxy zinc are heated. Gaseous argon 20 for bubbling is passed to these bubblers and the vapors thereof are introduced onto a polyimide substrate heated to 345 deg.C in a reaction chamber 11 in which a reduced pressure state is maintained by a rotary pump 22. Oxygen 21 which is likewise the reactive gas is then passed on the polyimide substrate. High-frequency electric power is impressed to cause reaction so that hexagonal ferrite is deposited on the polyimide substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度の垂直磁気記録を可能とする磁性体薄
膜の製造方法に関するものである。′従来の技術 近年磁気記録は、高密度化、ディジタル化の方向へ進み
つつある。磁気記録の方式として従来は、磁気記録媒体
の面内に磁化の容易軸を持っているいわゆる面内磁化に
よる磁気記録方式が主であった。しかしながら本方式で
は、記録密度を上げれば上げるほど澁気記録媒体内の磁
化方向が互いに反発し合うように並ぶため高密度化を計
るのが困難になってきている。そこで最近磁気記録の新
しい方式として、磁気記録媒体の面内に対して垂直方向
に磁化容易軸を持っているいわゆる垂直磁化による磁気
記録方式が開発され〔例えば 岩崎。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a magnetic thin film that enables high-density perpendicular magnetic recording. ``Prior Art'' In recent years, magnetic recording has been moving toward higher density and digitalization. Conventionally, the main magnetic recording method has been a magnetic recording method using so-called in-plane magnetization, which has an easy axis of magnetization within the plane of a magnetic recording medium. However, in this method, as the recording density is increased, the magnetization directions within the recording medium are arranged so as to repel each other, making it difficult to achieve high density recording. Recently, a new method of magnetic recording, a magnetic recording method using so-called perpendicular magnetization, in which the axis of easy magnetization is perpendicular to the plane of the magnetic recording medium, has been developed [for example, by Iwasaki et al.

“垂直磁化を用いた高密度磁気記録”日経エレクトロニ
クス(8,7)!192.p、100゜19ア8.〕記
録密度が飛躍的に増大することが可能となった。この垂
直磁気記録方式にもちいられている記録媒体としては、
コバルト−クロム(Co −Cr )合金膜が主として
、スパッタ法、真空蒸着法〔例えば 岩崎、大内、′高
周波スパッタ法によるCo−Cx垂直記録媒体”信学会
論文誌Vo1.63−C,A4. pp、 238−2
45゜April、  1980.1等によって開発さ
れつつある。またCo−Cr以外にもバリウムフェライ
ト(B ao ・6 F e 203 )がスパッタ法
〔例えば 星、株間。
“High-density magnetic recording using perpendicular magnetization” Nikkei Electronics (8, 7)! 192. p, 100°19a8. ] It has become possible to dramatically increase recording density. The recording media used in this perpendicular magnetic recording method are:
Cobalt-chromium (Co-Cr) alloy films are mainly produced by sputtering and vacuum evaporation methods [for example, Iwasaki, Ouchi, ``Co-Cx perpendicular recording medium by high-frequency sputtering'', Transactions of the IEICE, Vol. 1.63-C, A4. pp, 238-2
45° April, 1980.1, etc., is being developed. In addition to Co-Cr, barium ferrite (Bao 6 Fe 203) can also be produced using sputtering methods [e.g. Hoshi, Kusuma.

直性、山中;対向ターゲット式スノくツタによるC軸配
向!a−フェライト膜の構造と磁気特性、信学論(q、
T as−C,1,P、e−1e (昭和58−ol)
)により得られている。
Straightness, Yamanaka; C-axis orientation by facing target type snow vine! a-Structure and magnetic properties of ferrite film, IEICE theory (q,
T as-C, 1, P, e-1e (Showa 58-ol)
) is obtained.

発明が解決しようとする問題点 これらの垂直磁気記録媒体において、Go −Cr合金
膜は、低温で作成することが可能であるが、垂直磁化の
大きさの目安となる垂直磁気異方性がバリウムフェライ
トよりちいさい。そのため完全な垂直磁化膜とはならず
ある程度面内の磁化成分をものこすという問題があり、
しかも記録媒体が金属であるため、さびの問題や磁気ヘ
ッドが媒体面を走行中に金属(Co−Cτ合金)がくっ
つく、いわゆる金属の焼き付き現象等がおこるという欠
点を有している。
Problems to be Solved by the Invention In these perpendicular magnetic recording media, Go-Cr alloy films can be formed at low temperatures, but the perpendicular magnetic anisotropy, which is a measure of the magnitude of perpendicular magnetization, is lower than that of barium. Smaller than ferrite. Therefore, there is a problem that the film is not completely perpendicularly magnetized and retains some in-plane magnetization component.
Moreover, since the recording medium is made of metal, it has the drawbacks of rust and the so-called metal burn-in phenomenon, in which the metal (Co--Cτ alloy) sticks to the magnetic head while it runs on the medium surface.

一方バリウムフエライトは、はぼ完全なC軸配向の膜が
得られるため、その結晶磁気異方性からほぼ完全な垂直
磁化膜が作成できる。しかしながらバリウムフェライト
を含むヘキサゴナルフェライト膜を作成するのには、5
00”C以上の基板温度が必要である、そのためポリイ
ミドやアルミニウム上にバリウムフェライトやヘキサゴ
ナルフェライトを作成することが困難である。
On the other hand, with barium ferrite, a film with almost perfect C-axis orientation can be obtained, and therefore a film with almost perfect perpendicular magnetization can be created due to its magnetocrystalline anisotropy. However, in order to create a hexagonal ferrite film containing barium ferrite,
A substrate temperature of 00''C or higher is required, which makes it difficult to create barium ferrite or hexagonal ferrite on polyimide or aluminum.

またバリウムフェライト単独では、垂直磁気異方性が大
きく、磁気記録媒体としての保磁力(抗磁力)が、20
00〜3000エールステツド(Oe)と高くなるため
、例えばフェライトヘッド(Mn−Zn  7エライト
ヘツド)のごときヘッドでは、その飽和磁束密度(13
g )がちいさいため、媒体を十分に磁化することが困
難である。〔例えば、スパッタ合金膜ヘッドによる高抗
磁力媒体への記録。
In addition, barium ferrite alone has a large perpendicular magnetic anisotropy, and has a coercive force (coercive force) of 20
For example, in a head such as a ferrite head (Mn-Zn 7-elite head), the saturation magnetic flux density (13
g) Because the medium is small, it is difficult to sufficiently magnetize the medium. [For example, recording on a high coercive force medium using a sputtered alloy film head.

信学技報MR77−2(1977)P、11)7エ2イ
トヘツドで記録再生を行なうためには、抗磁力を下げな
ければならない、そのためにバリウムフェライトにコバ
ルト(C,)とチタン(Ti)を添加し抗磁力を下げる
試みがなされているが、バリウムフェライトの飽和磁化
も下げるという問照点を有している。
IEICE Technical Report MR77-2 (1977) P, 11) In order to perform recording and reproduction with a 782-bit head, it is necessary to lower the coercive force, and for this purpose, cobalt (C,) and titanium (Ti) are added to barium ferrite. Attempts have been made to lower the coercive force by adding barium ferrite, but this has the problem of also lowering the saturation magnetization of barium ferrite.

問題点を解決するための手段 本発明は、前記問題点を解決するため、従来のスパッタ
法や真空蒸着法ではなく、プラズマ中に反応ガスを流し
、プラズマの活性さを利用した、プラズマCVD法によ
って350”C以下の低温でバリウムフェライト単相よ
り保磁力(抗磁力)がちいさく、しかも飽和磁束密度(
Ms )の大きいベキサゴナルフェライトを製造する方
法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a plasma CVD method that utilizes the activity of plasma by flowing a reactive gas in the plasma, instead of the conventional sputtering method or vacuum evaporation method. Therefore, at low temperatures below 350"C, the coercive force (coercive force) is smaller than that of barium ferrite single phase, and the saturation magnetic flux density (
The present invention provides a method for producing a bexagonal ferrite having a large Ms ).

作  用 発明者らは、プラズマCVD法を用いることによって3
60℃以下の低温で保磁力がちいさく、Ms  の大き
いベキサゴナルフェライトが得られることを見いだした
。すなわち、Fe、  Ba、  Go、 Znを含有
する金属アルコオキサイド、あるいは、Fe、 Ba、
 Co、 Zn を含有するβ−ジケトン金属キレート
を加熱し気化しやすくさせてアルゴン(Ar)をキャリ
アガスとし、酸素を反応ガスとして、高周波プラズマ(
周波数13.56 MHz )中にこれらを導入して、
350”C以下の基板上で分解析出させることによりベ
キサゴナルフェライトを生成させるものである。
Effect The inventors achieved 3 by using the plasma CVD method.
It has been found that a vexagonal ferrite with a low coercive force and a large Ms can be obtained at a low temperature of 60°C or lower. That is, metal alkoxide containing Fe, Ba, Go, Zn, or Fe, Ba,
A β-diketone metal chelate containing Co and Zn is heated to facilitate vaporization, and is then treated with high-frequency plasma (Argon) as a carrier gas and oxygen as a reaction gas.
By introducing these into the frequency (13.56 MHz),
Vexagonal ferrite is produced by fractional deposition on a substrate of 350''C or less.

このように低温でベキサゴナルフェライトの析出が可能
となるのは、プラズマ中においては、化学反応を低温で
引きおこす活性なラジカルやイオン等の化学種が多く存
在し、通のCVD(熱による分解析出をおこなうCVD
)では、エネルギー的におこりえない反応がプラズマ中
では可能であるためである。〔例えば、薄膜ハンドブッ
ク 226ページ、オーム社 昭和58年12月10日
〕また一般にプラズマCVD法は、通常の熱CVD法に
くらべて、低温で酸化物、炭化物、窒化物等の高融点物
質が合成できるばかりでなく、熱分解析出反応を伴うた
めに低温においても高純度でしかも結晶性の良い膜が得
られる。そのためへキサゴナルフェライトのような結晶
の配向性の良いことが必要でしかもそれを低温で合成す
るのには最適の方法であると考えられる。
The reason why it is possible to precipitate bexagonal ferrite at such low temperatures is that there are many chemical species such as active radicals and ions that cause chemical reactions at low temperatures in the plasma, which is common in CVD (thermal separation). CVD for analysis
), reactions that cannot occur energetically are possible in plasma. [For example, Thin Film Handbook, page 226, Ohmsha, December 10, 1982] In general, plasma CVD methods can synthesize high melting point substances such as oxides, carbides, and nitrides at lower temperatures than normal thermal CVD methods. Not only is this possible, but since it involves a thermal decomposition reaction, a film with high purity and good crystallinity can be obtained even at low temperatures. Therefore, it is necessary to have crystals with good orientation, such as hexagonal ferrite, and this is considered to be the optimal method for synthesizing them at low temperatures.

実施例 以下、本発明の一実施例について、図面にもとづいて説
明する。図は、本発明の一実施例におけるプラズマCV
D装置の概略図を示すものである。)同図において、1
1は反応チャンバー、12は高周波電極、13は高周波
電源、14は基板加熱ホルダー、16は基板、16はF
e (OR)sあるいはF e (C5H−、O)3の
バブラー、17はB a (OR)2 あるいは、Ba
 (C6−0)2のバブラー、18はCo (OR)s
アルイハC0(C5H7o)3ツバフラー、19 ハZ
n(OR)4匁あるいは、Zn(C6H7Q)2のバブ
ラー、20はキャリアガス(Ar)のボンベ、21は反
応ガス(C゜)のボンベ、22はロータリーポンプであ
る。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. The figure shows a plasma CV in one embodiment of the present invention.
D shows a schematic diagram of the device. ) In the same figure, 1
1 is a reaction chamber, 12 is a high frequency electrode, 13 is a high frequency power source, 14 is a substrate heating holder, 16 is a substrate, 16 is F
e (OR)s or F e (C5H-,O)3 bubbler, 17 is B a (OR)2 or Ba
(C6-0)2 bubbler, 18 is Co(OR)s
Aruiha C0 (C5H7o) 3 Tsubafura, 19 HaZ
n(OR)4 momme or Zn(C6H7Q)2 bubbler, 20 a carrier gas (Ar) cylinder, 21 a reaction gas (C°) cylinder, and 22 a rotary pump.

まずジェトキシ鉄(Fe (C−02H6)3〕、ジェ
トキシバリウム(Ba (C・C2H6)2〕、ジェト
キシコバルト(: Co (C−C2H5)3’] 、
ジェトキシ亜鉛CZ211CO−C2H6)4]の入っ
たバブラー16.17.18.19を160℃に加熱し
、これらのバブラーにバブル用のアルゴンガス2oをそ
れぞれ2 es o cc/分、80CC/分。
First, jetoxyiron (Fe (C-02H6)3), jetoxybarium (Ba (C・C2H6)2), jetoxycobalt (: Co (C-C2H5)3'),
Bubblers 16, 17, 18, 19 containing jetoxyzinc CZ211CO-C2H6)4] were heated to 160°C, and 2 o of argon gas for bubbles was added to these bubblers at 2 es o cc/min and 80 cc/min, respectively.

10cc/分、10ac/分の流量で流し、これらの蒸
気をロータリーポンプ22によって減圧状態になった反
応チャンバー11内の345℃に加熱されたポリイミド
基板上に導入する。次に同じく、反応ガスである酸素2
1を250cc/分の流量で同じくポリイミド基板上に
流す。この時のガス圧は10Torrであった。次いで
高周波電力(13,56MHz )をs o o W 
(6W/ci)で60分間印加し、反応させた。
These vapors were introduced at a flow rate of 10 cc/min and 10 ac/min onto a polyimide substrate heated to 345° C. in the reaction chamber 11, which was brought into a reduced pressure state by the rotary pump 22. Next, similarly, the reactive gas oxygen 2
1 was also flowed onto the polyimide substrate at a flow rate of 250 cc/min. The gas pressure at this time was 10 Torr. Next, the high frequency power (13,56MHz) is
(6 W/ci) was applied for 60 minutes to cause a reaction.

次にこの時ポリイミド基板上に析出したベキサゴナルフ
ェライトの膜厚は、約2.4μmであった。
Next, the film thickness of the bexagonal ferrite deposited on the polyimide substrate at this time was about 2.4 μm.

次にこの膜について、X線解析、およびVSM(振動試
料型磁力計)による膜の磁気的特性を測定した。結果は
、第−表、試料番号1に示す。
Next, the magnetic properties of this film were measured using X-ray analysis and a VSM (vibrating sample magnetometer). The results are shown in Table 1, sample number 1.

以下余白 以下同様にして、基板温度、金属アルコオキサイドの種
類、およびβ−ジケトン金属キレートの種類、バブラー
量(Ar の流量)、反応チャンバー内の圧力、高周波
電力等を変化させた時のX線解析、VSMの結果を第−
表試料番号2〜12に示す。また試料番号13〜19は
本願発明外の比較例である。
Below are the margins. In the same way, X-rays were obtained by changing the substrate temperature, the type of metal alkoxide, the type of β-diketone metal chelate, the amount of bubbler (flow rate of Ar), the pressure in the reaction chamber, the high-frequency power, etc. Analysis, VSM results
Shown in table sample numbers 2-12. Moreover, sample numbers 13 to 19 are comparative examples other than the present invention.

ここでX線解析は、ヘキサゴナルフェライトの単相でC
軸配向が得られたかどうかを調べた。またVSMの結果
からヘキサゴナルフェライトの飽和磁化と、ヒステリシ
ス曲線(B−Hカーブ)を求めヘキサゴナルフエライト
の垂直方向(薄膜の膜面に対して垂直の方向)の残留磁
化と保磁力、および水平方向の残留磁化と保磁力を求め
た。(垂直方向の残留磁化および保磁力が水平方向の残
留磁化および保磁力にくらべて大きければ大きいほどよ
りすぐれた垂直磁化膜である。) 基板温度を360℃以下にするのがのぞましく、350
℃以上になると基板材料として使用されるポリイミドや
M等において熱的変形や劣化がおこり良質のへキサゴナ
ルフェライト膜が得られないためである。
Here, the X-ray analysis shows that C is a single phase of hexagonal ferrite.
We checked whether axial orientation was obtained. In addition, from the VSM results, the saturation magnetization and hysteresis curve (B-H curve) of hexagonal ferrite were determined, and the residual magnetization and coercive force in the vertical direction (direction perpendicular to the film surface of the thin film) of hexagonal ferrite, as well as the horizontal direction. The residual magnetization and coercive force were determined. (The larger the residual magnetization and coercive force in the vertical direction are compared to the residual magnetization and coercive force in the horizontal direction, the better the perpendicularly magnetized film is.) It is preferable to keep the substrate temperature below 360°C. 350
This is because if the temperature exceeds .degree. C., thermal deformation and deterioration occur in the polyimide, M, etc. used as the substrate material, making it impossible to obtain a good quality hexagonal ferrite film.

またプラズマ電力を0.6W〜10Wと限定したのはα
sW/7以下のプラズマ電力では、十分に気相中で単相
のへキサゴナルフエライトが合成できないためでおり、
1ow/CIL以上では、電力が強すぎて気相中で出来
たヘキサゴナルフエライトが再分解されヘキサゴナルフ
ェライト以外の相(Fe30. (CoFe204)等
)が析出するためである。
In addition, the plasma power was limited to 0.6W to 10W because α
This is because single-phase hexagonal ferrite cannot be sufficiently synthesized in the gas phase with a plasma power of sW/7 or less.
This is because at 1 ow/CIL or more, the electric power is too strong and the hexagonal ferrite formed in the gas phase is re-decomposed and phases other than hexagonal ferrite (Fe30. (CoFe204), etc.) are precipitated.

またプラズマを維持する時の圧力をα1〜10Tarτ
に限定したのは、o、1Toττ以下では、反応生成物
(ヘキサゴナルフエライト)の製膜速度が遅く、実用上
問題があるためであり、10 Torr以上では、基板
上に膜として成虫せず、空間でパウダー状物質となるた
めである。
Also, the pressure when maintaining the plasma is α1~10Tarτ
The reason for this is that at o,1Toττ or less, the film formation rate of the reaction product (hexagonal ferrite) is slow, which poses a practical problem; This is because it becomes a powder-like substance.

発明の効果 以上述べてきたように、本発明によれば、プラズマの活
性さを巧みに利用して、360℃以下の比較的低温で垂
直方向の残留磁化が大きく垂直方向の保磁力の比較的ち
いさいヘキサゴナルフェライト膜が作成できる方法であ
って、高密度の磁気記録を達成するのにきわめて有益な
発明である。
Effects of the Invention As described above, according to the present invention, by skillfully utilizing the activity of plasma, the residual magnetization in the perpendicular direction is large and the coercive force in the perpendicular direction is relatively low at a relatively low temperature of 360°C or less. This invention is a method for producing a small hexagonal ferrite film, and is extremely useful for achieving high-density magnetic recording.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例におけるプラズマCVD装置の
概略図である。 11・・・・・・反応チャンバー、12・・・・・・高
周波電極、13・・・・・・高周波電源、14・・・・
・・基板加熱ホルダー、16・・・・・・基板、16・
・・・・・F e (OR)sのバブラー、17・・・
・・・Ba(OR)2のバブラー、18・・・・・・C
0pR)3のバブラー、19・・・・・・Zn (OR
)4のバブラー、に・・・・・・Ar キャリアガスボ
ンベ、21・・・・・・反応ガス(O2)ボンベ、22
・・・・・・ロータリーホンプ。
The figure is a schematic diagram of a plasma CVD apparatus in one embodiment of the present invention. 11... Reaction chamber, 12... High frequency electrode, 13... High frequency power supply, 14...
...Substrate heating holder, 16...Substrate, 16.
...F e (OR)s bubbler, 17...
...Ba(OR)2 bubbler, 18...C
0pR) 3 bubbler, 19...Zn (OR
) 4 bubbler, Ar carrier gas cylinder, 21... Reactant gas (O2) cylinder, 22
・・・・・・Rotary homp.

Claims (11)

【特許請求の範囲】[Claims] (1)鉄(Fe)、バリウム(Ba)、コバルト(Co
)および亜鉛(Zn)を含有する金属アルコオキサイド
、あるいはβ−ジケトン金属キレートと、これらの蒸気
を輸送するガスとしてのアルゴン(Ar)および反応ガ
スとしての酸素(O_2)をプラズマ中で分解させ、加
熱された基板上にヘキサゴナルフェライトを析出させる
ことを特徴とする磁性体薄膜の製造方法。
(1) Iron (Fe), barium (Ba), cobalt (Co)
) and zinc (Zn), or β-diketone metal chelate, argon (Ar) as a gas that transports these vapors, and oxygen (O_2) as a reactive gas, are decomposed in a plasma, A method for producing a magnetic thin film, which comprises depositing hexagonal ferrite on a heated substrate.
(2)鉄を含有するアルコオキサイド化合物として、化
学式がFe(OR)_3(ただしRはアルキル基)、で
示されることを特徴とする特許請求の範囲第1項記載の
磁性体薄膜の製造方法。
(2) A method for producing a magnetic thin film according to claim 1, characterized in that the alkoxide compound containing iron is represented by the chemical formula Fe(OR)_3 (where R is an alkyl group). .
(3)鉄を含有するβ−ジケトン金属キレートとして、
化学式がFe(C_5H_7O)_3で示されることを
特徴とする特許請求の範囲第1項記載の磁性体薄膜の製
造方法。
(3) As a β-diketone metal chelate containing iron,
2. The method for producing a magnetic thin film according to claim 1, wherein the chemical formula is Fe(C_5H_7O)_3.
(4)バリウムを含有するアルコオキサイド化合物とし
て、化学式がBa(OR)_2(ただし、Rはアルキル
基)で示されることを特徴とする特許請求の範囲第1項
記載の磁性体薄膜の製造方法。
(4) The method for producing a magnetic thin film according to claim 1, wherein the alkoxide compound containing barium has a chemical formula of Ba(OR)_2 (where R is an alkyl group). .
(5)バリウムを含有するβ−ジケトン金属キレートと
して、化学式がBa(C_5H_7O)_2で示される
ことを特徴とする特許請求の範囲第1項記載の磁性体薄
膜の製造方法。
(5) The method for producing a magnetic thin film according to claim 1, wherein the barium-containing β-diketone metal chelate has a chemical formula of Ba(C_5H_7O)_2.
(6)コバルトを含有するアルコオキサイド化合物とし
て化学式がCo(OR)_3(ただし、Rはアルキル基
)で示されることを特徴とする特許請求の範囲第1項記
載の磁性体薄膜の製造方法。
(6) The method for producing a magnetic thin film according to claim 1, wherein the alkoxide compound containing cobalt has a chemical formula of Co(OR)_3 (where R is an alkyl group).
(7)コバルトを含有するβ−ジケトン金属キレートと
して、化学式がCo(C_5H_7O)_3で示される
ことを特徴とする特許請求の範囲第1項記載の磁性体薄
膜の製造方法。
(7) The method for producing a magnetic thin film according to claim 1, wherein the β-diketone metal chelate containing cobalt has a chemical formula of Co(C_5H_7O)_3.
(8)亜鉛を含有するアルコオキサイド化合物として化
学式がZn(OR)_2(ただし、Rはアルキル基)で
示されることを特徴とする特許請求の範囲第1項記載の
磁性体薄膜の製造方法。
(8) The method for producing a magnetic thin film according to claim 1, wherein the alkoxide compound containing zinc has a chemical formula of Zn(OR)_2 (where R is an alkyl group).
(9)亜鉛を含有するβ−ジケトン金属キレートとして
、化学式がZn(C_5H_7O)_2で示されること
を特徴とする特許請求の範囲第1項記載の磁性体薄膜の
製造方法。
(9) The method for producing a magnetic thin film according to claim 1, wherein the β-diketone metal chelate containing zinc has a chemical formula of Zn(C_5H_7O)_2.
(10)プラズマを発生させる時の電力(パワー)が0
.5W/cm^2〜10W/cm^2(Wはワット)で
あることを特徴とする特許請求の範囲第1項記載の磁性
体薄膜の製造方法。
(10) The electric power (power) when generating plasma is 0
.. 2. The method of manufacturing a magnetic thin film according to claim 1, wherein the heating voltage is 5 W/cm^2 to 10 W/cm^2 (W is watt).
(11)プラズマを維持する時の圧力が0.1〜10T
orrであることを特徴とする特許請求の範囲第9項記
載の磁性体薄膜の製造方法。
(11) Pressure when maintaining plasma is 0.1-10T
10. The method of manufacturing a magnetic thin film according to claim 9, wherein the magnetic thin film is orr.
JP12740685A 1985-02-07 1985-06-12 Method for manufacturing magnetic thin film Expired - Lifetime JPH0664738B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12740685A JPH0664738B2 (en) 1985-06-12 1985-06-12 Method for manufacturing magnetic thin film
US06/826,386 US4717584A (en) 1985-02-07 1986-02-05 Method of manufacturing a magnetic thin film
DE8686300848T DE3685346D1 (en) 1985-02-07 1986-02-07 MAGNETIC THIN FILM AND METHOD FOR THE PRODUCTION THEREOF.
EP86300848A EP0194748B1 (en) 1985-02-07 1986-02-07 Magnetic thin film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12740685A JPH0664738B2 (en) 1985-06-12 1985-06-12 Method for manufacturing magnetic thin film

Publications (2)

Publication Number Publication Date
JPS61287032A true JPS61287032A (en) 1986-12-17
JPH0664738B2 JPH0664738B2 (en) 1994-08-22

Family

ID=14959192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12740685A Expired - Lifetime JPH0664738B2 (en) 1985-02-07 1985-06-12 Method for manufacturing magnetic thin film

Country Status (1)

Country Link
JP (1) JPH0664738B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208468A (en) * 1988-02-15 1989-08-22 Riken Corp Barium-based thin film manufacturing method
JPH0296916A (en) * 1988-10-03 1990-04-09 Matsushita Electric Ind Co Ltd Magnetic medium and production thereof
EP1221709A2 (en) * 1995-12-15 2002-07-10 Matsushita Electric Industrial Co., Ltd. Plasma display panel suitable for high-quality display and production method
JP2008088511A (en) * 2006-10-03 2008-04-17 Adeka Corp Raw material for depositing thin film, method for producing thin film, and zinc compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208468A (en) * 1988-02-15 1989-08-22 Riken Corp Barium-based thin film manufacturing method
JPH0296916A (en) * 1988-10-03 1990-04-09 Matsushita Electric Ind Co Ltd Magnetic medium and production thereof
EP1221709A2 (en) * 1995-12-15 2002-07-10 Matsushita Electric Industrial Co., Ltd. Plasma display panel suitable for high-quality display and production method
USRE40647E1 (en) 1995-12-15 2009-03-10 Matsushita Electric Industrial Co., Ltd. Method of producing plasma display panel with protective layer of an alkaline earth oxide
USRE41503E1 (en) 1995-12-15 2010-08-17 Panasonic Corporation Method of producing plasma display panel with protective layer of an alkaline earth oxide
JP2008088511A (en) * 2006-10-03 2008-04-17 Adeka Corp Raw material for depositing thin film, method for producing thin film, and zinc compound

Also Published As

Publication number Publication date
JPH0664738B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US4975324A (en) Perpendicular magnetic film of spinel type iron oxide compound and its manufacturing process
EP0194748A2 (en) Magnetic thin film and method of manufacturing the same
US4618542A (en) Magnetic thin film
JPS62232101A (en) Manufacture of iron nitride magnetic material
Morisako et al. Iron nitride thin films prepared by facing targets sputtering
JPS61287032A (en) Production of thin magnetic material film
US4745031A (en) Magnetic recording medium
JPS63181305A (en) Manufacture of iron oxide vertically magnetized thin film
JPH0247011B2 (en) JISEITAIHAKUMAKUNOSEIZOHOHO
JPS61242330A (en) Production of magnetic substance thin film
JPS61242331A (en) Production of magnetic substance thin film
JPH06101417B2 (en) Method for manufacturing magnetic thin film
JPS62250625A (en) Manufacture of ferrite thin-film
JPH0576547B2 (en)
JPS63104313A (en) Manufacture of gamma iron oxide thin film
JPH03265105A (en) Soft magnetic laminate film
JPS63133323A (en) Production of thin magnetic iron oxide film
JPH01264919A (en) Production of thin iron carbide film
JPS62279518A (en) Magnetic recording medium
JPS62119732A (en) Production of vertically magnetized film
JPS61288071A (en) Production of ferromagnetic material
JPH0378114A (en) Magnetic recording medium
JPS63104312A (en) Manufacture of iron oxide magnetic thin film
JPS63275109A (en) Manufacture of iron oxide magnetic thin film
JPS6031013B2 (en) Method for manufacturing magnetic recording media