[go: up one dir, main page]

JPS62151039A - Optical output stabilizing system - Google Patents

Optical output stabilizing system

Info

Publication number
JPS62151039A
JPS62151039A JP60290720A JP29072085A JPS62151039A JP S62151039 A JPS62151039 A JP S62151039A JP 60290720 A JP60290720 A JP 60290720A JP 29072085 A JP29072085 A JP 29072085A JP S62151039 A JPS62151039 A JP S62151039A
Authority
JP
Japan
Prior art keywords
output
pulse
optical
comparator
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60290720A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ibe
博之 井辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60290720A priority Critical patent/JPS62151039A/en
Publication of JPS62151039A publication Critical patent/JPS62151039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To stabilize the light irradiated from a light emitting element by using an output of the 1st comparator to control an output bias current of a bias application section and using an output of the 2nd comparator to control a pulse peak value of a pulse drive section output pulse. CONSTITUTION:Part of an output light of a semiconductor laser 11 is detected by a photo diode 15 for monitor and its electric signal is amplified by an amplifier 16. Part of the amplified signal is integrated by an integration device 17. The output represents a mean value of the optical output, the output of the integration device and a reference potential 18 are compared by a comparator 19, the output controls the bias application section to change the bias of the semiconductor laser. On the other hand, another output of the amplifier 16 is given to a band pass filter 20 filtering the oscillation frequency of the low frequency oscillator 14 and an amplitude detector 21 detects the low frequency signal amplitude. Since the output of the amplitude detector is similar to the peak value of the optical pulse by the data input, the output is compared with the specific reference potential 22 by a comparator 23, the output controls the pulse current peak value of the pulse drive section to stabilize the peak value of the optical pulse.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、発光素子の出力光強度を安定化する光出力安
定化方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a light output stabilization method for stabilizing the output light intensity of a light emitting element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

発光素子の中でも特に半導体レーザは温度により、注入
電流と光出力の関係が大きく変化する。
Among light-emitting elements, especially semiconductor lasers, the relationship between injection current and optical output changes greatly depending on temperature.

この電流対光出力の関係を′g2図に示す。半導体レー
ザの周囲温度が低い場合は、しきい値電流工楠は低くま
た、しきい値電流以上での微分量子効率(図中の電流対
光出力特性の傾き)も高いが、周囲温度が高くなるとし
きい値電流I+h’は高くなりまた微分量子効率が下が
ってしまう。半導体レーザをパルス的に駆動し信号を伝
送する光通信システムにおいては、上記の半導体レーザ
の特性変化は大きな問題となる。この為に、半導体レー
ザの一部の光をフォトダイオードで受光し、その受光信
号により半導体レーザの光出力を安定化することが行わ
れている。そのひとつには、前記モニタ用フォトダイオ
ードの出力光電流を平均化し、その出力により半導体レ
ーザのバイアス電流を制御する方式がある。この方式に
よれば、半導体レーザの平均光出力は常に一定にするこ
とが可能となる。
The relationship between this current and optical output is shown in Figure 'g2. When the ambient temperature of the semiconductor laser is low, the threshold current is low and the differential quantum efficiency (the slope of the current vs. optical output characteristic in the figure) is high above the threshold current, but when the ambient temperature is high In this case, the threshold current I+h' increases and the differential quantum efficiency decreases. In an optical communication system in which a semiconductor laser is driven in a pulsed manner to transmit signals, the above-mentioned change in the characteristics of the semiconductor laser poses a major problem. For this purpose, a part of the light from the semiconductor laser is received by a photodiode, and the light output of the semiconductor laser is stabilized by the received light signal. One method is to average the output photocurrent of the monitoring photodiode and control the bias current of the semiconductor laser using the averaged output. According to this method, it is possible to always keep the average optical output of the semiconductor laser constant.

しかし、半導体レーザは第2図に示す電流対光出力特性
において微分量子効率が周囲温度により変化する為、周
囲温度が高くなると光パルスのオンオフ比が劣化してし
まう。これは、微分量子効率の温度による変化が小さい
短波長帯のA−tGaAs半導体レーザでは、大きい問
題ではないが、微分量子効率の温度による変化が大きい
長波長帯のInGαAsP半導体レーザを用いる光通信
系では大きな問題となる。
However, since the differential quantum efficiency of a semiconductor laser changes depending on the ambient temperature in the current versus light output characteristic shown in FIG. 2, the on-off ratio of the optical pulse deteriorates as the ambient temperature increases. This is not a big problem for short-wavelength A-tGaAs semiconductor lasers, whose differential quantum efficiency changes little with temperature, but it is a problem for optical communication systems that use long-wavelength InGαAsP semiconductor lasers, whose differential quantum efficiency changes largely with temperature. Now that's a big problem.

この光パルスのオンオフ比の劣化を避ける為に第3図に
示す光出力安定化方式がある。モニタ用フォトダイオー
ド(34)の出力を増幅器(35)で増幅した後その出
力の一部をオフレベル検出s (36)に入力する。オ
フレベル検出部とは、データパルスのオフ部分の光レベ
ルを検出するもので、パルス信号の最小値ホールド回路
で実現できる。このオフレベル検出部の出力でバイアス
印加部(33)を制御して半導体レーザのバイアス電流
を制御する。
In order to avoid this deterioration of the on-off ratio of the optical pulse, there is an optical output stabilization method shown in FIG. After the output of the monitor photodiode (34) is amplified by the amplifier (35), a part of the output is input to the off-level detection s (36). The off-level detection section detects the optical level of the off portion of the data pulse, and can be realized by a minimum value hold circuit of the pulse signal. The output of this off-level detection section controls the bias application section (33) to control the bias current of the semiconductor laser.

一方前記増幅器の出力をクランプ回路(37)により光
パルス列の最小値をクランプし、ピーク検出部(38)
でピーク検出し、パルス駆動部(32)を制御すること
により出力光パルス振幅を一定とする。
On the other hand, the output of the amplifier is clamped at the minimum value of the optical pulse train by a clamp circuit (37), and a peak detector (38)
The output light pulse amplitude is made constant by detecting the peak and controlling the pulse driver (32).

この方式を示す第3図においては、レーザ駆動パルスの
マーク率変動によって、パルス電流値が変化するが、こ
れは駆動パルスをピーク検出し、参照電圧とすることで
マーク率変動による制御誤差を小さくできる。
In Figure 3, which shows this method, the pulse current value changes due to the mark rate fluctuation of the laser drive pulse, but this is done by detecting the peak of the drive pulse and using it as a reference voltage to reduce the control error due to the mark rate fluctuation. can.

上述の方式によれば、周囲温度が上昇し半導体レーザの
しきい値電流が上昇しさらに微分量子効率が低くなって
も常に光のオンオフ比を一定とでき、パルスのスペース
時の光出力も一定とできる。
According to the above method, even if the ambient temperature rises, the threshold current of the semiconductor laser increases, and the differential quantum efficiency decreases, the light on/off ratio can always be kept constant, and the light output during the pulse space is also constant. It can be done.

この方式は、パルス繰り返し周波数すなわちビットレー
トが低い場合、モニタ用フォトダイオードが半導体レー
ザ出力光に十分追随でき光出力安定化が可能である。ま
たビットレートが低い時には、モニタ用フォトダイオー
ドの形状を大きくでき、半導体レーザ光を十分少けられ
第3図に示す制御ループの帰還利得を大きくとることが
可能である。しかしながらビットレートが高くなるにつ
れて、モニタ用フォトダイオードの電気容量を小さくし
て高速応答可能とする為には、形状を小さくする必要が
あり、それにつれて帰還利得が下がりてしまう。これを
補償する為に増幅器の利得を増加する必要があるが、高
利得かつ高帯域の増幅器の構成は非常に複雑となる。ま
た増幅器の雑音も増加し、制御誤差を増加してしまう。
In this method, when the pulse repetition frequency, that is, the bit rate is low, the monitoring photodiode can sufficiently follow the output light of the semiconductor laser, and the optical output can be stabilized. Furthermore, when the bit rate is low, the shape of the monitoring photodiode can be made large, the amount of semiconductor laser light can be sufficiently reduced, and the feedback gain of the control loop shown in FIG. 3 can be increased. However, as the bit rate increases, in order to reduce the capacitance of the monitor photodiode and enable high-speed response, it is necessary to reduce the size of the monitor photodiode, and the feedback gain accordingly decreases. In order to compensate for this, it is necessary to increase the gain of the amplifier, but the configuration of a high-gain, high-bandwidth amplifier becomes very complex. Furthermore, the noise of the amplifier increases, leading to an increase in control errors.

またクランプ回路、ピーク検出部及びオフレベル検出部
も高速応答性を要求され、構成が複雑となる。
Furthermore, the clamp circuit, peak detection section, and off-level detection section are also required to have high-speed response, making the configuration complicated.

〔発明の目的〕[Purpose of the invention]

本発明は上述の問題点に鑑みてなされたもので、モニタ
用フォトダイオードの応答速度が遅くとも、高ビットレ
ートの光出力パルスを安定化できる光出力安定化方式を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide an optical output stabilization method that can stabilize high bit rate optical output pulses even if the response speed of a monitor photodiode is slow.

〔発明の概要〕[Summary of the invention]

本発明は、予め低周波発振器により半導体レーザのパル
ス電流を変化させ、バイアス印加部によるバイアス電流
と供に半導体レーザを駆動し、モ二タ用フォトダイオー
ドにより、前記半導体レーザの光出力の一部を受光し、
増幅器により、受光した光信号を増幅する。
In the present invention, a pulse current of a semiconductor laser is changed in advance by a low frequency oscillator, the semiconductor laser is driven together with a bias current by a bias applying section, and a portion of the optical output of the semiconductor laser is controlled by a monitoring photodiode. receives light,
The received optical signal is amplified by the amplifier.

増幅器の出力を積分した後第1の比較器により第1の基
準電位と比較して半導体レーザのバイアスを制御する。
After integrating the output of the amplifier, a first comparator compares it with a first reference potential to control the bias of the semiconductor laser.

前述の制御は、光パルスの平均値を常に一定とする制御
である。ま九増幅器の出力を前記低周波発振器の発振周
波数を瀘波する帯域瀘波器を通した後、振幅検出した信
号と、第2の基準電位とを第2の比較器により比較して
半導体レーザのパルス、駆動部を制御する。
The above-described control is such that the average value of the optical pulses is always constant. After passing the output of the amplifier through a bandpass filter that filters the oscillation frequency of the low-frequency oscillator, a second comparator compares the detected amplitude signal with a second reference potential to generate a semiconductor laser. control the pulse and drive unit.

前述の制御は、光パルスの振幅の制御であるが、低周波
信号をパイロットとして光パルスの振幅を制御するもの
である。
The above-mentioned control is to control the amplitude of the optical pulse, and the amplitude of the optical pulse is controlled using a low frequency signal as a pilot.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高ビットレートの光伝送においても、
モニタ用フォトダイオードは光パルスを検出しなくてよ
く、応答速度を高くする必要がない。したがって前記フ
ォトダイオードの形状を大きくでき、帰還利得も大きく
できる。さらに増幅器及び振幅検出器は高速応答の必要
がなく構成が簡単である。
According to the present invention, even in high bit rate optical transmission,
The monitor photodiode does not need to detect optical pulses and does not need to have a high response speed. Therefore, the shape of the photodiode can be increased, and the feedback gain can also be increased. Furthermore, the amplifier and amplitude detector do not need high-speed response and are simple in construction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の光出力安定化方式の一実施例である
。半導体レーザ(11)のバイアス電流は外部から制御
できるバイアス印加部(13)により供給する。また半
導体レーザ駆動用パルスは、パルス駆動部(12)から
供給する。パルス駆動部は、低周波発振器(14)によ
りパルス振幅を変化し、さらて外部からパルス振幅を変
化できるものとする。
FIG. 1 shows an embodiment of the optical output stabilization method of the present invention. A bias current for the semiconductor laser (11) is supplied by a bias application section (13) that can be controlled from the outside. Further, a pulse for driving the semiconductor laser is supplied from a pulse driving section (12). The pulse driver changes the pulse amplitude using a low frequency oscillator (14), and is also capable of changing the pulse amplitude from the outside.

半導体レーザの出力光の一部は、モニタ用フォトダイオ
ード(15)により検出し、その電気信号を増幅器(1
6)により増幅する。増幅した信号の一部は積分器(1
7)により積分する。この出力は、光出力の平均値を示
し、この積分器出力と基準電位(18)とを比較器(1
9)により比較し、この出力でバイアス印加部を制御し
て半導体レーザのバイアス直を変化する。
A part of the output light of the semiconductor laser is detected by a monitoring photodiode (15), and the electrical signal is sent to an amplifier (15).
6). A part of the amplified signal is passed through an integrator (1
7). This output indicates the average value of the optical output, and the integrator output and the reference potential (18) are connected to the comparator (1).
9), and the bias application unit is controlled by this output to change the bias voltage of the semiconductor laser.

一方、増幅器(16)の出力のもう一方は、低周波発振
器(14)の発振周波数を瀘波する帯域瀘波器(2o)
を通した後、振幅検出器(21)により低周波信号振幅
を検出する。この振幅検出器は例えば、ダイオード検波
器と積分器によって実現することができる。あるいは、
直流クランプ回路と積分器によっても実現可能である。
On the other hand, the other output of the amplifier (16) is a band filter (2o) that filters the oscillation frequency of the low frequency oscillator (14).
After passing through, the amplitude detector (21) detects the low frequency signal amplitude. This amplitude detector can be realized, for example, by a diode detector and an integrator. or,
It can also be realized using a DC clamp circuit and an integrator.

この振幅検出器の出力は、データ入力による光パルスの
波高値と相似となる為、特定の基準電位(22)と比較
器(23)によし比較し、この出力でパルス駆動部のパ
ルス電流波高値を制御することにより、光パルスの波高
値を安定化することができる。
The output of this amplitude detector is similar to the peak value of the optical pulse generated by the data input, so it is compared with a specific reference potential (22) and a comparator (23), and this output is used to generate the pulse current waveform of the pulse driver. By controlling the high value, the peak value of the optical pulse can be stabilized.

パルス駆動部に入力するデータ信号のマーク率が一定の
場合は、前記基準電位(18)及び(22)は電圧源で
良い。またマーク率が変動する場合、基準電位(18)
は、パルス駆動部の出力の一部を積分した電位とし、さ
らに基準電位(22)は、パルス駆動部の出力の一部を
低周波発振器(14)の周波数を瀘波する帯域瀘波器に
通した後、振幅検出した電位とすれば良い。この結果マ
ーク率変動が生1〕か場合においても安定した光パルス
を発生できる。
If the mark rate of the data signal input to the pulse drive unit is constant, the reference potentials (18) and (22) may be voltage sources. Also, when the mark rate changes, the reference potential (18)
is a potential obtained by integrating a part of the output of the pulse drive unit, and the reference potential (22) is a potential that is integrated with a part of the output of the pulse drive unit. After passing through, it is sufficient to use the potential whose amplitude is detected. As a result, stable optical pulses can be generated even when mark rate fluctuations occur.

以上の実施例ではPCM伝送における送信器光源安定化
について示したが、本方式はPCM伝送のみではなく、
パルス化アナログ伝送方式における送信器光源安定化に
も適用できるものである。
In the above embodiment, transmitter light source stabilization in PCM transmission was shown, but this method is not only applicable to PCM transmission.
It can also be applied to transmitter light source stabilization in pulsed analog transmission systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は半導体レ
ーザの注入電流対光出力特性の温度による変化を示す図
、第3図は従来例を示す図である。 11・・・半導体レーザ 15・・・ モニタ用フォトダイオード16・・・増幅
器 17・・・積分器 20・・・帯域瀘波器 19.23・・・比較器 18.22・・・基準電位 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing changes in the injection current versus optical output characteristics of a semiconductor laser due to temperature, and FIG. 3 is a diagram showing a conventional example. 11...Semiconductor laser 15...Monitor photodiode 16...Amplifier 17...Integrator 20...Band filter 19.23...Comparator 18.22...Reference potential substitute People Patent Attorneys Nori Chika Yudo Kikuo Takehana

Claims (6)

【特許請求の範囲】[Claims] (1)発光素子と該発光素子を駆動するバイアス印加部
及び低周波発振器により前記発光素子駆動パルスの大き
さを変化するパルス駆動部と前記発光素子の出力光の一
部を受光するモニタ用受光素子と前記受光素子の出力を
増幅する増幅器とその出力の一部を積分する積分器と、
積分器の出力と第1の基準電位とを比較する第1の比較
器と、前記増幅器の出力を前記低周波発振器の発振周波
数を瀘波する帯域瀘波器とその出力信号の振幅を検出す
る振幅検出器と振幅検出器の出力と第2の基準電位とを
比較する第2の比較器からなり、第1の比較器の出力で
バイアス印加部の出力バイアス電流を制御し、第2の比
較器の出力でパルス駆動部出力パルスのパルス波高値を
制御することにより発光素子から放出する光を安定化す
ることを特徴とする光出力安定化方式。
(1) A light emitting element, a bias application unit that drives the light emitting element, a pulse driving unit that changes the magnitude of the light emitting element drive pulse using a low frequency oscillator, and a monitoring light receiver that receives a part of the output light of the light emitting element. an amplifier that amplifies the output of the element and the light receiving element, and an integrator that integrates a part of the output;
a first comparator that compares the output of the integrator with a first reference potential; a band filter that filters the oscillation frequency of the low frequency oscillator from the output of the amplifier; and a band filter that detects the amplitude of the output signal. It consists of an amplitude detector and a second comparator that compares the output of the amplitude detector with a second reference potential.The output of the first comparator controls the output bias current of the bias application section, and the second comparison An optical output stabilization method characterized in that light emitted from a light emitting element is stabilized by controlling the pulse peak value of the pulse driver output pulse using the output of the device.
(2)前記低周波発振器の発振周波数は、光信号を受信
する受信器の自動利得制御回路の制御帯域内にあること
を特徴とする特許請求の範囲第1項記載の光出力安定化
方式。
(2) The optical output stabilization method according to claim 1, wherein the oscillation frequency of the low-frequency oscillator is within a control band of an automatic gain control circuit of a receiver that receives an optical signal.
(3)前記第1及び第2の基準電位は、電源からの一定
の電圧であることを特徴とする特許請求の範囲第1項記
載の光出力安定化方式。
(3) The optical output stabilization method according to claim 1, wherein the first and second reference potentials are constant voltages from a power source.
(4)前記第1の基準電位は、前記パルス駆動部の出力
の一部を積分した電位とし、第2の基準電位は、前記パ
ルス駆動部の出力の一部を、前記低周波発振器の発振周
波数を瀘波する帯域瀘波器を通した後、振幅検出器によ
り振幅を検出した電位であることを特徴とする特許請求
の範囲第1項記載の光出力安定化方式。
(4) The first reference potential is a potential obtained by integrating a part of the output of the pulse drive unit, and the second reference potential is a potential that integrates a part of the output of the pulse drive unit to oscillate the low-frequency oscillator. 2. The optical output stabilization method according to claim 1, wherein the potential is the amplitude of which is detected by an amplitude detector after passing through a bandpass filter that filters the frequency.
(5)前記振幅検出器は、検波器と積分器で構成するこ
とを特徴とする特許請求の範囲第1項記載の光出力安定
化方式。
(5) The optical output stabilization method according to claim 1, wherein the amplitude detector is composed of a wave detector and an integrator.
(6)前記振幅検出器は、直流クランプ回路と積分器で
構成することを特徴とする特許請求の範囲第1項記載の
光出力安定化方式。
(6) The optical output stabilization method according to claim 1, wherein the amplitude detector is comprised of a DC clamp circuit and an integrator.
JP60290720A 1985-12-25 1985-12-25 Optical output stabilizing system Pending JPS62151039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290720A JPS62151039A (en) 1985-12-25 1985-12-25 Optical output stabilizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290720A JPS62151039A (en) 1985-12-25 1985-12-25 Optical output stabilizing system

Publications (1)

Publication Number Publication Date
JPS62151039A true JPS62151039A (en) 1987-07-06

Family

ID=17759650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290720A Pending JPS62151039A (en) 1985-12-25 1985-12-25 Optical output stabilizing system

Country Status (1)

Country Link
JP (1) JPS62151039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689697A1 (en) * 1992-04-03 1993-10-08 Thomson Hybrides Control circuit for the modulated power emitted by the semiconductor laser.
US5526164A (en) * 1993-05-19 1996-06-11 U.S. Philips Corporation Optical transmission system comprising a laser diode
US5581387A (en) * 1993-08-04 1996-12-03 Fujitsu Limited Optical data communications network with a plurality of optical transmitters and a common optical receiver connected via a passive optical network
JPH11127119A (en) * 1997-10-21 1999-05-11 Kokusai Electric Co Ltd Optical transmission device and optical transmission method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689697A1 (en) * 1992-04-03 1993-10-08 Thomson Hybrides Control circuit for the modulated power emitted by the semiconductor laser.
US5526164A (en) * 1993-05-19 1996-06-11 U.S. Philips Corporation Optical transmission system comprising a laser diode
US5581387A (en) * 1993-08-04 1996-12-03 Fujitsu Limited Optical data communications network with a plurality of optical transmitters and a common optical receiver connected via a passive optical network
JPH11127119A (en) * 1997-10-21 1999-05-11 Kokusai Electric Co Ltd Optical transmission device and optical transmission method

Similar Documents

Publication Publication Date Title
US4864649A (en) Driver circuit for driving a light emitting element by superimposing an analog sub-information signal over a digital main signal
US5579328A (en) Digital control of laser diode power levels
JP2932100B2 (en) Laser diode control circuit
US5850409A (en) Laser modulation control method and apparatus
US4399566A (en) Device for stabilizing the output power of a transmitter module in an optical fiber transmission system
EP0539038B1 (en) Optical transmitters
JPH0273682A (en) Laser diode driving method and device
US5781572A (en) Optical wavelength stabilizing system
JP2002534669A (en) Reducing system of relatively strong noise in fiber optic gyroscope
GB2025121A (en) Improvements in or relating to the stabilisation of injection lasers
US4101847A (en) Laser control circuit
US5187713A (en) Nonlinear device control methods and apparatus
JPS62151039A (en) Optical output stabilizing system
JPH05198878A (en) Method and device for modulating injection laser
JPS623534A (en) Optical modulator
US20030141876A1 (en) Circuit and method for measuring extinction ratio and controlling a laser diode transmitter based thereon
JP2613670B2 (en) Drive circuit for semiconductor laser
JP3109467B2 (en) Optical transmitter
JPS5978588A (en) Drive circuit for light emitting element
JPS61262327A (en) Analog modulation circuit of laser diode
JPH0590673A (en) Optical transmitter
JPH10173290A (en) Light transmission circuit
JPH01133384A (en) Semiconductor laser driving device
JPH0244791A (en) Electrooptic transducer circuit using laser diode
JPH02168746A (en) High frequency superimposition type light emitting drive circuit