[go: up one dir, main page]

JPS62151701A - Method and device for aligning material wood - Google Patents

Method and device for aligning material wood

Info

Publication number
JPS62151701A
JPS62151701A JP29580485A JP29580485A JPS62151701A JP S62151701 A JPS62151701 A JP S62151701A JP 29580485 A JP29580485 A JP 29580485A JP 29580485 A JP29580485 A JP 29580485A JP S62151701 A JPS62151701 A JP S62151701A
Authority
JP
Japan
Prior art keywords
material wood
axis
claw
correction
claws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29580485A
Other languages
Japanese (ja)
Other versions
JPH0438283B2 (en
Inventor
Shiyouichi Nozaki
野崎 鉦一
Tetsutaro Rikuura
陸浦 鉄太郎
Shinji Kamiya
神谷 慎二
Yasuyuki Ohira
康幸 大平
Souichi Hashimoto
橋本 創一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Machinery Works Ltd
Original Assignee
Taihei Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Machinery Works Ltd filed Critical Taihei Machinery Works Ltd
Priority to JP29580485A priority Critical patent/JPS62151701A/en
Publication of JPS62151701A publication Critical patent/JPS62151701A/en
Publication of JPH0438283B2 publication Critical patent/JPH0438283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Wood Veneers (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To prevent material wood from being shaved into a veneer plate which is smaller in width than fixed size by detecting the contour of section of the material wood at plural lengthwise positions and correcting a temporary center based on the coordinate values of the axis of the whole body which are calculated from the detected contours. CONSTITUTION:The material wood 7 which is aligned temporarily is carried in to an alignment position and a hydraulic cylinder for clamping is put in operation to clamp the material wood 7 while temporary centers of both end are made coincident with the center of the clamping claw 9. Further, each swing arm 21 which is moved back to the upper limit is pressed against the external peripheral lengthwise surface of the material wood 7 under constant pressure. The material wood 7 is rotated around the temporary center as a center of rotation. At this time, the quantity of rotation of the material wood 7 is detected by a material wood rotational angle detector and respective optional cross sections at both ends and the center part are detected by a displacement quantity detectors synchronously as the quantities of displacement from the line connecting both ends of the material wood 7. Respective conveyance claws 47 which are positioned at both ends of a running body are corrected based on the coordinate values of the whole body axis G of the material wood 7 calculated from said detection results, and then the material wood 7 is replaced from the clamping claws 9 to the claws 47, which are further moved to the running body based on a correction quantity.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はベニヤレースによって原木を回転切削する際、
原木の旋削中心となる総体軸芯を決定する方法および装
置に関するものであり、特に原木の長手方向に亘って、
その両端近傍を含む3箇所以上の任意位置を、原木の総
体軸芯を決定する算定基準とし、原木の仮中心を回転中
心とした把持爪の回動によって得られた演算結果に基づ
き、搬送爪の補正量を算出し、原木を移動させるもので
ある。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is applicable to the following:
The present invention relates to a method and apparatus for determining the overall axis, which is the turning center of a log, and in particular, over the longitudinal direction of the log.
Three or more arbitrary positions, including the vicinity of both ends, are used as calculation standards to determine the overall axis of the raw wood, and based on the calculation results obtained by rotating the gripping claws around the tentative center of the raw wood, the conveying claw The correction amount is calculated and the log is moved.

「従来の技術」 一般的に、原木のベニヤレースにおける旋削中心を決定
するに際しては、適宜長さに切断した原木の雨水目端面
に共通する最大内接円を算定し、この円の中心を求める
ことによって行なわれている。
``Prior art'' Generally, when determining the turning center of a veneer lace made of raw wood, the maximum inscribed circle that is common to the water-grain end faces of the raw wood cut to an appropriate length is calculated, and the center of this circle is determined. It is done by

具体的には、各合板工場において、作業者が原木の雨氷
口端面に物差しをあてて、直交する長短径の長さを測定
した後、各長短径の中線を計算して白墨で印し、中線の
交点を求めて旋削中心としていた。
Specifically, at each plywood factory, workers place a ruler on the edge of the log's rain hole and measure the lengths of the major and minor axes that intersect at right angles, then calculate the median line of each major and minor axis and mark it in chalk. , the intersection of the median lines was found and used as the turning center.

また、他の方式として、原木の雨水目近傍を一対の昇降
自在で、且つ前後動自在な受台により支持し、上方に配
置された一対のプロジェクタから原木の雨水目端面に投
影される同心円に基づき、原木の雨水目端面のY軸上に
おいては受台の上下動、X軸上においては受台の前後動
によって調整し、雨水目端面の外形に内接する任意の同
心円中心を旋削中心としていた。
Another method is to support the vicinity of the rainwater grains of the raw wood with a pair of pedestals that can be raised and lowered and can move back and forth, and to project concentric circles onto the end surface of the rainwater grains of the logs from a pair of projectors placed above. Based on this, adjustments were made by vertical movement of the pedestal on the Y-axis of the rain-grained end surface of the raw wood, and by back-and-forth movement of the pedestal on the X-axis, and the turning center was set at the center of an arbitrary concentric circle inscribed in the outer shape of the rain-grained end surface. .

さらに、原木の雨水口端面の近傍に、原木を載置する受
台と、原木の上面を検知する検知器を相対峙し、両者を
上下より等距離接近させて、原木を挟持する方式によっ
ても、旋削中心を求めていた。
Furthermore, a method in which a pedestal on which the log is placed and a detector that detects the top surface of the log are placed opposite to each other near the end of the log's rainwater outlet, and the two are brought close to each other from above and below at equal distances to sandwich the log. , I was looking for a turning center.

「発明が解決しようとする問題点」 しかしながら、上記記載した各種方式のうち、第一の方
式は、作業者の主観により、原木間木口端面の長短径を
独自に設定しており、測定された長短径より中線を算出
するに際しては、必然的に誤差が生じ、正確を期するこ
とは困難である。
"Problems to be Solved by the Invention" However, among the various methods described above, the first method independently sets the major and minor axes of the end faces of logs based on the subjectivity of the worker, and the measured When calculating the median line from the major and minor axes, errors inevitably occur and it is difficult to ensure accuracy.

また、第二の方式においても、雨水目端面に投影される
同心円図は、一定距離を隔てたプロジェクタからの映像
であるため、複数の同心円は拡幅された状態となり、作
業者による端面輪郭と任意同心円との識別は困難となる
In addition, in the second method as well, the concentric circle diagram projected onto the end face of the rainwater eye is an image from a projector separated by a certain distance, so the multiple concentric circles are in a widened state, and the end face contour by the operator and the arbitrary It becomes difficult to distinguish it from concentric circles.

さらに、第三の方式においても、受台の上昇量と検知器
の下降量を等距離に制御しても、個々の原木の断面は不
整形であるので、挟持状態は不正確となる。
Furthermore, in the third method, even if the amount of rise of the pedestal and the amount of fall of the detector are controlled to be equidistant, the cross section of each log is irregular, so the clamping state will be inaccurate.

また、上記各方式は何れも原木の両端、若しくはその近
傍位置を、旋削中心を決定する算定基準としているので
、原木の長平方向に対しての曲がりや変形については、
その都度、作業者の勘に頼らざるを得ないものとなり、
このため、旋削中心の誤差は一層増長される。従って、
実際にベニヤレースで回転切削すると、定寸に満たない
小幅状のベニヤ単板を多量に削出することになる。
In addition, each of the above methods uses both ends of the raw wood, or positions near them, as calculation criteria for determining the center of turning, so bending and deformation in the longitudinal direction of the raw wood are
In each case, the operator has to rely on his or her intuition,
Therefore, the error in the turning center is further increased. Therefore,
If you actually perform rotary cutting with veneer lace, you will end up cutting out a large amount of narrow veneer veneer that is less than the specified size.

「問題点を解決するための手段」 本発明は叙上に鑑み、把持爪に把持された原木を仮中心
を回転中心として回動させることにより、その長手方向
に亘る複数箇所の断面輪郭を検知し、検知結果から演算
された原木の総体軸芯の座標値に基づき、走行体の両側
に位置する各搬送爪を補正した後、原木を把持爪から搬
送爪へ把持交換し、さらに、この搬送爪を補正量に基づ
き走行体に対して移動させ、その後、原木をベニヤレー
スの旋削中心まで定距離搬送するものである。
"Means for Solving the Problems" In view of the above, the present invention detects cross-sectional contours at multiple locations in the longitudinal direction of the log by rotating the log gripped by gripping claws around a temporary center of rotation. Then, after correcting each transport claw located on both sides of the running body based on the coordinate value of the overall axis of the raw wood calculated from the detection results, the raw wood is gripped and exchanged from the gripping claw to the transport claw, and then this transport The claws are moved relative to the traveling body based on the amount of correction, and then the log is transported a fixed distance to the turning center of the veneer lace.

「実施例」 以下、本発明の実施例を添付図面に基づき、まず構成よ
り説明する。
"Embodiments" Hereinafter, embodiments of the present invention will be described first from the configuration with reference to the accompanying drawings.

左右に任意間隔を置礫て、上下方向に機枠1を立設し、
この機枠1の上部間に各々横梁2を横架して門型状に形
成すると共に、長手方向に亘る機枠1の上部間に、各々
水平梁3を固着して連結する。
Place gravel at arbitrary intervals on the left and right, and set up the machine frame 1 vertically.
A cross beam 2 is horizontally hung between the upper parts of the machine frame 1 to form a gate shape, and a horizontal beam 3 is fixed and connected between the upper parts of the machine frame 1 extending in the longitudinal direction.

左右両側の各機枠1間に、相対向して一対の把持用流体
シリンダ4を取着し、そのピストンロッド5の先端を、
機枠lのほぼ中央部に嵌挿支持されて成るスピンドル6
の後端に取着している。
A pair of gripping fluid cylinders 4 are installed facing each other between the machine frames 1 on both the left and right sides, and the tip of the piston rod 5 is
A spindle 6 that is fitted and supported approximately in the center of the machine frame L.
It is attached to the rear end of the

このスピンドル6の先端には、原木7の木口端面8を把
持する把持爪9が取着され、機枠lに設置されたモータ
10の回動を、チェノ11を介して受動するチェノホイ
ール12が軸方向摺動自在、且つ回転方向に対して一体
に嵌挿されている。この時、相対向して位置する従動側
のスピンドル6には、第6図、第7図に示す如く、大歯
車13が軸方向摺動自在、且つ回転方向に対して一体に
嵌挿され、この大歯車13に小径の連係歯車14を歯合
させ、さらに、この連係歯車14の軸部に嵌着された小
歯車15と、機枠1に取着されたロータリーエンコーダ
I6のビニオン17を歯合させて、原木7の回転角を任
意角度毎に計測する原木回転角検知器18を配置してい
る。
At the tip of this spindle 6, a gripping claw 9 for gripping the end face 8 of the log 7 is attached, and a cheno wheel 12 receives the rotation of a motor 10 installed in the machine frame l via a chino wheel 11. is slidable in the axial direction and is fitted integrally in the rotational direction. At this time, as shown in FIGS. 6 and 7, a large gear 13 is fitted into the driven spindle 6 located opposite to each other so as to be slidable in the axial direction and integrally with respect to the rotational direction. A small-diameter linkage gear 14 is meshed with this large gear 13, and a small gear 15 fitted on the shaft of this linkage gear 14 and a pinion 17 of a rotary encoder I6 attached to the machine frame 1 are meshed with each other. In addition, a log rotation angle detector 18 is arranged to measure the rotation angle of the log 7 at arbitrary angles.

一方、前記横梁2には、原木7の長手方向に亘る任意の
断面輪郭を検知する変位量検知器19が、複数箇所、本
実施例においては中央並びに両端の3箇所、設置されて
いる。
On the other hand, on the cross beam 2, displacement detectors 19 for detecting arbitrary cross-sectional contours in the longitudinal direction of the raw wood 7 are installed at a plurality of locations, in this embodiment, at three locations at the center and at both ends.

即ち、横梁2の原木7搬入方向側面に取着された一対の
側板20間に、揺動腕21の基部近傍をピン22にて担
止し、また、横梁2の前部に変位用流体シリンダ23を
担止すると共に、そのピストンロッド24の先端を揺動
腕21に担止し、揺動腕21の先端を、流体動によって
ビン22接部を支点として、常時原木7の外周面へ圧接
させている。さらに、揺動腕21のピン22接部に嵌着
された半円状の測定板25と、側板20に取着されたエ
ンコーダ26のピニオン27を歯合させ、揺動腕21の
揺動変位量を検知している。
That is, the vicinity of the base of the swing arm 21 is supported by a pin 22 between a pair of side plates 20 attached to the side surfaces of the cross beam 2 in the direction in which the raw wood 7 is carried in, and a displacement fluid cylinder is attached to the front part of the cross beam 2. At the same time, the tip of the piston rod 24 is held on the swinging arm 21, and the tip of the swinging arm 21 is constantly pressed against the outer circumferential surface of the log 7 using the contact portion of the bin 22 as a fulcrum by fluid motion. I'm letting you do it. Furthermore, the semicircular measuring plate 25 fitted to the contact portion of the pin 22 of the swinging arm 21 and the pinion 27 of the encoder 26 attached to the side plate 20 are brought into mesh with each other, and the swinging displacement of the swinging arm 21 is adjusted. Detecting the amount.

尚、両端に位置する変位量検知器19は、図示例のよう
に、原木7長に応じて検知位置を移動自在とすべく、横
梁2に取着された一対の調整軸28に側板20を嵌挿さ
せて、横梁2に取着された調整用流体シリンダ29のピ
ストンロッド30の先端を、側板20に連結する場合も
ある。
In addition, as shown in the illustrated example, the displacement detectors 19 located at both ends have side plates 20 attached to a pair of adjustment shafts 28 attached to the cross beam 2 so that the detection position can be moved freely according to the length of the log 7. The tip of the piston rod 30 of the adjusting fluid cylinder 29 attached to the cross beam 2 may be connected to the side plate 20 by fitting.

次いで、左右の水平梁3をレールとして、その四隅部に
車輪31が支承された走行体32を、横梁2と平行に横
架し、ベニヤレース33まで往復動自在としている。
Next, using the left and right horizontal beams 3 as rails, a traveling body 32 with wheels 31 supported at its four corners is horizontally suspended parallel to the cross beams 2, so that it can freely reciprocate up to the veneer race 33.

この走行体32の左右両側には、横梁2と平行に配置さ
れた横軸34に吊持体35が相対向して嵌挿され、各吊
持体35には、走行体32の下部に逆向きに担止された
一対の吊持体用流体シリンダ36のピストンロッド37
の先端が取着され、各吊持体35を横軸34に沿って移
動自在としている。
Hanging bodies 35 are fitted on the left and right sides of the traveling body 32 so as to face each other on horizontal shafts 34 arranged parallel to the cross beam 2. The piston rods 37 of a pair of suspension fluid cylinders 36 are supported in the same direction.
The tips of the suspension members 35 are attached to each other so that each suspension member 35 is movable along the horizontal axis 34.

さらに、各吊持体35の相対向面の両側に一対の縦摺動
軸38を取着し、各吊持体35の背面に担止されたX軸
補正用流体シリンダ39のピストンロッド40の先端を
、縦摺動軸38に嵌挿された調整板41に取着して、こ
の調整板41を縦摺動軸38に沿って平衡昇降させると
共に、前記X軸補正用流体シリンダ39にピストンロッ
ド40の移動量を検知するエンコーダ42を附設し、調
整板41の下降量を規制するX軸補正装置43が配設さ
れている。
Furthermore, a pair of vertical sliding shafts 38 are attached to both sides of the opposing surfaces of each suspension body 35, and the piston rod 40 of the X-axis correction fluid cylinder 39 supported on the back surface of each suspension body 35 is attached. The tip end is attached to an adjusting plate 41 fitted into the vertical sliding shaft 38, and the adjusting plate 41 is moved up and down in balance along the vertical sliding shaft 38, and a piston is attached to the X-axis correction fluid cylinder 39. An encoder 42 that detects the amount of movement of the rod 40 is attached, and an X-axis correction device 43 that regulates the amount of descent of the adjustment plate 41 is provided.

また、この調整板41の上下部に一対の横摺動軸44を
取着すると共に、その中央部にX軸補正用流体シリンダ
45を取着し、そのピストンロッド46の先端を、一対
の横摺動軸44に嵌挿された搬送爪47に取着して、こ
の搬送爪47を横摺動軸44に沿って平衡規制させると
共に、前記X軸補正用流体シリンダ45にピストンロッ
ド46の移動量を検知するエンコーダ48を附設し、搬
送爪47の進退量を規制するX軸補正装置49が配設さ
れている。
Further, a pair of horizontal sliding shafts 44 are attached to the upper and lower parts of the adjustment plate 41, and an X-axis correction fluid cylinder 45 is attached to the center thereof, and the tip of the piston rod 46 is connected to the pair of horizontal sliding shafts 44. It is attached to the conveying claw 47 fitted into the sliding shaft 44 to regulate the balance of the conveying claw 47 along the horizontal sliding shaft 44, and also allows the movement of the piston rod 46 to the X-axis correction fluid cylinder 45. An encoder 48 that detects the amount is attached, and an X-axis correction device 49 that regulates the amount of advance and retreat of the conveyance claw 47 is provided.

尚、前記X軸補正用流体シリンダ39は、調整板41を
その上限位置から、Y軸補正用の第一段下降Tと、原木
7把持後の第二段下降しの二段階に規制される。従って
、第二段下降り後の位置を原木7径の大小に応じ、中段
、或いは下段の何れかに規制すべく、シリンダ室内にお
いてピストンロッド40の外周に摺動する外接ピストン
ロッド50を内在している。
Note that the X-axis correction fluid cylinder 39 is regulated to move the adjustment plate 41 from its upper limit position to two stages: a first-stage downward movement T for Y-axis correction, and a second-stage downward movement after gripping the raw wood 7. . Therefore, in order to regulate the position after the second step descends to either the middle step or the lower step depending on the size of the diameter of the log 7, a circumscribed piston rod 50 that slides on the outer periphery of the piston rod 40 in the cylinder chamber is included. ing.

また、この搬送爪47の第二段下降りを規制するには、
X軸補正用流体シリンダ39のピストンロッド40に、
第二段下降りの流体シリンダ(図示せず)を直列的に吊
持し、そのピストンロッド(図示せず)の先端に搬送爪
48の後端を接続したり、さらに、X軸補正用流体シリ
ンダ39の第一段下降T並びに第二段下降りを機械的に
規制する可動ストッパ(図示せず)を配設することも可
能である。
In addition, in order to restrict the second stage descent of this conveying claw 47,
To the piston rod 40 of the X-axis correction fluid cylinder 39,
A second stage descending fluid cylinder (not shown) is suspended in series, and the rear end of the conveying claw 48 is connected to the tip of the piston rod (not shown). It is also possible to provide a movable stopper (not shown) that mechanically restricts the first-stage lowering T and second-stage lowering of the cylinder 39.

尚、図中51はベニヤレース33のチャックである。In addition, numeral 51 in the figure is a chuck for the veneer lace 33.

「作用」 次に作用を説明する。"action" Next, the effect will be explained.

まず、原木7を芯出し位置へ搬入するに際し、把持用流
体シリンダ4のピストンロッド5を縮小させて、第3図
に示すように、把持爪9を退避させ、また、第5図に示
すように、X軸補正用流体シリンダ39のピストンロッ
ト40を縮小させ、調整板41を縦摺動軸38に沿って
上昇限位置に待機させると共に、X軸補正用流体シリン
ダ45のピストンロッド46を伸長させ、搬送爪47を
横摺動軸44に沿って後退限位置に待機させる。
First, when carrying the log 7 to the centering position, the piston rod 5 of the gripping fluid cylinder 4 is contracted, the gripping claws 9 are retracted as shown in FIG. , the piston rod 40 of the X-axis correction fluid cylinder 39 is reduced, the adjustment plate 41 is placed on standby at the upper limit position along the vertical sliding shaft 38, and the piston rod 46 of the X-axis correction fluid cylinder 45 is extended. Then, the transport claw 47 is placed on standby at the backward limit position along the horizontal sliding shaft 44.

また、搬入される原木7長に応じて、調整用流体シリン
ダz9によって両端の揺動腕21の位置を調整した後、
変位用流体シリンダ23のピストンロット24を伸長さ
せて、揺動腕2Iをピン22接部を支点として上限位置
へ退避させる。
In addition, after adjusting the position of the swinging arms 21 at both ends using the adjustment fluid cylinder z9 according to the length of the raw wood 7 to be carried in,
The piston rod 24 of the displacement fluid cylinder 23 is extended, and the swing arm 2I is retracted to the upper limit position using the contact portion of the pin 22 as a fulcrum.

次いで、適宜仮芯出しされた原木7を芯出し位置へ搬入
し、把持用流体シリンダ4を作動させて、雨水目端面8
の仮中心と把持爪9の中心を合致させて、原木7を把持
する。
Next, the log 7 that has been tentatively centered is carried into the centering position, the gripping fluid cylinder 4 is operated, and the end face 8 of the rainwater eye is moved.
The log 7 is gripped by aligning the temporary center of the handle with the center of the gripping claw 9.

さらに、変位用流体シリンダ23を作動させて、上限に
退避していた各揺動腕21を、ビン22接部を支点とし
て原木7の長手方向の外周面へ一定圧力にて押しつける
Furthermore, the displacement fluid cylinder 23 is operated to press each swinging arm 21, which had been retracted to the upper limit, against the longitudinal outer circumferential surface of the log 7 using the contact portion of the bin 22 as a fulcrum with a constant pressure.

しかして、モータlOの駆動をチェン11を介してチェ
ンホイール12へ伝達すれば、スピンドル6は回動され
、原木7は仮中心を回転中心として一回動されることに
なる。この時、原木70回動量は原木回転角検知器18
に、また、原木70両端近傍並びに中央部の各任意断面
は、原木7の雨水口端面を結ぶ線上からの変位量として
、各変位量検知器19により、各々同期して検知される
When the drive of the motor IO is transmitted to the chain wheel 12 via the chain 11, the spindle 6 is rotated, and the log 7 is rotated once around the temporary center. At this time, the amount of rotation of the log 70 is detected by the log rotation angle detector 18.
In addition, arbitrary cross sections near both ends and the center of the log 70 are detected synchronously by the displacement detectors 19 as displacements from the line connecting the rainwater outlet end surfaces of the log 7.

即ち、原木回転角検知器18においては、従動側のスピ
ンドル6の回転角を、ピニオン17を介してロータリー
エンコーダ16により、逐次検知し、また一方、各変位
量検知器19においては、各任意断面毎の回転中心軸か
らの半径と偏角を、ビン22接部を支点として捉えてお
り、この変位量は測定板25と歯合するビニオン27を
介して、エンコーダ26によって逐次検知されている。
That is, in the log rotation angle detector 18, the rotation angle of the spindle 6 on the driven side is sequentially detected by the rotary encoder 16 via the pinion 17, and on the other hand, in each displacement detector 19, the rotation angle of the spindle 6 on the driven side is detected sequentially. The radius and deflection angle from the center axis of each rotation are captured using the contact portion of the pin 22 as a fulcrum, and the amount of displacement is sequentially detected by the encoder 26 via the pinion 27 that meshes with the measurement plate 25.

従って、原木回転角検知器18によって検知された任意
角の電気信号と、変位量検知器19によって検知された
変位量の電気信号は、同期的に取り出され、複数個の断
面輪郭が検知される。これら各断面輪郭は、演算装置(
図示せず)へ人力され、各データに基づき適宜演算され
て、原木7の総体軸芯の座標値が得られることになる。
Therefore, the electrical signal of the arbitrary angle detected by the log rotation angle detector 18 and the electrical signal of the amount of displacement detected by the displacement amount detector 19 are taken out synchronously, and a plurality of cross-sectional contours are detected. . Each of these cross-sectional contours is calculated by the calculation unit (
(not shown) and performs appropriate calculations based on each data to obtain the coordinate values of the entire body axis of the log 7.

さらに、この座標値と仮中心、即ち、回転中心からのX
軸、並びにY軸の偏差を求め、X軸補正装置49、X軸
補正装置43へ各々指示する。
Furthermore, this coordinate value and the temporary center, that is, the X from the rotation center
The deviations of the axes and the Y-axis are determined and instructed to the X-axis correction device 49 and the X-axis correction device 43, respectively.

次に、第9図に基づき、各偏差の補正を具体的に説明す
る。仮に、回転中心0を座標上の原点(0,0)とし、
総体軸芯Gの座標値を(GX、−GV)とすれは、X軸
における補正量は搬送爪47の所定前進ff1A、(例
えば、搬送爪47が横摺動軸44上を後退限から前進限
まて移動する距離の中点、即ち、調整板41の中央位置
)から、(GX)を減算した移動量となる。
Next, based on FIG. 9, correction of each deviation will be specifically explained. Let us assume that the rotation center 0 is the coordinate origin (0,0),
If the coordinate values of the overall axis G are (GX, -GV), then the correction amount on the The amount of movement is obtained by subtracting (GX) from the midpoint of the distance traveled, that is, the center position of the adjustment plate 41.

また、Y軸における補正量は調整板41、即ち、搬送爪
47の所定下降ff1B、(例えは、調整板41が縦摺
動軸38上の上昇限位置に待機する時、搬送爪47の下
端より、Y座標上の原点までの距離からチャック51の
半径に若干の余裕を見込んだ分だけ減算した下降量)か
ら、(−GV)を減算した移動量となり、これが第一段
下降Tである。
In addition, the correction amount on the Y axis is the adjustment plate 41, that is, the predetermined lowering ff1B of the transport claw 47 (for example, when the adjustment plate 41 waits at the upper limit position on the vertical sliding shaft 38, the lower end of the transport claw 47 Therefore, the moving amount is obtained by subtracting (-GV) from the descending amount, which is the distance to the origin on the Y coordinate minus a slight margin for the radius of the chuck 51, and this is the first stage descending T. .

従って、総体軸芯Gの座標値が(0、O) 、即ち、回
転中心0と同一であれば、X軸における移動量(搬送爪
47が横摺動軸44上を移動する量)は、所定前進fa
Aであり、また、Y軸における補正量は(調整板41が
縦摺動軸38上を移動する量)は、所定下降fltBと
なる。
Therefore, if the coordinate value of the overall axis G is (0, O), that is, the same as the rotation center 0, the amount of movement on the X axis (the amount that the conveying claw 47 moves on the horizontal sliding shaft 44) is: Predetermined advance fa
A, and the amount of correction on the Y axis (the amount by which the adjustment plate 41 moves on the vertical sliding shaft 38) is a predetermined decrease fltB.

算出された補正量は、左右に位置するX軸補正装置49
のX軸補正用流体シリンダ45へ伝達され、搬送爪47
を横摺動軸44に沿って左右各別に前進させると共に、
エンコーダ48によって逐次検出した前進量を演算装置
へ帰還させ、補正量を正確に制御している。
The calculated correction amount is calculated by the X-axis correction devices 49 located on the left and right.
is transmitted to the X-axis correction fluid cylinder 45 of
is advanced along the horizontal sliding shaft 44 on the left and right sides, and
The amount of advance sequentially detected by the encoder 48 is fed back to the arithmetic unit to accurately control the amount of correction.

これに同期して、左右に位置するY @II補正装置4
3のX軸補正用流体シリンダ39へ補正量が伝達され、
調整板41(M透型47)を縦摺動軸38に沿って左右
各別に下降させると共に、エンコーダ42によって逐次
検出した下降量を演算装置へ帰還させ、補正量を正確に
制御している。
In synchronization with this, Y @II correction device 4 located on the left and right
The correction amount is transmitted to the X-axis correction fluid cylinder 39 of No. 3,
The adjustment plate 41 (M transparent type 47) is lowered along the vertical sliding shaft 38 on the left and right sides, and the amount of descent successively detected by the encoder 42 is fed back to the arithmetic unit to accurately control the amount of correction.

次いて、一対の吊持体用流体シリンダ36を作動させて
、搬送爪47を原木7の雨水口端面8へ喰い込ませ、次
いで、把持爪9を雨水口端面8より離脱させる。把持交
換後、X軸補正用流体シリンダ45を作動させて、搬送
爪47を横摺動軸44上、前進限位置まで摺動させると
共に、X軸補正用流体シリンダ39を作動させ、シリン
ダ室内において、第二段下降りが規制された外接ピスト
ンロッド50のロット部分先端へピストンロッド40の
ピストン部分が当接するまで下降させて、補正に応じた
原木7の移動を行なうものである。
Next, the pair of suspension fluid cylinders 36 are operated to cause the conveyance claws 47 to bite into the rainwater outlet end face 8 of the log 7, and then the gripping claws 9 are removed from the rainwater outlet end face 8. After the grip is exchanged, the X-axis correction fluid cylinder 45 is operated to slide the conveying claw 47 on the horizontal sliding shaft 44 to the forward limit position, and the X-axis correction fluid cylinder 39 is operated to move the conveyor claw 47 in the cylinder chamber. In the second step, the log 7 is moved in accordance with the correction by being lowered until the piston portion of the piston rod 40 comes into contact with the tip of the lot portion of the circumscribed piston rod 50 whose descent is restricted.

この時、原木7は雨水口端面8の幾何学的な座標上にお
いて、一対の搬送爪47に相対的に芯出しされた状態で
把持されている。
At this time, the raw wood 7 is held in a relatively centered state by the pair of transport claws 47 on the geometric coordinates of the rainwater outlet end surface 8.

しかして、搬送爪47に把持された軸芯の高さは、ベニ
ヤレース33のチャック51の旋削中心Sと同一となり
、その後、走行体32を水平梁3上を定距離Cだけ前進
させて、原木7の総体軸芯Gと旋削中心Sを合致させ、
搬送爪47からチャック51による原木7の把持交換を
行なうものである。
Therefore, the height of the axis gripped by the conveying claws 47 becomes the same as the turning center S of the chuck 51 of the veneer race 33, and after that, the traveling body 32 is advanced by a fixed distance C on the horizontal beam 3, Align the overall axis G of the log 7 with the turning center S,
The log 7 is gripped and replaced by the chuck 51 from the transport claw 47.

尚、搬送爪47の第二段下降りと、走行体32の定距離
C前進を同時に行なえば、ベニヤレース33のチャック
51への原木7の供給時間が短縮できることになる。
Incidentally, if the second stage lowering of the conveyance claw 47 and the forward movement of the traveling body 32 by a fixed distance C are carried out at the same time, the time for supplying the raw wood 7 to the chuck 51 of the veneer race 33 can be shortened.

また、本実施例においては、便宜上、X軸補正装置43
は、各吊持体35の背面にX軸補正用流体シリンダ39
を取着して、調整板41を縦摺動軸38に沿って平衡昇
降させ、X軸補正装置49はこの調整板41にX軸補正
用流体シリンダ45を取着して、搬送爪47を横摺動軸
44に沿って平衡規制させているが、X軸補正装置49
を各吊持体35の背面に、X軸補正装置43を調整板4
1へ設置変更することも可能である。
Further, in this embodiment, for convenience, the X-axis correction device 43
is an X-axis correction fluid cylinder 39 on the back of each suspension body 35.
The adjustment plate 41 is moved up and down in equilibrium along the vertical sliding shaft 38, and the X-axis correction device 49 is configured by attaching the X-axis correction fluid cylinder 45 to the adjustment plate 41 and moving the conveying claw 47. Although the balance is regulated along the lateral sliding axis 44, the X-axis correction device 49
The X-axis correction device 43 is attached to the adjustment plate 4 on the back of each suspension body 35.
It is also possible to change the installation to 1.

さらに、本実施例においては、搬送爪47のX軸におけ
る補正量の起点は後退限、且つ終点は前進限として説明
しているが、この終点を再び後退限としたり、或いは起
点を前進限、終点を後退限とする等の変更は任意である
Furthermore, in this embodiment, the starting point of the correction amount on the X axis of the conveying claw 47 is the backward limit, and the end point is the forward limit, but this end point may be set as the backward limit again, or the starting point is the forward limit, Changes such as setting the end point as the retreat limit are optional.

「効果」 以上のように本発明によれば、把持爪に把持された原木
を仮中心を回転中心として回動させることにより、その
長平方向に亘る複数箇所の断面輪郭を検知し、検知結果
から演算された原木の総体軸芯の座標値に基づき、走行
体の両側に位置する各搬送爪を補正した後、原木を把持
爪から搬送爪へ把持交換し、さらに、この搬送爪を補正
量に基づき走行体に対して移動させ、その後、原木をベ
ニヤレースの旋削中心まで定距離搬送するので、正確な
旋削中心が自動的に得られ、ベニヤレースによって切削
されるベニヤ単板においては、前記記載の各種従来方法
により求めたものに比して、連続状のベニヤ単板の取得
率が向上する。また、不連続状のベニヤ単板の吐出量が
減少し、後段工程の作業性を改善することができる。
"Effects" As described above, according to the present invention, by rotating the raw wood gripped by the gripping claws around a temporary center of rotation, the cross-sectional contours of multiple locations in the long direction are detected, and from the detection results. After correcting each transport claw located on both sides of the running body based on the calculated coordinate values of the entire axis of the log, the log is gripped and exchanged from the gripping claw to the transport claw, and then the transport claw is adjusted to the correction amount. Since the raw wood is moved relative to the traveling body based on the veneer race and then transported a fixed distance to the turning center of the veneer race, an accurate turning center is automatically obtained. The yield rate of continuous veneer veneers is improved compared to those obtained by various conventional methods. In addition, the amount of discontinuous veneer veneer discharged is reduced, and workability in subsequent steps can be improved.

また、原木の総体軸芯の座標値に基づく補正は、搬送爪
単体にて運行でき、且つ補正量に基づく原木の移動は、
搬送爪の機械的な限度位置にて規制されるので、特に、
原木等の重量物の制御に効果的であるばかりか、所要時
間の短縮が図れるものである。
In addition, the correction based on the coordinate value of the entire axis of the raw wood can be performed by a single transport claw, and the movement of the raw wood based on the correction amount is
In particular, since it is regulated by the mechanical limit position of the conveyor claw,
This is not only effective in controlling heavy objects such as logs, but also reduces the time required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面図、第2図は第1
図の側面図、第3図は第1図の一部切り欠き正面図、第
4図は第3図のA−A線矢視図、第5図は第4図のB−
B線矢視図、第6図は原木回転角検知器の正面図、第7
図は第6図の側面図、第8図は変位量検知器の正面図、
第9図は概略作動説明図である。 1・・・機枠、     3・・・水平梁、6・・・ス
ピンドル、  7・・・原木、9・・・把持爪、   
I8・・・原木回転角検知器、I9・・・変位量検知器
、 21・・・揺動腕、32・・・走行体、    3
5・・・吊持体、41・・・調整板、    113・
・・Y軸補正装置、47・・・搬送爪、    49・
・・X軸補正装置特許出願人 株式会社太平製作所 兆3ム は”″ 爽5ヱ 高7ム 笑8瓜
Fig. 1 is a plan view showing one embodiment of the present invention, and Fig. 2 is a plan view showing an embodiment of the present invention.
3 is a partially cutaway front view of FIG. 1, FIG. 4 is a view taken along line A-A in FIG. 3, and FIG. 5 is a B--
B-line arrow view, Figure 6 is the front view of the log rotation angle detector, Figure 7 is the front view of the log rotation angle detector.
The figure is a side view of Figure 6, Figure 8 is a front view of the displacement detector,
FIG. 9 is a schematic explanatory diagram of the operation. 1...Machine frame, 3...Horizontal beam, 6...Spindle, 7...Log, 9...Gripping claw,
I8... Log rotation angle detector, I9... Displacement amount detector, 21... Rocking arm, 32... Traveling body, 3
5... Hanging body, 41... Adjustment plate, 113.
...Y-axis correction device, 47...conveyance claw, 49.
...X-axis correction device patent applicant Taihei Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】 1、把持爪に把持された原木を仮中心を回転中心として
回動させることにより、その長手方向に亘る複数箇所の
断面輪郭を検知し、検知結果から演算された原木の総体
軸芯の座標値に基づき、走行体の両側に位置する各搬送
爪を補正した後、原木を把持爪から搬送爪へ把持交換し
、さらに、この搬送爪を補正量に基づき走行体に対して
移動させることを特徴とする原木の芯出し方法。 2、搬送爪の補正前の待機位置を走行体に対して後退限
、且つ上昇限位置とした特許請求の範囲第1項記載の原
木の芯出し方法。 3、搬送爪の補正前の待機位置を走行体に対して前進限
、且つ上昇限位置とした特許請求の範囲第1項記載の原
木の芯出し方法。 4、走行体に対する搬送爪の補正に基づく移動位置を後
退限、且つ下降限位置とした特許請求の範囲第1項記載
の原木の芯出し方法。 5、走行体に対する搬送爪の補正に基づく移動位置を前
進限、且つ下降限位置とした特許請求の範囲第1項記載
の原木の芯出し方法。 6、左右一対に配置され、水平方向に進退自在としたス
ピンドルの先端に把持爪を装着すると共に、基端近傍に
回転角検知器を附設し、一方、機枠上部の水平梁を案内
として走行自在に横架された走行体に、X軸補正装置に
よって進退自在、且つY軸補正装置によって昇降自在な
搬送爪を両側より各々吊下し、さらに、原木の長手方向
に任意間隔を置いて複数個配設される各揺動腕の基端に
、変位量検知器を各々附設して枢止し、前記回転角検知
器と変位量検知器の各データから演算される総体軸芯の
座標値に基づき、前記搬送爪のX軸補正装置へ補正量を
、また、Y軸補正装置へ下降補正量を各々出力させるこ
とを特徴とする原木の芯出し装置。
[Claims] 1. By rotating the raw wood gripped by the gripping claws around a temporary center of rotation, the cross-sectional contours of multiple locations in the longitudinal direction are detected, and the raw wood calculated from the detection results is After correcting each transport claw located on both sides of the traveling body based on the coordinate value of the overall body axis, the log is gripped and exchanged from the gripping claw to the transport claw, and then the transport claw is moved to the traveling body based on the correction amount. A method for centering logs, which is characterized by moving the logs. 2. The method for centering logs according to claim 1, wherein the standby position before correction of the conveyance claw is at the backward limit and the upward limit position with respect to the traveling body. 3. The method for centering logs as set forth in claim 1, wherein the standby position of the transport claw before correction is the forward limit and ascent limit position with respect to the traveling body. 4. The method for centering logs according to claim 1, wherein the movement position based on the correction of the conveying claw relative to the traveling body is the backward limit and the lower limit position. 5. The method for centering logs according to claim 1, wherein the moving position based on the correction of the conveyance claw relative to the traveling body is the forward limit position and the downward limit position. 6. Grip claws are attached to the tips of the spindles, which are arranged in pairs on the left and right and can move forward and backward in the horizontal direction, and a rotation angle detector is attached near the base end. Meanwhile, the spindles run using the horizontal beam at the top of the machine frame as a guide. Conveyance claws, which can move forward and backward by an X-axis correction device and can be raised and lowered by a Y-axis correction device, are suspended from both sides of a freely horizontally suspended traveling body, and a plurality of conveyor claws are placed at arbitrary intervals in the longitudinal direction of the raw wood. A displacement detector is attached to the base end of each individually arranged swinging arm and pivotally fixed, and the coordinate value of the total body axis is calculated from each data of the rotation angle detector and the displacement detector. A log centering device characterized in that, based on the above, a correction amount is output to an X-axis correction device of the transport claw, and a downward correction amount is output to a Y-axis correction device.
JP29580485A 1985-12-26 1985-12-26 Method and device for aligning material wood Granted JPS62151701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29580485A JPS62151701A (en) 1985-12-26 1985-12-26 Method and device for aligning material wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29580485A JPS62151701A (en) 1985-12-26 1985-12-26 Method and device for aligning material wood

Publications (2)

Publication Number Publication Date
JPS62151701A true JPS62151701A (en) 1987-07-06
JPH0438283B2 JPH0438283B2 (en) 1992-06-24

Family

ID=17825378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29580485A Granted JPS62151701A (en) 1985-12-26 1985-12-26 Method and device for aligning material wood

Country Status (1)

Country Link
JP (1) JPS62151701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103850996A (en) * 2014-03-19 2014-06-11 湖州市南浔祥龙木业制造厂 Hydraulic control system for constant pressure press for timber floor
CN110520690A (en) * 2017-02-17 2019-11-29 苏州科爱佳自动化科技有限公司 Space flight grade ball bar detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103850996A (en) * 2014-03-19 2014-06-11 湖州市南浔祥龙木业制造厂 Hydraulic control system for constant pressure press for timber floor
CN110520690A (en) * 2017-02-17 2019-11-29 苏州科爱佳自动化科技有限公司 Space flight grade ball bar detection system
CN110520690B (en) * 2017-02-17 2021-05-25 苏州科爱佳自动化科技有限公司 Space-level ball grid detection system

Also Published As

Publication number Publication date
JPH0438283B2 (en) 1992-06-24

Similar Documents

Publication Publication Date Title
US4294149A (en) Apparatus for measuring and orienting logs for sawing
EP1560685B1 (en) Linear feed cutting method
US4827751A (en) Device for machining rolls in a rolling stand
DE4436148C1 (en) Method and device for the lateral leveling of brick moldings and / or bricks
JPS63168226A (en) Manipulator for plate bending device and plate bending device equipped with manipulater
US5413204A (en) Glass plate positioning and supplying machine
CN218426860U (en) Full-function composite production line for aluminum doors and windows
US3919900A (en) Automatic roll tensioning method and apparatus
JPS62151701A (en) Method and device for aligning material wood
JPH0460001B2 (en)
US5228490A (en) Process and apparatus for producing squares from tree boles or the like
RU2086407C1 (en) Method and apparatus for longitudinal sawing of logs and complex of devices for measuring parameters of logs and timber
JP4263899B2 (en) Precut wood manufacturing apparatus and manufacturing method
DE4436336C1 (en) Smoothing one or two sides of fired or blank tiles
JPH0473363B2 (en)
JPS61237601A (en) Method and device for selectively centering and supplying log
KR102157958B1 (en) Workpiece bad transport system for machine tools
JP2889123B2 (en) Pre-cut planer control device and control method
CN222642940U (en) Profile shaping machine
CN221818910U (en) Wood processing equipment
JPS6128470B2 (en)
JPH09174503A (en) Travelling planer and its profiling mechanism
EP3865267A1 (en) Edge bander machine for wooden workpieces provided with a measuring device of the workpiece position at the entry into the machine and operation method thereof
JPH0798223B2 (en) Plate bending machine
JPH05345314A (en) Circular saw type nc cutter for brick and stone

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees