[go: up one dir, main page]

JPH0460001B2 - - Google Patents

Info

Publication number
JPH0460001B2
JPH0460001B2 JP5899085A JP5899085A JPH0460001B2 JP H0460001 B2 JPH0460001 B2 JP H0460001B2 JP 5899085 A JP5899085 A JP 5899085A JP 5899085 A JP5899085 A JP 5899085A JP H0460001 B2 JPH0460001 B2 JP H0460001B2
Authority
JP
Japan
Prior art keywords
axis
log
claw
correction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5899085A
Other languages
Japanese (ja)
Other versions
JPS61217207A (en
Inventor
Seiichi Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Machinery Works Ltd
Original Assignee
Taihei Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Machinery Works Ltd filed Critical Taihei Machinery Works Ltd
Priority to JP5899085A priority Critical patent/JPS61217207A/en
Publication of JPS61217207A publication Critical patent/JPS61217207A/en
Publication of JPH0460001B2 publication Critical patent/JPH0460001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Wood Veneers (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はベニヤレースによつて原木を回転切削
する際、原木の旋削中心となる総体軸芯を決定す
る方法および装置に関するものであり、特に原木
の長手方向に亘つて、その両端近傍部分を含む3
個所以上の任意位置を、原木の総体軸芯の座標値
を決定する算定基準とし、原木の仮中心を回転中
心とした把持爪の回動によつて得られた演算結果
に基づき、後退限に位置する把持爪のx軸におけ
る前進補正量、またy軸における下降補正量を算
出し、原木を移動させるものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method and apparatus for determining the overall axis, which is the turning center of the raw wood, when rotary cutting the raw wood using a veneer lace. 3 in the longitudinal direction of the log, including the areas near both ends.
An arbitrary position above this point is used as the calculation standard for determining the coordinate value of the entire body axis of the log, and based on the calculation result obtained by rotating the gripping claws around the temporary center of the log as the rotation center, the retraction limit is determined. The forward correction amount on the x-axis and the downward correction amount on the y-axis of the positioned gripping claw are calculated to move the log.

「従来の技術」 一般的に、原木のベニヤレースにおける旋削中
心を決定するには、適宜長さに切断した原木の両
木口端面に共通する最大内接円を算定し、この円
の中心を求めることによつて行なわれている。
``Prior art'' Generally, in order to determine the turning center of a veneer lace on a log, the maximum inscribed circle common to both end faces of the log cut to an appropriate length is calculated, and the center of this circle is determined. It is done by

具体的には、各合板工場等において、作業者が
原木の両木口端面に物指をあてて、直交する長短
径の長さを測定した後、各長短径の中線を計算し
て白墨で印し、中線の交点を求めて旋削中心とし
ていた。
Specifically, at each plywood factory, workers measure the lengths of the long and short axes that are perpendicular to each other by placing their index fingers on both ends of the wood, then calculate the median line of each long and short axis and mark it in chalk. The intersection point of the median line was found as the turning center.

また他の方式として、原木の両木口近傍を一対
の昇降動自在で、且つ前後動自在な受台により支
持し、上方に配置された一対のプロジエクタから
原木の両木口端面に投影される同心円に基づき、
原木の両木口端面のy軸上においては受台の上下
動、x軸上においては受台の前後動によつて調整
し、両木口端面の外形に内装する任意の同心円中
心を旋削中心としていた。
Another method is to support the vicinity of both ends of the log by a pair of cradle that can be moved up and down and back and forth, and to project concentric circles onto the end faces of both ends of the log from a pair of projectors placed above. Based on
Adjustments were made by vertical movement of the pedestal on the y-axis of both butt ends of the raw wood, and by back-and-forth movement of the pedestal on the x-axis, and the turning center was set at the center of an arbitrary concentric circle built into the external shape of both butt ends of the raw wood. .

さらに、原木の両木口端面の近傍に、原木を載
置する受台と原木の上面を検知する検知器を相対
峙し、両者を上下より等距離接近させて、原木を
挾持する方式によつても、旋削中心を求めてい
た。
Furthermore, a pedestal on which the log is placed and a detector that detects the top surface of the log are placed facing each other near both end faces of the log, and the two are brought close to each other from above and below at equal distances to sandwich the log. I was also looking for a turning center.

しかしながら、上記記載した各種方式のうち、
第1の方式は、作業者の主観により原木端面の長
短径を独自に設定しており、測定された長短径よ
り中線を算出するに際しては、必然的に誤差が生
じ、正確を期することは困難であり、また第2の
方式においても、両木口端面に投影される同心円
図は、一定距離を隔てたプロジエクタからの映像
であるため、複数の同心円は拡幅された状態とな
り、作業者により端面輪郭と任意同心円との識別
は困難となる。さらに第3の方式においても、受
台の上昇量と検知器の下降量を等距離に制御して
も、個々の原木の断面は不整形であるので、挾持
状態は不正確となる。
However, among the various methods described above,
In the first method, the major and minor axes of the end face of the log are set independently based on the subjective opinion of the worker, and when calculating the median line from the measured major and minor axes, errors inevitably occur, so accuracy must be ensured. Also, in the second method, the concentric circles projected onto the end surfaces of both ends are images from a projector separated by a certain distance, so the multiple concentric circles are in a widened state, making it difficult for the operator to It becomes difficult to distinguish between the end face contour and arbitrary concentric circles. Furthermore, in the third method, even if the amount of rise of the pedestal and the amount of fall of the detector are controlled to be equidistant, the cross section of each log is irregular, so the clamping state will be inaccurate.

また、上記各方式は何れも原木の両端、若しく
はその近傍位置を、旋削中心を決定する算定基準
としているので、原木の長手方向に対しての曲り
や変形については、その都度作業者の勘に頼らざ
るを得ないものとなり、このため、旋削中心の誤
差は一層増長される。従つて、実際にベニヤレー
スで回転切削すると、定寸に満たない小幅状のベ
ニヤ単板を多量に削出することになる。
In addition, each of the above methods uses both ends of the raw wood or the positions near them as calculation criteria for determining the center of turning, so bending or deformation in the longitudinal direction of the raw wood depends on the operator's intuition each time. Therefore, the error in the turning center is further increased. Therefore, when a veneer lace is actually rotary cut, a large amount of veneer veneer with a narrow width that is less than the specified size is cut out.

「発明が解決しようとする問題点」 本発明は叙上に鑑み、原木の芯出し位置におい
て、後退限に待機する把持爪によつて、原木の仮
中心を回転中心として回動し、長手方向に亘る複
数個所の断面輪郭を検知して総体軸芯の座標値を
演算した後、この座標値に基づくx軸上の補正量
を把持爪の前進動により、また、Y軸上の補正量
を搬送爪の下降動によつて行い、次に把持爪から
原木を搬送爪へ把持交換し、その後、原木をベニ
ヤレースの旋削中心まで定距離搬送するものであ
る。
``Problems to be Solved by the Invention'' In view of the above, the present invention is designed to rotate the temporary center of the raw material as a rotation center by means of a gripping claw that waits at the retreat limit at the centering position of the raw material, and to rotate the raw material in the longitudinal direction. After detecting cross-sectional contours at multiple locations and calculating the coordinate values of the overall body axis, the amount of correction on the x-axis based on these coordinate values is calculated by the forward movement of the gripping claws, and the amount of correction on the y-axis is calculated based on the coordinate values. This is done by the downward movement of the conveying claws, then the raw wood is gripped and exchanged from the gripping claws to the conveying jaws, and then the raw wood is conveyed a fixed distance to the turning center of the veneer race.

「実施例」 以下、本発明の実施例の添付図面に基づき説明
する。
"Embodiments" Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

左右に任意間隔を置いて、上下方向に複数対の
機枠1を立設し、この機枠1の上部間に各々横梁
2を横架して門型状に形成すると共に、長手方向
に亘る機枠1の上部間に、各々水平梁3を固着し
て連結する。
A plurality of pairs of machine frames 1 are erected in the vertical direction at arbitrary intervals left and right, and cross beams 2 are horizontally suspended between the upper parts of the machine frames 1 to form a gate shape, and extend in the longitudinal direction. Horizontal beams 3 are fixed and connected between the upper parts of the machine frame 1, respectively.

左右両側の各機枠1間には、相対向して一対の
案内軸4が各々取着され、この一対の案内軸4
に、軸受箱5の上部両端の穿孔部分を嵌挿し、軸
受箱5を支持している。この軸受箱5の下端から
延設した支持体6の後部に、把持用流体シリンダ
7を取着し、そのピストンロツド8の先端を、軸
受箱5のほぼ中央部に嵌挿支持されて成るスピン
ドル9の後端に取着している。
A pair of guide shafts 4 are installed facing each other between the machine frames 1 on both the left and right sides, and the pair of guide shafts 4
The perforated portions at both ends of the upper part of the bearing box 5 are inserted into the holes to support the bearing box 5. A gripping fluid cylinder 7 is attached to the rear part of the support 6 extending from the lower end of the bearing box 5, and the tip of the piston rod 8 is fitted into and supported by a spindle 9 in the approximate center of the bearing box 5. It is attached to the rear end of.

このスピンドル9の先端には、原木10の木口
端面11を把持する把持爪12が取着され、また
その中央近傍には、支持体6の下部に設置された
モータ13の回動を、チエン14を介して受動す
るチエンホイール15が軸方向摺動自在、且つ回
転方向に対して一体に嵌挿されている。この時、
相対向して位置する他方の軸受箱5に嵌挿支持さ
れた従動側のスピンドル9には、第6図、第7図
に示す如く、大歯車16が軸方向摺動自在、且つ
回転方向に対して一体に嵌挿され、この大歯車1
6に小径の連係歯車17を歯合させ、さらに、こ
の連係歯車17の軸部に嵌着された小歯車18
と、支持体6に取着されたロータリーエンコーダ
19のピニオン20を歯合させて、原木10の回
転角を任意角度毎に計測する原木回転角検知器2
1を配置している。
At the tip of this spindle 9, a gripping claw 12 for gripping the end face 11 of the raw wood 10 is attached, and near the center thereof, a chain 14 is attached that controls the rotation of a motor 13 installed at the lower part of the support 6. A chain wheel 15, which is driven by the chain wheel 15, is slidable in the axial direction and is integrally fitted in the rotating direction. At this time,
As shown in FIGS. 6 and 7, a driven-side spindle 9 that is fitted and supported by the other bearing box 5 located opposite to each other has a large gear 16 that is slidable in the axial direction and rotated in the rotational direction. This large gear 1
A small diameter linking gear 17 is meshed with the linking gear 17, and a small gear 18 is fitted onto the shaft of the linking gear 17.
and a log rotation angle detector 2 that measures the rotation angle of the log 10 at arbitrary angles by meshing the pinion 20 of the rotary encoder 19 attached to the support 6.
1 is placed.

さらに、前記軸受箱5の中央部には、x軸補正
用流体シリンダ22が取着され、そのピストンロ
ツド23の先端を一方の機枠1に取着すると共
に、案内軸4と平行に配置されたラツク24に、
支持体6に取着されたエンコーダ25のピニオン
26を歯合させ、リミツトスイツチ27によつて
エンコーダ25をリセツトし、後退限からの軸受
箱5の移動量を規制するx軸補正装置28を配置
している。
Furthermore, an x-axis correction fluid cylinder 22 is attached to the center of the bearing box 5, and the tip of its piston rod 23 is attached to one of the machine frames 1, and is arranged parallel to the guide shaft 4. In easy 24,
An x-axis correction device 28 is arranged to mesh the pinion 26 of the encoder 25 attached to the support 6, reset the encoder 25 by the limit switch 27, and regulate the amount of movement of the bearing box 5 from the backward limit. ing.

一方、前記横梁2には、原木10の長手方向に
亘る任意の断面輪郭を検知する変位置検知器29
が、複数個所、本実施例において中央並びに両端
の3個所、設置されている。
On the other hand, a displacement detector 29 is installed on the cross beam 2 to detect an arbitrary cross-sectional contour in the longitudinal direction of the log 10.
are installed at a plurality of locations, in this embodiment three locations, one in the center and one at both ends.

即ち、横梁2の原木10搬入方向側面に取着さ
れた一対の側板30間に、ドツグレツグ状の揺動
腕31の基部近傍をピン32にて枢支し、また、
揺動腕31の後部を変位用流体シリンダ33に枢
支すると共に、そのピストンロツド34の先端を
一対の側板30の上部に枢支し、揺動腕31の先
端を、流体動によつてピン32接部を支点とし
て、常時原木10の外周面へ圧接させている。さ
らに、揺動腕31のピン32接部に嵌着された半
円状の測定板35と、側板30に取着されたエン
コーダ36のピニオン37を歯合させ、揺動腕3
1の揺動変位量を検知している。
That is, the vicinity of the base of the dogleg-shaped swinging arm 31 is pivotally supported by a pin 32 between a pair of side plates 30 attached to the side surfaces of the cross beam 2 in the direction in which the raw wood 10 is carried in, and
The rear part of the swinging arm 31 is pivoted to the displacement fluid cylinder 33, and the tip of the piston rod 34 is pivoted to the upper part of the pair of side plates 30, so that the tip of the swinging arm 31 is moved to the pin 32 by fluid movement. The contact portion is used as a fulcrum and is constantly pressed against the outer circumferential surface of the log 10. Further, the semicircular measuring plate 35 fitted to the contact portion of the pin 32 of the swinging arm 31 and the pinion 37 of the encoder 36 attached to the side plate 30 are brought into mesh with each other, and the swinging arm 3
The amount of rocking displacement of 1 is detected.

尚、両端に位置する変位量検知器29は、図示
例のように、原木10長に応じて検知位置を移動
自在とすべく、横梁2に取着された一対の調整軸
38に側板30を嵌挿させて、横梁2に取着され
た調整用流体シリンダ39のピストンロツド40
の先端を、側板30に連結する場合もある。
As shown in the illustrated example, the displacement detectors 29 located at both ends have side plates 30 attached to a pair of adjustment shafts 38 attached to the cross beam 2 so that the detection position can be moved freely according to the length of the log 10. The piston rod 40 of the adjusting fluid cylinder 39 is fitted and attached to the cross beam 2.
In some cases, the tip of the holder may be connected to the side plate 30.

次いで、左右の水平梁3をレールとして、その
四隅部に車輪41が支承された走行体42を、横
梁2と平行に横架し、ベニヤレースまで往復動自
在としている。
Next, using the left and right horizontal beams 3 as rails, a traveling body 42 with wheels 41 supported at its four corners is horizontally suspended parallel to the cross beam 2, so that it can freely reciprocate up to the veneer race.

この走行体42の左右両側には、横梁2と平行
に配置された横軸43に吊持体44が相対向して
嵌挿され、各吊持体44には、走行体42の下部
に逆向きに枢支された一対の吊持体用流体シリン
ダ45のピストンロツド46の先端が取着され、
各吊持体44を横軸43に沿つて移動自在として
いる。
Hanging bodies 44 are fitted to opposite sides of horizontal shafts 43 arranged parallel to the cross beam 2 on both the left and right sides of the running body 42, and each hanging body 44 is provided with an opposite side at the bottom of the running body 42. The tips of the piston rods 46 of a pair of fluid cylinders 45 for the suspension body are attached,
Each hanging member 44 is movable along the horizontal axis 43.

さらに、各吊持体44には、その下端より垂下
された一対のガイド軸47に搬送爪48が嵌挿さ
れ、この搬送爪48の後端を、吊持体44に逆向
きに取着されたy軸補正用流体シリンダ49のピ
ストンロツド50に取着すると共に、吊持体44
の側部に取着されたエンコーダ51のピニオン5
2を、搬送爪48の側部に取着されたラツク53
に歯合させ、搬送爪48の下降量を規制するy軸
補正装置54が配設されている。
Furthermore, a transport claw 48 is fitted into a pair of guide shafts 47 hanging from the lower end of each suspension member 44, and the rear end of the transport claw 48 is attached to the suspension member 44 in the opposite direction. It is attached to the piston rod 50 of the y-axis correction fluid cylinder 49, and the suspension body 44
The pinion 5 of the encoder 51 attached to the side of the
2 to the rack 53 attached to the side of the transport claw 48.
A y-axis correction device 54 is provided that meshes with the y-axis and regulates the amount of descent of the conveyance claw 48.

この時、y軸補正用流体シリンダ49は、搬送
爪48をその上限位置から、y軸補正用の第1段
下降Tと、原木10把持後の第2段下降Lの二段
階に規制する。従つて、第2段下降L後の位置を
原木径の大小に応じ、中段或いは下段のいずれか
に規制すべく、シリンダ室内においてピストンロ
ツド50の外周に摺動する外接ピストンロツド5
5を内在している。
At this time, the y-axis correction fluid cylinder 49 restricts the conveying claw 48 from its upper limit position to two stages: a first-stage lowering T for y-axis correction and a second-stage lowering L after gripping the log 10. Therefore, in order to regulate the position after the second stage lowering L to either the middle stage or the lower stage depending on the size of the log diameter, the circumscribed piston rod 5 slides on the outer periphery of the piston rod 50 in the cylinder chamber.
It contains 5.

尚、この搬送爪48の二段階下降を規制するに
は、y軸補正用流体シリンダ49のピストンロツ
ド50に、さらに第2段下降L用の流体シリンダ
(図示せず)を直列的に吊持し、そのピストンロ
ツド(図示せず)の先端に搬送爪48の後端を接
続したり、また、y軸補正用流体シリンダ49の
第1段下降T並びに第2段下降Lを機械的に規制
する可動ストツパ(図示せず)を配設することも
可能である。
In order to restrict the two-stage lowering of the transport claw 48, a fluid cylinder (not shown) for the second stage lowering L is further suspended in series on the piston rod 50 of the y-axis correction fluid cylinder 49. , connects the rear end of the conveying claw 48 to the tip of the piston rod (not shown), and also is movable to mechanically restrict the first stage lowering T and second stage lowering L of the y-axis correction fluid cylinder 49. It is also possible to provide a stop (not shown).

尚、図中56はベニヤレースのチヤツクであ
る。
In addition, 56 in the figure is a chuck of veneer lace.

「作用」 次に作用を説明する。"action" Next, the action will be explained.

まず、原木10を芯出し位置へ搬入するに際
し、把持用流体シリンダ7のピストンロツド8を
縮小させて、第1図に示すように把持爪12を退
避させ、また第2図に示すように、x軸補正用流
体シリンダ22のピストンロツド23を縮小させ
て、軸受箱5を案内軸4上、後退限に待機させる
と共に、原木10長に応じて、調整用流体シリン
ダ39によつて両端の揺動腕31の位置を調整し
た後、変位用流体シリンダ33のピストンロツド
34を伸長させて、揺動腕31をピン32接部を
支点として上限位置へ退避させる。
First, when carrying the raw wood 10 to the centering position, the piston rod 8 of the gripping fluid cylinder 7 is contracted to retract the gripping claws 12 as shown in FIG. 1, and as shown in FIG. The piston rod 23 of the axis correction fluid cylinder 22 is contracted to make the bearing box 5 wait on the guide shaft 4 at the retraction limit, and the adjustment fluid cylinder 39 adjusts the swing arms at both ends according to the length of the log 10. After adjusting the position of the piston rod 31, the piston rod 34 of the displacement fluid cylinder 33 is extended, and the swing arm 31 is retracted to the upper limit position using the contact portion of the pin 32 as a fulcrum.

次いで、前記記載の方法によつて、適宜仮芯出
しされた原木10を芯出し位置へ搬入し、一対の
把持用流体シリンダ7を作動させて、両木口端面
11の仮中心と把持爪12の中心を合致させて、
原木10を把持する。
Next, the log 10, which has been temporarily centered according to the method described above, is transported to the centering position, and the pair of gripping fluid cylinders 7 is operated to align the temporary center of both end faces 11 and the gripping claws 12. Match the centers,
Grip the log 10.

さらに、変位用流体シリンダ33を作動させ
て、上限に退避していた各揺動腕31を、ピン3
2接部を支点として原木10の長手方向の外周面
へ一定圧力にて押し付ける。
Furthermore, by operating the displacement fluid cylinder 33, each swinging arm 31, which had been retracted to the upper limit, is moved to the pin 3.
It is pressed against the outer circumferential surface of the log 10 in the longitudinal direction using the two contact parts as a fulcrum with a constant pressure.

しかして、モータ13の駆動のチエン14を介
してチエンホイール15へ伝達すれば、スピンド
ル9は回動され、原木10は仮中心を回転中心と
して一回動されることになる。この時、原木10
の回動量は原木回転角検知器21に、また、原木
10の両端近傍並びに中央部の各任意断面は、原
木10の両木口端面11の仮中心間を結ぶ線上か
らの変位量として、各変位量検知器29により、
各々同期して検知される。
When the drive of the motor 13 is transmitted to the chain wheel 15 through the chain 14, the spindle 9 is rotated, and the log 10 is rotated once around the temporary center. At this time, log 10
The amount of rotation is determined by the log rotation angle detector 21, and each arbitrary cross section near both ends and the center of the log 10 is measured as the amount of displacement from the line connecting the tentative centers of both end faces 11 of the log 10. By the amount detector 29,
Each is detected synchronously.

即ち、原木回転角検知器21においては、従動
側のスピンドル9の回転角を、ピニオン20を介
してロータリーエンコーダ19により、遂次検知
し、また一方、各変位量検知器29においては、
各任意断面毎の回転中心軸からの半径と偏角を、
ピン32接部を支点として揺動する揺動腕31の
変位量として捉えており、この変位量は測定板3
5と歯合するピニオン37を介してエンコーダ3
6によつて遂次検出されている。
That is, in the log rotation angle detector 21, the rotation angle of the spindle 9 on the driven side is sequentially detected by the rotary encoder 19 via the pinion 20, and on the other hand, in each displacement detector 29,
The radius and deviation angle from the rotation center axis for each arbitrary cross section are
This is taken as the amount of displacement of the swinging arm 31 that swings using the contact portion of the pin 32 as a fulcrum, and this amount of displacement is measured by the measurement plate 3.
Encoder 3 via pinion 37 meshing with encoder 5
6 has been successively detected.

従つて、原木回転角検知器21によつて検知さ
れた任意角の電気信号と、変位量検知器29によ
つて検知された変位量の電気信号は、同期的に取
り出され、複数個の断面輪郭が検知される。これ
ら各断面輪郭は、演算装置(図示せず)へ入力さ
れ、各データに基づき適宜演算されて、原木10
の総体軸芯の座標値が得られることになる。さら
に、この座標値と仮中心、即ち、回転中心からの
x軸、並びにy軸の偏差を求め、x軸補正装置2
8、y軸補正装置54へ各々指示する。
Therefore, the electric signal of the arbitrary angle detected by the log rotation angle detector 21 and the electric signal of the displacement amount detected by the displacement amount detector 29 are extracted synchronously and Contours are detected. Each of these cross-sectional contours is input to a calculation device (not shown), and is appropriately calculated based on each data.
The coordinate values of the total body axis will be obtained. Furthermore, the deviations of the x-axis and y-axis from this coordinate value and the temporary center, that is, the rotation center, are determined, and the x-axis correction device 2
8. Instruct each to the y-axis correction device 54.

次に、第10図に基づき、各偏差の補正を具体
的に説明する。仮りに、回転中心Oを座標上の原
点(0,0)とし、総体軸芯Gの座標値を(Gx,
−Gy)とすれば、x軸における補正量は軸受箱
5の所定前進量A、例えば、上限位置に待機する
搬送爪48の分岐垂線までの前進量、から(Gx)
を減算した移動量となる。また、y軸における補
正量は、搬送爪48の所定下降量B、例えば、上
限位置に待機する搬送爪48の下端よりy座標が
(0)までの距離からチヤツク56の半径+αを
減算した下降量であり、これから(−Gy)を減
算して第1段下降Tを求めている。
Next, based on FIG. 10, correction of each deviation will be specifically explained. Suppose that the rotation center O is the coordinate origin (0,0), and the coordinate value of the total body axis G is (Gx,
-Gy), the correction amount on the x-axis is from the predetermined advance amount A of the bearing box 5, for example, the advance amount to the branch perpendicular line of the conveying claw 48 waiting at the upper limit position, to (Gx)
The amount of movement is obtained by subtracting . In addition, the correction amount on the y-axis is a predetermined descending amount B of the conveying claw 48, for example, a descent calculated by subtracting the radius of the chuck 56 + α from the distance from the lower end of the conveying claw 48 waiting at the upper limit position to the y-coordinate (0). The first stage descent T is obtained by subtracting (-Gy) from this amount.

従つて、総体軸芯Gの座標値が(0,0)、即
ち、回転中心Oと同一であれば、x軸における軸
受箱5の移動量は所定前進量Aであり、また、y
軸における搬送爪48の第1段下降Tは所定下降
量Bとなる。
Therefore, if the coordinate value of the overall axis G is (0,0), that is, the same as the rotation center O, the amount of movement of the bearing box 5 on the x-axis is the predetermined advance amount A, and the y
The first stage lowering T of the conveyance claw 48 on the shaft becomes a predetermined lowering amount B.

算出された補正量は、まず、左右に位置するx
軸補正装置28のx軸補正用流体シリンダ22へ
伝達され、案内軸4に沿つて軸受箱5を各別に前
進させると共に、エンコーダ25によつて遂次検
出した前進量を演算装置へ帰環させ、補正量を正
確に制御している。
The calculated correction amount is first calculated based on x located on the left and right.
It is transmitted to the x-axis correction fluid cylinder 22 of the axis correction device 28 to advance the bearing box 5 individually along the guide shaft 4, and the amount of advance sequentially detected by the encoder 25 is returned to the calculation device. , the amount of correction is accurately controlled.

次いで、左右に位置するy軸補正装置54のy
軸補正用流体シリンダ49へ補正量が伝達され、
搬送爪48をガイド軸47に沿つて各々下降させ
ると共に、エンコーダ51によつて遂次検出した
下降量を演算装置へ帰環させ、補正量を正確に制
御している。
Next, the y-axis correction devices 54 located on the left and right
The correction amount is transmitted to the axis correction fluid cylinder 49,
The conveying claws 48 are lowered along the guide shaft 47, and the lowering amounts successively detected by the encoder 51 are returned to the arithmetic unit to accurately control the correction amount.

補正完了後、一対の吊持体用流体シリンダ45
を作動させて、搬送爪48を原木10の両木口端
面11へ喰い込ませ、次いで、把持爪12を両木
口端面11より離脱させる。この時、原木10は
両木口端面11の幾何学的な座標上において、一
対の搬送爪48に相対的に芯出しされた状態で把
持されており、この状態下、y軸補正用流体シリ
ンダ49を作動させ、シリンダ室内において、第
2段下降Lが規制された外接ピストンロツド55
のロツド部分先端へ、ピストン50のピストン部
分が当接するまで下降させる。
After the correction is completed, the pair of suspension body fluid cylinders 45
is operated to cause the conveying claws 48 to bite into both end faces 11 of the log 10, and then the gripping claws 12 are released from both end faces 11 of the log. At this time, the raw wood 10 is held in a relatively centered state by the pair of transport claws 48 on the geometric coordinates of both end faces 11, and under this state, the y-axis correction fluid cylinder 49 The external piston rod 55 whose second stage lowering L is regulated is activated in the cylinder chamber.
until the piston part of the piston 50 comes into contact with the tip of the rod part.

しかして、搬送爪48に把持された軸芯の高さ
は、ベニヤレースのチヤツク56の旋削中心Sと
同一となり、その後、走行体42を水平梁3上を
定距離Cだけ前進させて、原木10の総体軸芯G
と旋削中心Sを合致させ、搬送爪48からチヤツ
ク56による原木10の把持変換を行なうもので
ある。
Thus, the height of the axis gripped by the conveying claws 48 becomes the same as the turning center S of the chuck 56 of the veneer lace, and after that, the traveling body 42 is advanced by a fixed distance C on the horizontal beam 3, and the raw wood is 10 total body axis G
The turning center S is made to coincide with the turning center S, and the log 10 is gripped and converted by the chuck 56 from the conveyance claw 48.

尚、搬送爪48の第2段下降Lと、走行体42
の定距離C前進を同時に行なえば、ベニヤレース
への原木10の供給時間が短縮できることにな
る。
Note that the second stage lowering L of the transport claw 48 and the traveling body 42
If the forward movement of a certain distance C is carried out at the same time, the time for supplying the logs 10 to the veneer lace can be shortened.

「発明の効果」 以上のように本発明によれば、後退限に待機す
る把持爪によつて、原木を仮中心を回転中心とし
て回動させ、長手方向に亘る複数個所の断面輪郭
を検知することによつて、原木の総体軸芯の座標
値を演算し、この座標値に基づき、まず把持爪を
前進させてx軸上の補正を行ない、次いで搬送爪
を下降させてY軸上の補正を行つた後、原木を把
持爪から搬送爪へ把持支持するので、正確な旋削
中心が得られ、ベニヤレースによつて切削される
ベニヤ単板においては、前記記載の各種従来方法
により求めたものに比して、連続状のベニヤ単板
の取得率が向上する。また、不連続状のベニヤ単
板の吐出量が減少し、後段工程の作業性を改善す
ることができる。
"Effects of the Invention" As described above, according to the present invention, the log is rotated about the temporary center by the gripping claws waiting at the retreat limit, and the cross-sectional contours at multiple locations in the longitudinal direction are detected. By doing so, the coordinates of the entire axis of the raw wood are calculated, and based on these coordinates, the gripping claws are first advanced to make corrections on the x-axis, and then the conveying claws are lowered to make corrections on the y-axis. After this, the raw wood is gripped and supported from the gripping claws to the conveying claws, so that an accurate center of lathe can be obtained, and for veneer veneers cut by veneer races, the center of lathe can be obtained by the various conventional methods described above. The acquisition rate of continuous veneer veneer is improved. In addition, the amount of discontinuous veneer veneer discharged is reduced, and workability in subsequent steps can be improved.

また特に、補正に際して、軸受箱はx軸上の補
正量を所定前進量から減算して、絶えず前進規制
され、さらに、搬送爪はy軸上の補正量を所定下
降量から減算して、絶えず下降規制されており、
両者ともに一方向に制御しているので、簡素な制
御方法並びに機構となる。
In particular, when making corrections, the bearing box is constantly regulated to move forward by subtracting the correction amount on the x-axis from the predetermined advance amount, and furthermore, the conveying claw is constantly regulated by subtracting the correction amount on the y-axis from the predetermined downward movement amount. The decline is regulated,
Since both are controlled in one direction, the control method and mechanism are simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一部切欠き側
面図、第2図は同一部切欠き正面図、第3図はx
軸補正装置の正面図、第4図は同平面図、第5図
は同側面図、第6図は原木回転角検知器の正面
図、第7図は同側面図、第8図は変位量検知器の
正面図、第9図はy軸補正装置の正面図、第10
図は概略説明図である。 1…機枠、5…軸受箱、9…スピンドル、10
…原木、12…把持爪、21…原木回転角検知
器、28…x軸補正装置、29…変位量検知器、
31…揺動腕、42…走行体、48…搬送爪、5
4…y軸補正装置。
Fig. 1 is a partially cutaway side view showing an embodiment of the present invention, Fig. 2 is a partially cutaway front view of the same, and Fig. 3 is a partially cutaway side view showing an embodiment of the present invention.
The front view of the axis correction device, Figure 4 is the same plan view, Figure 5 is the same side view, Figure 6 is the front view of the log rotation angle detector, Figure 7 is the same side view, and Figure 8 is the displacement amount. Figure 9 is a front view of the detector, and Figure 10 is a front view of the y-axis correction device.
The figure is a schematic explanatory diagram. 1...Machine frame, 5...Bearing box, 9...Spindle, 10
...Log, 12...Gripping claw, 21...Log rotation angle detector, 28...X-axis correction device, 29...Displacement amount detector,
31... Swinging arm, 42... Traveling body, 48... Conveying claw, 5
4...y-axis correction device.

Claims (1)

【特許請求の範囲】 1 後退限に待機する把持爪によつて、原木を仮
中心を回転中心として回動させ、長手方向に亘る
複数個所の断面輪郭を検知することによつて、原
木の総体軸芯の座標値を演算し、この座標値に基
づき、まず把持爪を前進させてX軸上の補正を行
ない、次いで搬送爪を下降させてY軸上の補正を
行なつた後、原木を把持爪から搬送爪へ把持交換
することを特徴とする原木の芯出方法。 2 上下方向に立設された機枠間を、X軸補正装
置によつて水平方向に進退自在とした一対の軸受
箱に、その先端に把持爪が装着され、且つ回転角
検知機が付設されたスピンドルを摺動自在に各々
嵌挿すると共に、機枠上部の水平梁を案内として
走行自在に横架された走行体に、Y軸補正装置に
よつて昇降自在な搬送爪を両側より各々吊下し、
一方、原木の長手方向に任意間隔を置いて複数個
配設される各揺動腕の基端に、変位量検知器を
各々付設してピン接し、さらに前記回転角検知器
と変位量検知器の各データから演算される総体軸
芯の座標値に基づき、前記軸受箱の前進補正量を
X軸補正装置へ、また搬送爪の下降補正量をY軸
補正装置へ、各々出力させることを特徴とする原
木の芯出し装置。
[Scope of Claims] 1. By rotating the raw wood around a temporary center using the gripping claws waiting at the retraction limit and detecting cross-sectional contours at multiple locations in the longitudinal direction, the entire raw wood can be grasped. The coordinate value of the axis center is calculated, and based on this coordinate value, the gripping claw is first advanced to perform correction on the X-axis, then the conveying claw is lowered to perform correction on the Y-axis, and then the log is A log centering method characterized by changing the grip from a gripping claw to a conveying claw. 2. A pair of bearing boxes, which are horizontally movable between vertically erected machine frames using an At the same time, the conveyor claws, which can be raised and lowered, are suspended from both sides by a Y-axis correction device on the traveling body, which is horizontally suspended using the horizontal beam at the top of the machine frame as a guide. down,
On the other hand, a displacement detector is attached to the base end of each swinging arm, which is arranged at arbitrary intervals in the longitudinal direction of the log, and is in contact with a pin, and the rotation angle detector and the displacement detector Based on the coordinate values of the overall axis axis calculated from each data, the forward correction amount of the bearing box is outputted to the X-axis correction device, and the downward correction amount of the conveyance claw is outputted to the Y-axis correction device. A device for centering raw wood.
JP5899085A 1985-03-23 1985-03-23 Method and device for centering log Granted JPS61217207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5899085A JPS61217207A (en) 1985-03-23 1985-03-23 Method and device for centering log

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5899085A JPS61217207A (en) 1985-03-23 1985-03-23 Method and device for centering log

Publications (2)

Publication Number Publication Date
JPS61217207A JPS61217207A (en) 1986-09-26
JPH0460001B2 true JPH0460001B2 (en) 1992-09-24

Family

ID=13100280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5899085A Granted JPS61217207A (en) 1985-03-23 1985-03-23 Method and device for centering log

Country Status (1)

Country Link
JP (1) JPS61217207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158089A1 (en) 2019-01-30 2020-08-06 Meinan Machinery Works, Inc. Log feeding apparatus, log processing apparatus having the same, and method of controlling the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ336412A (en) * 1998-06-26 2001-01-26 Meinan Machinery Works Centering log on veneer lathe by rotating log through one revolution to determine centres of each end
JP5613003B2 (en) * 2010-10-14 2014-10-22 株式会社名南製作所 Supplying raw wood to veneer lace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158089A1 (en) 2019-01-30 2020-08-06 Meinan Machinery Works, Inc. Log feeding apparatus, log processing apparatus having the same, and method of controlling the same

Also Published As

Publication number Publication date
JPS61217207A (en) 1986-09-26

Similar Documents

Publication Publication Date Title
US5582224A (en) Methods and apparatus for centering a log and for supplying a log to be centered
CN109648398A (en) A kind of part size on-line measuring device and its detection method
JPS63168226A (en) Manipulator for plate bending device and plate bending device equipped with manipulater
CN110303345B (en) Full-automatic workpiece processing line and operation method thereof
JPH0460001B2 (en)
US5228490A (en) Process and apparatus for producing squares from tree boles or the like
RU2086407C1 (en) Method and apparatus for longitudinal sawing of logs and complex of devices for measuring parameters of logs and timber
JPS60127958A (en) Automatic measurement for dimension of tool mounted onto machine tool
JPH0438283B2 (en)
JP4263899B2 (en) Precut wood manufacturing apparatus and manufacturing method
JPH0473363B2 (en)
JPS61237601A (en) Method and device for selectively centering and supplying log
CN213336045U (en) Automatic detection device for columnar workpiece
JP4603509B2 (en) Raw wood centering method and raw wood centering device
JP2889123B2 (en) Pre-cut planer control device and control method
JPH06328408A (en) Method and device for centering log
JPH0776002A (en) Material feeding method for sawmill
CN118808924B (en) Automatic measurement marking device in feeding system
US3895662A (en) Apparatus for preshaping raw logs
CN217033688U (en) Optical detection platform for plates
JP3476578B2 (en) Log feeder
JPS62151702A (en) Aligning method for cylindrical body
JPH0562042B2 (en)
CN117804582A (en) Flexible chemical engineering physical quantity detection device
JPS5842401B2 (en) Dimension measuring device for circular products

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term