[go: up one dir, main page]

JPH02168746A - High frequency superimposition type light emitting drive circuit - Google Patents

High frequency superimposition type light emitting drive circuit

Info

Publication number
JPH02168746A
JPH02168746A JP63322086A JP32208688A JPH02168746A JP H02168746 A JPH02168746 A JP H02168746A JP 63322086 A JP63322086 A JP 63322086A JP 32208688 A JP32208688 A JP 32208688A JP H02168746 A JPH02168746 A JP H02168746A
Authority
JP
Japan
Prior art keywords
high frequency
semiconductor laser
error amplifier
current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63322086A
Other languages
Japanese (ja)
Inventor
Yoichi Ogura
洋一 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63322086A priority Critical patent/JPH02168746A/en
Publication of JPH02168746A publication Critical patent/JPH02168746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make the circuit scale small by devising an error amplifier such that positive feedback is applied for high frequency self-oscillation when an optical output of a semiconductor laser is at a prescribed level or over and negative feedback is applied when the optical output of the semiconductor laser is less than a prescribed level. CONSTITUTION:When an input pulse signal is at an H level, an error amplifier 10 is in positive feedback operation and oscillated in itself at a prescribed frequency, resulting that a high frequency signal is used as a drive signal and fed to a laser diode 4, from which a high frequency optical pulse signal is outputted. On the other hand, when the input pulse signal is at an L level, a reference current Iin is decreased, then a drive current of the laser diode 4 decreases below the threshold level Ith. Thus, the error amplifier 10 stops self-oscillation, resulting that the high frequency optical output is not generated from the laser diode 4. Thus, a high frequency oscillator, an amplitude modulator and a current adder are not required, the circuit constitution is simplified more and the size is made small.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば先送(8装置において半導体レーザを
高周波重畳方式により発光駆動する場合に使用する高周
波重畳形発光駆動回路に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a high frequency superimposition type light emission drive circuit used when driving a semiconductor laser to emit light by a high frequency superposition method in, for example, an advance device. Regarding.

(従来の技術) 映像信号を直接輝度変調してマルチモード光ファイバに
より光伝送すると、伝送路上でモーダルノイズ(モード
雑音)が発生して映像信号のS/N劣化を招く。一方、
ディジタル伝送(パルス伝送)においても、既設の光フ
ァイバを使用することによりマルチモード光ファイバと
シングルモト光ファイバとを接続して光伝送を行なう場
合には、空間的フィルタリングが顕著に起きるため、モ
ーダルノイズか増大して符号誤り率を著しく劣化させる
場合かある。
(Prior Art) When a video signal is directly intensity-modulated and optically transmitted through a multimode optical fiber, modal noise is generated on the transmission path, leading to S/N deterioration of the video signal. on the other hand,
Even in digital transmission (pulse transmission), when optical transmission is performed by connecting a multimode optical fiber and a single moto optical fiber using existing optical fibers, significant spatial filtering occurs, so modal There are cases where the noise increases and significantly degrades the bit error rate.

そこで、従来てはモーダルノイズの発生を低減する駆動
方式として例えば高周波重畳方式を採用している。第5
図はこの種の方式を適用した発光駆動回路の構成の一例
(特願昭58243579号)を示すものである。この
回路は、入力パルス信号aを平滑回路1で平滑したのち
誤差増幅器2に導入するとともに、例えばフォトダイオ
ードからなるモニタ用受光素子′3によりレザダイオー
ド4の光出力レベルをモニタ検出してその検出信号すを
平滑回路5で平滑したのち誤差増幅器2に導入している
。そして、この誤差増幅器2で上記人力パルス信号とモ
ニタ検出信号との電流値の差分を検出し、この差電流C
をバイアス電流として上記レーザダイオード4に帰還供
給している。すなわち、これによりレーザダイオード4
のしきい値の温度変化に対して平均光出力か一定となる
ようにAPC(Au t oma t i cPowe
 r  Con t ro l)動作を行な一〕ティる
。また、発光駆動回路は発振器6および振幅変調器7を
有している。そして、この振幅変調器7により発振器6
の高周波発振出力を」1記入力パルス信号Isて振幅変
調し、この変調された高周波信号dを電流加算器8で前
記バイアス電流Cに重畳しく駆動154号eと1.てレ
ーザダイオード4に供給し了゛いる。L、たがって、レ
ーザダイオード4からは]二記駆動信号eの高周波に応
じて図中fに示すよ5な高周波光出力が発生される。こ
のように高周波光信号fをレーザダイオード4から発生
させることにより、レーザダイオード4のコヒーレンシ
ーは低ド11、これにより伝送路上でのモーダルノイズ
の発ノドは低減される。尚、」二記高周波光信号は伝送
路の8)域制限および光受信器の帯域制限を受けるので
、受信後には![;、均化されて高周波成分を含まない
元のパルス波形となる。
Therefore, conventionally, a high frequency superimposition method, for example, has been adopted as a drive method to reduce the generation of modal noise. Fifth
The figure shows an example of the configuration of a light emitting drive circuit to which this type of system is applied (Japanese Patent Application No. 58243579). In this circuit, an input pulse signal a is smoothed by a smoothing circuit 1 and then introduced into an error amplifier 2. At the same time, the optical output level of a laser diode 4 is monitored and detected by a monitoring light receiving element '3 made of a photodiode, for example. After the signal is smoothed by a smoothing circuit 5, it is introduced into an error amplifier 2. Then, the error amplifier 2 detects the difference in current value between the human pulse signal and the monitor detection signal, and this difference current C
is fed back to the laser diode 4 as a bias current. That is, this causes the laser diode 4
The APC (Auto Power
r Control) Perform the operation. The light emission drive circuit also includes an oscillator 6 and an amplitude modulator 7. The amplitude modulator 7 generates an oscillator 6.
The high frequency oscillation output of 1.1 is amplitude-modulated using the input pulse signal Is, and the modulated high frequency signal d is superimposed on the bias current C by the current adder 8 and is applied to the drives 154 e and 1. The laser diode 4 is then supplied to the laser diode 4. Therefore, the laser diode 4 generates a high-frequency optical output as indicated by f in the figure in response to the high frequency of the drive signal e. By generating the high frequency optical signal f from the laser diode 4 in this manner, the coherency of the laser diode 4 is low (11), thereby reducing the generation of modal noise on the transmission path. Furthermore, since the high frequency optical signal described in Section 2 is subject to the 8) range restriction of the transmission line and the band restriction of the optical receiver, after receiving it! [;, it is equalized and becomes the original pulse waveform that does not contain high frequency components.

(発明が解決しようとする課題) ところか、このような従来の高周波重畳群発光駆動回路
は、高周波信号を発生し重畳するために発振器6、振幅
変調器7および電流加算器8を必要とする。このため、
構成が複雑となり回路規模か大きくなる欠点があった。
(Problems to be Solved by the Invention) However, such a conventional high-frequency superimposed group light emission drive circuit requires an oscillator 6, an amplitude modulator 7, and a current adder 8 in order to generate and superimpose a high-frequency signal. . For this reason,
The disadvantage is that the configuration becomes complicated and the circuit size becomes large.

そこで本発明はこの点に着目し、高周波重畳を行なうた
めの発振器や振幅変調器等を不要にし、これにより回路
構成の簡単化および回路規模の小形化を図り得る高周波
重畳群発光駆動回路を提供することを目的とする。
The present invention focuses on this point and provides a high-frequency superimposition group light emission drive circuit that eliminates the need for an oscillator, amplitude modulator, etc. for performing high-frequency superposition, thereby simplifying the circuit configuration and reducing the circuit scale. The purpose is to

「発明の構成J (課題を解決するための手段) 本発明は、入力信号に高周波信号を重畳した駆動信号に
より半導体レーザを発光駆動する高周波重畳群発光駆動
回路において、上記人力信号レベルに比例した参照電流
を発生する参照電流発生回路と、上記半導体レーザの光
出力の一部をモニタ検出する受光素子と、上記参照電流
とこの受光素rのモニタ電流との差電流を前記半導体レ
ーザに広・:1)域帰還する誤差増幅器とを備え、この
誤差増幅器を」1記半導体レーザの光出力が一部しベル
以」二のときは正帰還動作して高周波自励発振し、かつ
半導体レーザの光出力レベルが一定値未満のときには負
帰還動作するように構成したものである。
``Structure J of the Invention (Means for Solving the Problems) The present invention provides a high frequency superimposed group light emitting drive circuit that drives a semiconductor laser to emit light using a drive signal obtained by superimposing a high frequency signal on an input signal. A reference current generation circuit that generates a reference current, a light receiving element that monitors and detects a part of the optical output of the semiconductor laser, and a current difference between the reference current and the monitor current of the light receiving element r that is spread to the semiconductor laser. 1) An error amplifier that performs frequency feedback, and when the optical output of the semiconductor laser described in 1. It is configured to perform negative feedback operation when the optical output level is less than a certain value.

(作用) この結果本発明によれば、半導体レーザの光出力レベル
に応じて誤差増幅器自身から高周波駆動信号が発生され
この信号により半導体レーザが発光駆動されることにな
る。このため、高周波発振器や振幅変調器等の高周波駆
動信号を発生ずるための回路は不要となり、これにより
その分回路構成を簡単化しかつ回路規模を小形化するこ
とができる。
(Function) As a result, according to the present invention, a high frequency drive signal is generated from the error amplifier itself in accordance with the optical output level of the semiconductor laser, and the semiconductor laser is driven to emit light by this signal. Therefore, a circuit for generating a high-frequency drive signal such as a high-frequency oscillator or an amplitude modulator is not required, which allows the circuit configuration to be simplified and the circuit scale to be reduced accordingly.

(実施例) 第1図は本発明の一実施例における高周波重畳群発光駆
動回路の概略構成図である。尚、同図において前記第5
図と同一部分には同一符号を付し、である。
(Embodiment) FIG. 1 is a schematic configuration diagram of a high frequency superimposed group light emission drive circuit in an embodiment of the present invention. In addition, in the same figure, the fifth
The same parts as those in the figure are given the same reference numerals.

この回路は、レーザダイオード4およびモニタ用の受光
素′J″−3からなる発光モジュールと、入力パルス信
号aのレベルに比例する参照電流Ijnを発生する参照
電流発生回路9と、広帯域帰還増幅器からなる誤差増幅
器10とから構成される。このうち誤差増幅器10は、
上記参照電流1inとモニタ用受光索子Bにより得られ
たモニタ電流Imとの差分を求め、その差信号1 ou
tを駆動信号とし′CCレーダイオード4に供給するも
のである。
This circuit consists of a light emitting module consisting of a laser diode 4 and a monitoring light receiving element 'J''-3, a reference current generating circuit 9 that generates a reference current Ijn proportional to the level of an input pulse signal a, and a broadband feedback amplifier. The error amplifier 10 is composed of:
The difference between the reference current 1in and the monitor current Im obtained by the monitor light receiving cable B is calculated, and the difference signal 1 ou
t is used as a drive signal and is supplied to the CC radar diode 4.

この誤差増幅器]0は、 A“I out / I in なる電流増幅率を有1.ている。This error amplifier]0 is A"I out / I in It has a current amplification factor of 1. ing.

ところで、いまレーザダイオ−1・4の駆動電流I o
utに対するモニタ電流rmの微分変換効率をηmとす
ると、駆動電流10旧およびモニタ電MLznは rout  =A  (in−Im  )Im = η
m I out          ・−(1)と表4
つされる。したかって、1011才1out =A−I
 tn/(1+ nm A)    =−(2)となり
、さらにηm A>]とすれは 1out’=(1/η川 )Ii口         
 ・・−(3)なる式か得られる。
By the way, now the driving current Io of laser diodes 1 and 4 is
If the differential conversion efficiency of the monitor current rm with respect to ut is ηm, the drive current 10 and the monitor current MLzn are rout = A (in-Im) Im = η
m I out ・-(1) and Table 4
will be taken. I wanted to, 1011 years old 1 out = A-I
tn/(1+nm A) = -(2), and further ηm A>], which is 1out' = (1/η river) Ii mouth
...-(3) can be obtained.

ここで、 コ+ηmA>0 であれば、誤差増幅器10は負帰還動作状態となり、こ
のときの開ループにおける電流増幅率I out / 
I inの周波数特性は例えば第2図の曲線■になる。
Here, if co+ηmA>0, the error amplifier 10 enters a negative feedback operation state, and the current amplification factor in the open loop at this time I out /
The frequency characteristic of I in is, for example, curve 2 in FIG.

また閉ループでは 20 log (]+nm A) なる帰還量か発生するので、電流増幅率の周波数特性は
第2図の破線に示すようになる。この場合、第2ボール
までは帰還かかからないので回路は負帰還動作状態とな
る。この動作は、第3図に示す1ノーサダイオードの駆
動電流対先出力特性上では、一般に1ノ一ザ発振状態に
ある微分変換効率η1の領域で行なわれる。
In addition, since a feedback amount of 20 log (]+nm A) is generated in the closed loop, the frequency characteristic of the current amplification factor is as shown by the broken line in FIG. In this case, since feedback is not applied up to the second ball, the circuit enters a negative feedback operation state. This operation is performed in the region of differential conversion efficiency η1, which is generally in the one-noser oscillation state, on the drive current versus first output characteristic of the one-nother diode shown in FIG.

これに対し、いま例えば電流増幅率の周波数特性を変化
させて第2図の曲線@に示す特性に設定し、たとすると
、第2ボールまで帰還がかかるので、位相が180度回
軸回転周波数f。において発振が起こる。つまり、誤差
増幅器10は自励発振動作状態となる。したがって、こ
の状態では誤差増幅器]0からは高周波信号e′が川内
されて駆動信号としてレーザダイオード4に供給される
。このため、レーザダイオード4は第1図中のf′のよ
うな高周波光信号を発する。
On the other hand, for example, if we change the frequency characteristics of the current amplification factor and set it to the characteristics shown in the curve @ in Figure 2, feedback will be applied to the second ball, so the phase will be 180 degrees at the rotational frequency f . Oscillation occurs at In other words, the error amplifier 10 enters a self-oscillation state. Therefore, in this state, the high frequency signal e' is input from the error amplifier 0 and is supplied to the laser diode 4 as a drive signal. Therefore, the laser diode 4 emits a high frequency optical signal such as f' in FIG.

一方、この状態で参照電流l1nO値が低下してレーザ
ダイオード4のしきい値以下になるように設定すると、
レーザダイオード4の微分変換効率は第3図に示すη2
になる。このため、電流増幅率の周波数特性は第2図の
■に示すように変化り、、この結果誤差増幅器10は自
励発振動作を停止する。したがって、このとき誤差増幅
器]0からはバイアス電流のみが出力され、これにより
レーザダイオ−F’ 4は発光動作を停止する。
On the other hand, if the reference current l1nO value decreases in this state and is set to be below the threshold value of the laser diode 4,
The differential conversion efficiency of the laser diode 4 is η2 shown in Fig. 3.
become. For this reason, the frequency characteristic of the current amplification factor changes as shown in (■) in FIG. 2, and as a result, the error amplifier 10 stops its self-oscillation operation. Therefore, at this time, only the bias current is output from the error amplifier ]0, and thereby the laser diode F'4 stops its light emitting operation.

第4図は第1図に示した駆動回路の具体的な回路構成を
示すものである。すなわち、参照電流発生回路9は、ト
ランジスタQ1のエミッタを抵抗R1を介して電源V2
に接続したもので、トランジスタQ1のベースに入力パ
ルス信号aを入力し、かつコレクタ電流を参照電流Ii
nとして誤差増幅器10に出力している。誤差増幅器]
0は、トランジスタQ2.Q3.Q4、抵抗R2,R3
゜R+:および抵抗R「とコンデンサCrとの並列回路
を図示する如く接続して並列帰還形の負帰還増幅器を構
成したもので、参照電流Iinとモニタ電流Il′Nと
の差信号電流をトランジスタQ2に入力して、抵抗Rf
により電圧信号に変換し、ている。
FIG. 4 shows a specific circuit configuration of the drive circuit shown in FIG. 1. That is, the reference current generation circuit 9 connects the emitter of the transistor Q1 to the power supply V2 via the resistor R1.
The input pulse signal a is input to the base of the transistor Q1, and the collector current is the reference current Ii.
It is output to the error amplifier 10 as n. error amplifier]
0 is the transistor Q2. Q3. Q4, resistance R2, R3
゜R+: A parallel circuit of a resistor R' and a capacitor Cr is connected as shown in the figure to constitute a parallel feedback type negative feedback amplifier, and the difference signal current between the reference current Iin and the monitor current Il'N is transferred to the transistor. Q2 and resistor Rf
It is converted into a voltage signal by

ソシて、この電圧信号をトランジスタQ4およびそのエ
ミッタ抵抗Rt=により電流信号に変換し、この電流信
号を駆動電流1 outとしてレーザダイオード4に供
給している。
Then, this voltage signal is converted into a current signal by the transistor Q4 and its emitter resistor Rt=, and this current signal is supplied to the laser diode 4 as a drive current 1 out.

ところで、この回路において開ループの周波数特性を第
2図に示した曲線@に設定するには、次のように行なえ
ばよい。すなわち、周波数特性の第1ポールは入力イン
ピーダンスとコンデンサCFの容量とにより決り、また
第2ボールはその他の回路またはモニタ用の受光素子3
の応答速度により決まる。したがって、回路の周波数特
性を■から@に変化させるためには、例えばコンデンサ
C「の容量を減らして適宜調節すればよい。
By the way, in order to set the open-loop frequency characteristic to the curve @ shown in FIG. 2 in this circuit, the following procedure may be performed. That is, the first pole of the frequency characteristic is determined by the input impedance and the capacitance of the capacitor CF, and the second pole is determined by the other circuits or the light receiving element 3 for monitoring.
Determined by the response speed of Therefore, in order to change the frequency characteristics of the circuit from ■ to @, the capacitance of the capacitor C'' may be reduced and adjusted as appropriate, for example.

このような構成であれば、誤差増幅器1oは第2図の曲
線@に示すような開ループの特性を有することになる。
With such a configuration, the error amplifier 1o will have open-loop characteristics as shown by the curve @ in FIG.

このため、入力パルス信号が“H”レベルのときには誤
差増幅器1oは正帰還動作状態となって所定の周波数で
自励発振し、この結果高周波信号か駆動信号としてレー
ザダイオード4に供給され、これによりレーザダイオー
ド4がら] 0 は高周波光パルス信号が出力される。これに対し入力パ
ルス信号が“L”レベルのときには、参照電流finが
減少し、それに伴いレーザダイオード4の駆動電流がし
きい値11)+以下に減少するので、レーザグイオート
4を含むループの特性は第2図の曲線■に示すようにな
る。このため、誤差増幅器10は自励発振を停止し、こ
の結果レーザグイオート4は高周波光出力の発生を停止
1−する。
Therefore, when the input pulse signal is at the "H" level, the error amplifier 1o enters a positive feedback operation state and self-oscillates at a predetermined frequency. As a result, the high frequency signal or drive signal is supplied to the laser diode 4, and thereby The laser diode 4 ] 0 outputs a high frequency optical pulse signal. On the other hand, when the input pulse signal is at the "L" level, the reference current fin decreases, and the driving current of the laser diode 4 decreases to below the threshold value 11)+, so that the loop including the laser diode 4 decreases. The characteristics are as shown by curve (■) in FIG. Therefore, the error amplifier 10 stops self-sustained oscillation, and as a result, the laser guide 4 stops generating high-frequency optical output.

このように本実施例であれば、入力パルス信号の論理レ
ベルに応して誤差増幅器10が自励発振のオンオフ動作
を行ない、これによりレーザグイオート4から高周波光
信号か出力されるので、従来必要だった高周波発振器、
振幅変調器および電流加算器を不要にすることができ、
その分回路構成を簡単化しかつ小形にすることができる
As described above, in this embodiment, the error amplifier 10 performs self-sustained oscillation on/off operation according to the logic level of the input pulse signal, and as a result, the laser guide 4 outputs a high frequency optical signal, which is different from the conventional method. The high frequency oscillator needed
Amplitude modulators and current adders can be eliminated,
Accordingly, the circuit configuration can be simplified and made smaller.

尚、本実施例の回路では帰還ループに同調回路が入って
いないため発振周波数は多少安定性に欠ける。しかし、
一般に高周波重畳方式によりレザダイオードのコヒーレ
ンシーを低下させるに必要な周波数は約200MHz以
上であればよい。した1] かって、例えば誤差増幅器10の自励発振周波数foを
500MHzに設定したとすれば、この発振周波数かた
とえ±100MHz程度変動したとしても、レーザグイ
オートのコヒーレンシーの低減効果にはほとんと影響を
及はさす、実用上は全く影響ない。
Incidentally, in the circuit of this embodiment, since a tuning circuit is not included in the feedback loop, the oscillation frequency is somewhat unstable. but,
Generally, the frequency required to reduce the coherency of a laser diode using the high frequency superimposition method may be approximately 200 MHz or higher. 1] For example, if the self-oscillation frequency fo of the error amplifier 10 is set to 500 MHz, even if this oscillation frequency fluctuates by about ±100 MHz, it will have little effect on the coherency reduction effect of the laser guide. However, it has no practical effect at all.

尚、本発明は上記実施例に限定されるものではない。例
えば、上記実施例ではディジタル信号により半導体レー
ザを駆動する場合を例にとって説明したか、半導体ルー
プをアナログ信号駆動する場合や直流駆動する場合にも
適用できる。また、先ファイバ通信用だけてはなく、ビ
デオディスク等の光記録媒体のアクセス用光源として適
用してもよい。このような用途に適用すれば、半導体レ
ーザのコヒーレンシーを低減させ、これにより反射光の
影響を低減することができる。その他、具体的な回路構
成や半導体ループおよびモニタ用受光素子の種類、用途
等についても、本発明の要旨を逸脱しない範囲で種々変
形して実施できる。
Note that the present invention is not limited to the above embodiments. For example, in the above embodiments, the case where a semiconductor laser is driven by a digital signal has been described as an example, but the invention can also be applied to a case where a semiconductor loop is driven with an analog signal or a case where a direct current is driven. Moreover, it may be applied not only to fiber-optic communication but also as a light source for accessing optical recording media such as video disks. If applied to such applications, the coherency of the semiconductor laser can be reduced, thereby reducing the influence of reflected light. In addition, various modifications may be made to the specific circuit configuration, semiconductor loop, type of monitoring light receiving element, use, etc., without departing from the gist of the present invention.

] 2 [発明の効果] 以上詳述したように本発明によれば、入力信号に高周波
信号を重畳した駆動信号により半導体レーザを発光駆動
する高周波重畳形発光駆動回路において、」1記入力信
号レベルに比例した参照電流を発生する参照電流発生回
路と、上記半導体レザの光出力の一部をモニタ検出する
受光素子と、上記参照電流とこの受光素子のモニタ電流
との差電流を前記半導体レーザに広帯域帰還する誤差増
幅器とを備え、この誤差増幅器を上記半導体レザの光出
力が一部レベル以上のときは正帰還動作して高周波自励
発振し、かつ半導体レーザの光出力レベルが一定値未満
のときには負帰還動作するように構成したことによって
、商用波重畳を行なうだめの発振器や振幅変調器等を不
要にすることかでき、これにより回路構成の簡単化およ
び回路規模の小形化を図り得る高周波重畳形発光駆動回
路を提供することができる。
2 [Effects of the Invention] As detailed above, according to the present invention, in a high frequency superimposition type light emitting drive circuit that drives a semiconductor laser to emit light using a drive signal obtained by superimposing a high frequency signal on an input signal, a reference current generating circuit that generates a reference current proportional to , a light receiving element that monitors and detects a part of the optical output of the semiconductor laser, and a current difference between the reference current and the monitor current of the light receiving element that is applied to the semiconductor laser. The error amplifier is equipped with an error amplifier that performs broadband feedback, and when the optical output level of the semiconductor laser is above a certain level, the error amplifier performs positive feedback operation and performs high-frequency self-oscillation, and when the optical output level of the semiconductor laser is below a certain value, In some cases, by configuring it to operate with negative feedback, it is possible to eliminate the need for an oscillator or amplitude modulator for superimposing commercial waves, thereby simplifying the circuit configuration and reducing the circuit size. A superimposed light emission driving circuit can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における高周波型] 3 前影発光駆動回路の概略構成を示す回路ブロック図、第
2図は誤差増幅器における′小流増幅率の周波数特性図
、第3図はレーザダイオードの駆動電流に対する光出力
特性の一例を示す図、第4図は第1図に示した回路の具
体的な回路構成例を示した図、第5図は従来の高周波重
畳形発光回路のブロック構成図である。 3・・・モニタ用の受光素子、4・・・レーザグイオー
ト、9・・・参照電流発生回路、]0・・誤差増幅器。
Figure 1 is a circuit block diagram showing a schematic configuration of a high-frequency type in an embodiment of the present invention] 3. Figure 2 is a frequency characteristic diagram of a small current amplification factor in an error amplifier. A diagram showing an example of the optical output characteristics with respect to the driving current of a laser diode, Fig. 4 is a diagram showing a specific circuit configuration example of the circuit shown in Fig. 1, and Fig. 5 is a diagram showing a specific example of the circuit configuration of the circuit shown in Fig. 1. FIG. 2 is a block configuration diagram. 3... Light receiving element for monitor, 4... Laser guide, 9... Reference current generating circuit, ]0... Error amplifier.

Claims (1)

【特許請求の範囲】[Claims] 入力信号に高周波信号を重畳した駆動信号により半導体
レーザを発光駆動する高周波重畳形発光駆動回路におい
て、前記入力信号レベルに比例した参照電流を発生する
参照電流発生回路と、前記半導体レーザの光出力の一部
をモニタ検出する受光素子と、前記参照電流とこの受光
素子のモニタ電流との差電流を前記半導体レーザに広帯
域帰還する誤差増幅器とを備え、この誤差増幅器は前記
半導体レーザの光出力が一定レベル以上のときは正帰還
動作して高周波自励発振し、かつ半導体レーザの光出力
レベルが一定値未満のときには負帰還動作することを特
徴とする高周波重畳形発光駆動回路。
A high frequency superimposition type light emitting drive circuit that drives a semiconductor laser to emit light using a drive signal obtained by superimposing a high frequency signal on an input signal includes a reference current generation circuit that generates a reference current proportional to the input signal level; A light receiving element that monitors and detects a portion of the light receiving element, and an error amplifier that feeds back a difference current between the reference current and the monitor current of the light receiving element to the semiconductor laser over a wide band, and the error amplifier is configured to maintain a constant optical output of the semiconductor laser. A high frequency superimposed light emitting drive circuit characterized in that when the optical output level of a semiconductor laser is above a certain level, positive feedback operation is performed to perform high frequency self-sustained oscillation, and when the optical output level of a semiconductor laser is less than a certain value, negative feedback operation is performed.
JP63322086A 1988-12-22 1988-12-22 High frequency superimposition type light emitting drive circuit Pending JPH02168746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322086A JPH02168746A (en) 1988-12-22 1988-12-22 High frequency superimposition type light emitting drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322086A JPH02168746A (en) 1988-12-22 1988-12-22 High frequency superimposition type light emitting drive circuit

Publications (1)

Publication Number Publication Date
JPH02168746A true JPH02168746A (en) 1990-06-28

Family

ID=18139758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322086A Pending JPH02168746A (en) 1988-12-22 1988-12-22 High frequency superimposition type light emitting drive circuit

Country Status (1)

Country Link
JP (1) JPH02168746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203580A (en) * 1989-02-02 1990-08-13 Canon Inc Semiconductor laser driving equipment
US6377597B1 (en) 1997-03-07 2002-04-23 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203580A (en) * 1989-02-02 1990-08-13 Canon Inc Semiconductor laser driving equipment
US6377597B1 (en) 1997-03-07 2002-04-23 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US6956882B2 (en) 1997-03-07 2005-10-18 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device
US7183569B2 (en) 1997-03-07 2007-02-27 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device

Similar Documents

Publication Publication Date Title
US6078601A (en) Method for controlling the operation of a laser
US5781572A (en) Optical wavelength stabilizing system
JP2932100B2 (en) Laser diode control circuit
US5182756A (en) Semiconductor laser drive apparatus
JP2661574B2 (en) LN modulator DC bias circuit
US5224111A (en) Dual fiber drive system
JPH02168746A (en) High frequency superimposition type light emitting drive circuit
JPS623534A (en) Optical modulator
JPS5821832B2 (en) Hand tie laser touch
JP3387336B2 (en) Optical transmitter
JP2664775B2 (en) Semiconductor laser driver
JPS6025335A (en) Optical output stabilization method
JP2003149613A (en) Optical modulation circuit
JPS62151039A (en) Optical output stabilizing system
JPS5826705B2 (en) optical transmitter
JP2610810B2 (en) Semiconductor laser driver
JPH01191339A (en) Device for driving semiconductor laser
JPH02140985A (en) Method and apparatus for driving of laser diode
JPH0560695B2 (en)
JPS5914936B2 (en) Analog modulation method of semiconductor laser
JPS60192377A (en) Driving method for semiconductor laser element
JP2616987B2 (en) Semiconductor laser driver
JPH0373915A (en) Output waveform stabilizing method for electric field absorption type optical modulator
JPH02284114A (en) Method for detecting optical output intensity of an optical modulator, and method and apparatus for controlling optical output intensity of a laser light source device using the method
JPH01194483A (en) Driving method for laser diode