[go: up one dir, main page]

JPS62147818A - Interference compensation circuit - Google Patents

Interference compensation circuit

Info

Publication number
JPS62147818A
JPS62147818A JP60287881A JP28788185A JPS62147818A JP S62147818 A JPS62147818 A JP S62147818A JP 60287881 A JP60287881 A JP 60287881A JP 28788185 A JP28788185 A JP 28788185A JP S62147818 A JPS62147818 A JP S62147818A
Authority
JP
Japan
Prior art keywords
signal
phase
circuit
interference
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60287881A
Other languages
Japanese (ja)
Other versions
JPH0761023B2 (en
Inventor
Hideaki Matsue
英明 松江
Takehiro Murase
村瀬 武弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60287881A priority Critical patent/JPH0761023B2/en
Priority to US06/921,093 priority patent/US4736455A/en
Priority to CA000521944A priority patent/CA1257658A/en
Priority to DE8686308589T priority patent/DE3685645T2/en
Priority to EP86308589A priority patent/EP0228786B1/en
Publication of JPS62147818A publication Critical patent/JPS62147818A/en
Publication of JPH0761023B2 publication Critical patent/JPH0761023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)
  • Radio Transmission System (AREA)

Abstract

PURPOSE:To obtain a sufficient compensation effect to an optional signal independently of the modulation system of an interference signal by receiving an interference source signal through another antenna from an interference signal mixed in a main signal and adding the source signal to the interference component in the main signal with an equal amplitude and in an opposite phase. CONSTITUTION:An interference signal receiving from an auxiliary antenna 4 receiving only the interference signal component included in the main signal passes through a variable attenuator 8 and a variable phase shifter 9 and divided into two by a distributor 10. After the main signal including residual interference is subject to synchronization detection (12, 13) by a demodulator 100, the result is given to harmonic rejection filters 14, 15. The interference signal being an output of the distributor 10 is detected by using a carrier recovered by a main signal demodulator with orthogonal phase detectors 22, 23 and given to harmonic rejection filters 24, 25. The demodulation signal at the main signal is given to circuits 18, 19 taking the difference between the output of identification circuits 16, 17 and the input signal of the identification circuit to extract only the residual interference component only. To earn the control gain, the sum of products 27, 28 is taken and used a the control signal, and similarly, the difference between the products 29 and 30 is taken and used as a control signal to minimize the residual interference included in the main signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディジタル通信方式においてディジタル信号が
受ける他方式からの干渉を除去する干渉補償回路の構成
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the configuration of an interference compensation circuit that eliminates interference from other systems that a digital signal receives in a digital communication system.

(従来の技術) 従来の基本的な干渉補償回路の構成例を第5図に示す。(Conventional technology) An example of the configuration of a basic conventional interference compensation circuit is shown in FIG.

主アンテナ1から受信した主信号は合成回路3に人力さ
れる。一方、補助アンテナ2から受信した干渉信号は可
変振幅位相回路4で主信号中にもれ込んだ干渉成分とほ
ぼ等振幅、逆位相となるように設定され、その信号は合
成回路3に入力される。合成回路3の出力は、完全に消
去できなくて残留している干渉信号と補助アンテナ出力
の干渉信号との相関をとる相関器6に通し、その出力を
 ゛積分器5に通して、可変振幅位相回路を制御してい
る。制御ループは、残留干渉信号と、干渉信号との相関
が最小となるように動作する。ここで、相関器6の入力
信号は振幅および位相を含む複素信号であり、可変振幅
位相器4も複素量として扱っている。
The main signal received from the main antenna 1 is input to the combining circuit 3. On the other hand, the interference signal received from the auxiliary antenna 2 is set by the variable amplitude phase circuit 4 so that it has approximately the same amplitude and opposite phase as the interference component leaked into the main signal, and the signal is input to the combining circuit 3. Ru. The output of the synthesis circuit 3 is passed through a correlator 6 that correlates the remaining interference signal that cannot be completely canceled with the interference signal output from the auxiliary antenna, and the output is passed through an integrator 5 to generate a variable amplitude signal. Controls the phase circuit. The control loop operates such that the correlation between the residual interference signal and the interfering signal is minimized. Here, the input signal of the correlator 6 is a complex signal including amplitude and phase, and the variable amplitude phase shifter 4 is also treated as a complex quantity.

(発明が解決しようとする問題点) 実際には合成回路3の出力中の残留干渉成分を抽出する
誤差信号発生回路の実現が重要な課題である。
(Problems to be Solved by the Invention) In reality, an important issue is to realize an error signal generation circuit that extracts the residual interference component in the output of the combining circuit 3.

本発明は第5図の原理的回路構成の制御部分を具体化し
たもので主信号中に残留する干渉成分をとり出す誤差信
号発生回路としては主信号用復調器自身を用い、また干
渉信号の直交位相検波器出力を用いて百出力信号の相関
検出をおこない可変振幅回路、可変位相回路の振幅およ
び位相の制御情報を得るもので、干渉補償回路の簡易な
回路構成を提供することを目的とする。
The present invention embodies the control part of the principle circuit configuration shown in FIG. The purpose is to obtain amplitude and phase control information for variable amplitude circuits and variable phase circuits by detecting the correlation of 100 output signals using the quadrature phase detector output, and to provide a simple circuit configuration for interference compensation circuits. do.

(問題点を解決するための手段) 本発明では、主信号中に含まれる残留干渉成分と干渉信
号との相関をとり振幅と位相の制御情報を得る具体的手
段として、残留干渉成分および干渉信号を同相分および
直交分にそれぞれ分解するため受信した主信号を直交位
相同期検波する復調器を通し、その出力から同相および
直交成分の誤差情報を得る。また、干渉信号を主信号用
復調器で再生した搬送波を用いて直交位相検波をおこな
い同相および直交分の信号成分を得る。
(Means for Solving the Problems) In the present invention, as a specific means for correlating the residual interference component contained in the main signal with the interference signal and obtaining amplitude and phase control information, the residual interference component and the interference signal are In order to decompose the signal into in-phase and quadrature components, the received main signal is passed through a demodulator that performs orthogonal phase coherent detection, and error information for the in-phase and quadrature components is obtained from the output. In addition, quadrature phase detection is performed using the carrier wave that has been regenerated from the interference signal by the main signal demodulator to obtain in-phase and quadrature signal components.

そして、お互い誤差信号と干渉信号の同相成分どうし、
または直交成分どうしの間で相関をとり積分器に通ずこ
とにより可変減衰器の制御情報を得る。また、誤差信号
と干渉信号について同相分と直交分または直交分と同相
分との間で相関をとり積分器に通すことにより可変移相
器の制御情報を得る。従って、可変減衰器および可変移
相器を制御するため、誤差信号と干渉信号を同相分およ
び直交分に分解した後、相関検出する点とその制御回路
をするために必要な外部負荷回路としては、干渉信号を
直交位相検波する直交検波器と相関検出するための乗算
器および積分器だけでよい点を特徴とする。
Then, the in-phase components of the error signal and the interference signal,
Alternatively, control information for the variable attenuator is obtained by correlating the orthogonal components and passing them through an integrator. Furthermore, control information for the variable phase shifter is obtained by correlating between the in-phase and quadrature components or the orthogonal and in-phase components of the error signal and interference signal and passing them through an integrator. Therefore, in order to control the variable attenuator and variable phase shifter, after decomposing the error signal and interference signal into in-phase and quadrature components, the external load circuit required to detect the correlation and the control circuit is as follows: , is characterized in that it only requires a quadrature detector for orthogonal phase detection of interference signals, a multiplier and an integrator for correlation detection.

(実施例) 本発明の具体的な一実施例を第1図に示す。主アンテナ
1から受信した主信号は帯域フィルタ2を通った後周波
数変換器3を通りIF信号に変換される。一方、主信号
に含まれる干渉信号成分だけを受信する補助アンテナ4
がら受信した干渉信号は帯域フィルタ5を通り主信号側
と共通の局部発振器7により周波数変換6されIF信号
に変換される。この干渉信号は可変減衰器8および可変
移相器9を通り、分配器10により2分配され一方は制
御部へもう一方は主信号と合成するための合成器11に
人力される。ここで合成する以前の主信号は次式で表オ
)される。
(Example) A specific example of the present invention is shown in FIG. A main signal received from the main antenna 1 passes through a bandpass filter 2 and then a frequency converter 3 where it is converted into an IF signal. On the other hand, the auxiliary antenna 4 receives only the interference signal component included in the main signal.
The received interference signal passes through a bandpass filter 5 and is frequency-converted 6 by a local oscillator 7 common to the main signal side and converted into an IF signal. This interference signal passes through a variable attenuator 8 and a variable phase shifter 9, and is divided into two parts by a distributor 10, one of which is sent to a control section and the other to a combiner 11 for combining it with the main signal. The main signal before being combined here is expressed by the following equation.

ここでは主信号として16CAM信号を考える。従って
al、bk= (±1.±3)r(t、)は系全体のイ
ンパルス応答であり、ナイキスト伝送系を仮定すればr
 (0) = 1 、 r (kT) = Oただしに
≠0の整数、Tはクロック周期、ω1は主信号の搬送波
角周波数である。また干渉成分としてはCW波を考えて
おり、rはその振幅、θは位相、ω2は干渉成分の各周
波数である。
Here, a 16CAM signal is considered as the main signal. Therefore, al, bk = (±1.±3)r(t,) is the impulse response of the entire system, and assuming a Nyquist transmission system, r
(0) = 1, r (kT) = O, where ≠0 is an integer, T is the clock period, and ω1 is the carrier wave angular frequency of the main signal. Further, a CW wave is considered as an interference component, where r is its amplitude, θ is its phase, and ω2 is each frequency of the interference component.

一方、分配器lOの出力の信号は正常に制御されていれ
ば次式で表せる。
On the other hand, if the output signal of the distributor IO is normally controlled, it can be expressed by the following equation.

y 、(1)=<、+、 、> 、、j(−2L+ 8
 ” Δe ” π12 >ただし、Δr、Δθは十分
率さい値と考えてよい。
y, (1)=<,+, ,> ,,j(-2L+ 8
"Δe"π12>However, Δr and Δθ can be considered to be sufficiently small values.

式(1)および(2)を加算した結果、主信号に含まれ
る残留干渉成分は第2図のベクトル図のようになる。残
留干渉を含む主信号を復調器100により同期検波12
.13 した後、高調波成分除去フィルタ14.15を
通すことにより同相および直交の復調信号が得られ次式
となる。
As a result of adding equations (1) and (2), the residual interference component included in the main signal becomes as shown in the vector diagram of FIG. The main signal including residual interference is subjected to synchronous detection 12 by a demodulator 100.
.. 13, and then passed through harmonic component removal filters 14 and 15 to obtain in-phase and quadrature demodulated signals as shown in the following equation.

[−Δr−CO5(Δω し十〇)+r−Δ θ ・5
in(Δω L+θ)] (3)[−Δr−sin(Δ
(all+θ)−「・Δθ−cos (Δωt、+θ)
] (4)一方、分配器IO出力の干渉信号は直交位相
検波器22.23により主信号復調器で再生された搬送
波で検波され高調波除去フィルタ24.25通過後次式
で与えられる同相分および直交分を得る。
[-Δr-CO5(Δω 10)+r-Δθ ・5
in(Δω L+θ)] (3) [-Δr-sin(Δ
(all+θ) − “・Δθ−cos (Δωt, +θ)
(4) On the other hand, the interference signal of the distributor IO output is detected by the quadrature phase detector 22.23 using the carrier wave regenerated by the main signal demodulator, and after passing through the harmonic removal filter 24.25, the in-phase component given by the following equation is detected. and obtain the orthogonal component.

12(t、)=(r+Δr) −cos (ΔωL+θ
′÷Δθ+π)押−r−cos (Δωt+θつ   
   (5)Q2(t、)=(r+Δr)−sin(Δ
ωt+θ°+Δθ+π)句−「・5in(ΔωL÷θ’
)       (6)ここで、Δωはω、とω2の差
を表わしている。
12(t,)=(r+Δr) −cos (ΔωL+θ
′÷Δθ+π)press−r−cos(Δωt+θtsu
(5) Q2(t,)=(r+Δr)−sin(Δ
ωt + θ° + Δθ + π) clause - "・5in (ΔωL÷θ'
) (6) Here, Δω represents the difference between ω and ω2.

θ“は初期位相差である。主信側の復調信号に対し、識
別回路16.17出力と識別回路入力信号との差をとる
回路18.19を通すことにより残留干渉成分だけをと
り出すことができ、同相および直交の誤差信号は次式と
なる。
θ" is the initial phase difference. Only the residual interference component is extracted by passing the demodulated signal on the main signal side through a circuit 18.19 that takes the difference between the output of the identification circuit 16.17 and the input signal of the identification circuit. The in-phase and quadrature error signals are as follows.

E、(L)=−Δr−cos (Δωt+θ)+r−Δ
θ−5in (ΔωL+θ)E  q (j)=  −
Δ r−8in(Δ ω t+θ)−r・Δ θ −c
os  (Δ ω t+θ)ここで式(7) 、 (8
)で表わされる誤差成分と式(5)。
E, (L)=-Δr-cos (Δωt+θ)+r-Δ
θ−5in (ΔωL+θ)E q (j)= −
Δ r−8in(Δ ω t+θ)−r・Δ θ −c
os (Δ ω t+θ) where Equation (7), (8
) and the error component expressed by equation (5).

(6)で表わされる干渉信号に対し相関検出をおこなう
ため以下に示す演算をおこなう。すなわち、i 2(t
) トE r (t)(7)!0r427マタハq 2
(t、) トE q(t)<7)禎28の結果を低域フ
ィルタ34に通すことにより次式%式% 第1図では制御ゲインをかせぐため27の積と28の積
との和をとって制御信号としている。また、Q2(t、
)とE、(t)の積29または12(t、)とE、1(
t)の積30の逆符号の結果を低域通過フィルタ33に
通すことにより次式が得られる。
In order to perform correlation detection on the interference signal expressed by (6), the following calculation is performed. That is, i 2(t
) E r (t) (7)! 0r427 Matahaq 2
(t,) tE q(t)<7) By passing the result of 28 through the low-pass filter 34, the following formula is obtained. is used as a control signal. Also, Q2(t,
) and E, (t) product 29 or 12 (t, ) and E, 1 (
By passing the result of the inverse sign of the product 30 of t) through the low-pass filter 33, the following equation is obtained.

q2(L)x E+(t)=−j2(j)X Eq(1
:)=−r2・Δθ−cos(θ−θ’) (10)同
様に、制御ゲインをかせぐため29の積と30の積との
差をとって制御信号としている。ここでθおよびθ゛は
初期位相であり、その変動量はほとノVと考えなくてよ
いためθ=θ°となるよう初期調整しておけば式(9)
よりΔr、また式(10)よりΔθとそれぞれ比例関係
になり式(9)の結果で可変減衰器の振幅を、また式(
10)の結果で可変移相器の位相を制御可能となる。第
1図のlotは制御回路を示している。従って、Δr、
Δθは最適に制御され主信号に含まれる残留干渉成分は
最小となる。
q2(L)x E+(t)=-j2(j)X Eq(1
:)=-r2·Δθ-cos(θ-θ') (10) Similarly, in order to obtain a control gain, the difference between the product of 29 and the product of 30 is used as a control signal. Here, θ and θ゛ are initial phases, and there is no need to consider that the amount of variation is almost no V, so if the initial adjustment is made so that θ = θ°, Equation (9)
From equation (10), there is a proportional relationship with Δr, and from equation (10), there is a proportional relationship with Δθ, so the amplitude of the variable attenuator is determined by equation (9), and equation (
As a result of 10), the phase of the variable phase shifter can be controlled. Lot in FIG. 1 indicates a control circuit. Therefore, Δr,
Δθ is optimally controlled and the residual interference component contained in the main signal is minimized.

次に本発明の別の具体的実施例を第3図に示す。主信号
および干渉の源信号を主信号の復調器で再生した搬送波
で両信号は直交位相検波され、高調波除去フィルタを経
てそれぞれ同相および直交成分の復調出力を得るまでは
第1図の実施例と全く同じである。主信号の復調された
信号は識別器16.17で識別され、その出力と識別器
入力信号との差18.19をとりその結果を2値化する
ことにより主信号に残留している干渉成分の極性を得る
ことができる。具体的には第4図に示すように。
Next, another specific embodiment of the present invention is shown in FIG. The main signal and the interference source signal are quadrature-phase detected using a carrier wave regenerated by a main signal demodulator, and the steps are performed until they are passed through a harmonic removal filter to obtain demodulated outputs of in-phase and quadrature components, respectively. is exactly the same. The demodulated signal of the main signal is identified by a discriminator 16.17, and the difference 18.19 between its output and the discriminator input signal is taken and the result is binarized to remove interference components remaining in the main signal. polarity can be obtained. Specifically, as shown in Figure 4.

16Q八Mの復調信号である4値信号をA/D変換器に
通すことにより上位2ビツトは識別データとなり、上位
3ビツト目が誤差信号の極性、すなわち残留干渉成分の
極性を示している。第3図では、減算器18.19の出
力はいわば上位3ビツト以降の情報を含んでいるが、こ
の出力の極性が上位3ビツト目に相当する。極性は2値
だから、例えば正極性をパルスの“1”、負極性を“0
”に対応させれば18.19の出力を排他的論理和29
に人力できる。クロック周期Tごとにサンプリングされ
た誤差信号の極性は次式で表わされる。
By passing the four-level signal, which is a 16Q8M demodulated signal, through an A/D converter, the upper two bits become identification data, and the upper three bits indicate the polarity of the error signal, that is, the polarity of the residual interference component. In FIG. 3, the outputs of the subtracters 18 and 19 include information after the upper three bits, so to speak, and the polarity of this output corresponds to the upper three bits. Since the polarity is binary, for example, the positive polarity is "1" of the pulse, and the negative polarity is "0".
”, the output of 18.19 becomes exclusive OR29
can be done manually. The polarity of the error signal sampled every clock period T is expressed by the following equation.

sgn (E 、 (mT) ) = sgn (−Δ
r−cos(Δω−mT+θ)+r−Δθ・5in(Δ
ω−mT+θ)) (11)sgn (E q (mT
) ) = Sgn (−Δr−sin(Δω・■T+
θ)−r−Δθ−cos (Δω−m’r+θ))  
(12)一方、干渉の源信号の直交検波された出力の極
性をとる回路27.28を通すことにより次式で与えら
れる。ただし、サンプリングタイミングは主信号用復調
器で再生されたタイミング信号を用いる必要がある。
sgn (E, (mT)) = sgn (−Δ
r-cos(Δω-mT+θ)+r-Δθ・5in(Δ
ω−mT+θ)) (11) sgn (E q (mT
) ) = Sgn (-Δr-sin(Δω・■T+
θ)-r-Δθ-cos (Δω-m'r+θ))
(12) On the other hand, by passing the polarity of the orthogonally detected output of the interference source signal through circuits 27 and 28, it is given by the following equation. However, as the sampling timing, it is necessary to use the timing signal reproduced by the main signal demodulator.

sgn (i 2(mT) ) = −sgn (co
s (ΔωφlT+θ’))  (1:l)sgn(q
 z(InT))=−sgn(sin(Δ(IJ ・m
T+θ°))(目)式(5)、(6)に比べると、上記
の右辺でrが抜けているが、上式は式の符号をとるだけ
であり、「は正だからこれを省略しても誤りではない。
sgn (i2(mT)) = −sgn (co
s (ΔωφlT+θ')) (1:l)sgn(q
z(InT))=-sgn(sin(Δ(IJ ・m
T + θ°)) (th) Compared to equations (5) and (6), r is missing on the right-hand side above, but the above equation only takes the sign of the equation, and ``is positive, so this can be omitted. However, it is not a mistake.

ここでsgn(E 、(mT))、 sgn(Eq(m
’「))、sgn(i 2(nlT))およびsgn 
(q 2 (mT) )に対して以下の演算をおこなう
。すなわちSgn (12(mT) )とsgn (E
 t (mT) )のディジタル的乗算、すなわち排他
的論理和29をとり低域通過フィルタ38を通すことに
より次式を得る。
Here, sgn(E, (mT)), sgn(Eq(m
')), sgn(i2(nlT)) and sgn
The following calculation is performed on (q 2 (mT) ). That is, Sgn (12(mT)) and sgn (E
t (mT) ), that is, by taking the exclusive OR 29 and passing it through the low-pass filter 38, the following equation is obtained.

sgn (i 2 (mT) ) x sgn (E 
、 (mT))=−sgn(−Δr°cos(θ−θ’
) + r−Δθ−5in(θ−θ゛))同様に sgn (q 2 (mT) ) x sgn (E 
q (mT) )=−sgn(−Δr−cos(θ−θ
°)+r・Δθ・5in(θ−θ°))同様に sgn (q 2 (mT) ) x sgn (E 
r (mT) )=−sgn(Δr−sin(θ−θ’
) + r−Δθ−cos(θ−θ゛))同様に −sgn(i 2(mT))Xsgn(Eq(mT))
=−sgn(Δr−sin(θ−θ°)+「・Δθ・c
os (θ−θ゛))ここで前回同様θユθ°とおくと sgn(i 2(mT))x sgn(E l ([I
IT))=sgn(q2(mT))xsgn(E、(n
lT))=+sgn(Δr)          (1
9)sgn(q2(mT))xsgn(E、(mT))
=−sgn(i 2(mT))xsgn(E、(mT)
)=−sgn(Δθ)           (20)
従って、式(19)により可変減衰器8の振幅を、また
式(20)により可変移相器9の位相を制御可能である
。101の制御回路では式(16)および式(!7)の
結果は同じであり、また式(17)および式(18)の
結果は同じであるため制御ゲインを向上する目的で両信
号を加算する例を示している。
sgn (i 2 (mT) ) x sgn (E
, (mT))=-sgn(-Δr°cos(θ-θ'
) + r−Δθ−5in(θ−θ゛)) Similarly, sgn (q 2 (mT) ) x sgn (E
q (mT) )=-sgn(-Δr-cos(θ-θ
°) + r・Δθ・5in (θ−θ°)) Similarly, sgn (q 2 (mT) ) x sgn (E
r (mT) )=-sgn(Δr-sin(θ-θ'
) + r−Δθ−cos(θ−θ゛)) Similarly, −sgn(i 2(mT))Xsgn(Eq(mT))
=-sgn(Δr-sin(θ-θ°)+"・Δθ・c
os (θ−θ゛)) Here, if we set θyuθ° as before, we get sgn(i 2(mT)) x sgn(E l ([I
IT))=sgn(q2(mT))xsgn(E, (n
lT))=+sgn(Δr) (1
9) sgn(q2(mT))xsgn(E,(mT))
=-sgn(i2(mT))xsgn(E,(mT)
)=-sgn(Δθ) (20)
Therefore, the amplitude of the variable attenuator 8 can be controlled using equation (19), and the phase of the variable phase shifter 9 can be controlled using equation (20). In the control circuit of 101, the results of equation (16) and equation (!7) are the same, and the results of equation (17) and equation (18) are the same, so both signals are added for the purpose of improving the control gain. An example is shown.

以上、第1図および第3図に示す回路ではIF帯の可変
減衰器、可変移相器により補償する場合の例を示したが
、RF帯の可変減衰器、可変移相器で補償する場合も同
じであする。
Above, in the circuits shown in Fig. 1 and Fig. 3, an example was shown where compensation is performed using a variable attenuator and a variable phase shifter in the IF band, but when compensation is performed using a variable attenuator and a variable phase shifter in the RF band. Same thing tomorrow.

また、干渉信号としてCW波を例にとり説明したが、そ
れ以外の任意の変調18号に対しても同様、干渉成分と
同一の干渉源を別アンテナて受信しているため同じ回路
構成で干渉補償が可能である。
In addition, although the explanation has been given using the CW wave as an example of an interference signal, the interference can be compensated for with the same circuit configuration since the same interference source as the interference component is received by a separate antenna. is possible.

ここで、補助アンテナより受信した干渉信号を可変移相
器に通した後、一方を直交位相検波器へ、他方を可変減
衰器に通した後、主イ8号と合成すること、すなわち可
変減衰器を通す前で干渉信号を分岐する構成も考えられ
る。このようにすると、直交位相検波器に入る干渉信号
レベルは、可変減衰器の前段でとっているため、一般に
前述の場合に比べ高い。従って位相検波の際、感度を向
上することができる。可変減衰器部段での干渉信号の振
幅は式(2)の(r+Δr)”=rの代りに別の値「°
とすれば、r”、rは共に正の値であり、式(9)。
Here, after passing the interference signal received from the auxiliary antenna through a variable phase shifter, one side is passed through a quadrature phase detector and the other is through a variable attenuator, and then combined with the main No. 8, that is, variable attenuation. A configuration may also be considered in which the interference signal is split before passing through the device. In this case, the level of the interference signal entering the quadrature phase detector is generally higher than in the above case because it is taken before the variable attenuator. Therefore, sensitivity can be improved during phase detection. The amplitude of the interference signal at the variable attenuator stage is determined by another value ``°'' instead of ``(r+Δr)''=r in equation (2).
Then, r'' and r are both positive values, and Equation (9).

(10)および式(19) 、 (20)は同様に成り
立つことは明らかである。ゆえに、原理的にも振幅およ
び位相を制御可能である。
It is clear that (10) and equations (19) and (20) hold similarly. Therefore, the amplitude and phase can be controlled in principle.

(発明の効果) 以上説明したように、本補償回路では、主信号に混入し
た干渉信号を別のアンーテナにより干渉の源信号を受信
し、主信号中の干渉成分と等振幅、逆位相で加算してい
るため干渉信号の変調方式によらず任意の信号に対して
、十分な補償効果を得ることができ、また主信号中に残
留した干渉成分を抽出する誤差信号発生回路としては主
信号用復調器をそのまま用いる。従って、新たに付加す
る回路としては干渉信号を直交位相検波する直交位相検
波器と、その出力と誤差信号発生回路出力との相関をと
るアナログ乗算器、またはゲイジタル乗算器(排他的論
理和回路)と積分用低域通過フィルタだけでよく、上述
の回路を用いる簡易な回路構成で可変減衰器および可変
移相器を制御する制御回路を構成可能であるという利点
を有する。
(Effects of the Invention) As explained above, in this compensation circuit, the interference signal mixed in the main signal is received by another antenna, and is added with equal amplitude and opposite phase to the interference component in the main signal. Therefore, a sufficient compensation effect can be obtained for any signal regardless of the modulation method of the interference signal, and the error signal generation circuit for extracting the interference component remaining in the main signal can be used for the main signal. Use the demodulator as is. Therefore, the newly added circuits are a quadrature phase detector that detects the interference signal in quadrature phase, an analog multiplier that correlates its output with the output of the error signal generation circuit, or a gain multiplier (exclusive OR circuit). The present invention has the advantage that it is possible to configure a control circuit for controlling the variable attenuator and the variable phase shifter with a simple circuit configuration using only the above-mentioned circuit and an integrating low-pass filter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、第2図は残留干渉信
号のベクトル図、第3図は本発明の別の実施例を示す図
、第4図は多値(4値)識別回路(誤差信号発生回路)
の入出力関係図、第5図は従来の干渉波補償回路である
。 符号の説明(第1図) l・・・主アンテナ、  2.5−・・帯域フィルタ、
:I、6−・・周波数変換器、4・・・補助アンテナ、
7・・・受信局部発振器、8・・・可変減衰器、9・・
・可変移相器、  10−・・分配器、11・・・合成
器、    12,13,22,2]・・・検波器、2
1.26−90°移相器、20−・・再生搬送波、+4
.15,24.25・・・低域フィルタ、16.17−
・・識別回路、  18.19−・・減衰器、27.2
8,29.:10・・・乗算器、31−・・加算器、 
   32−・・減衰器、33.34−・・積分器、 
 100−・・復調器、+01−・・制御回路、 102.10:J −・・誤差信号発生回路。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a vector diagram of a residual interference signal, Fig. 3 is a diagram showing another embodiment of the present invention, and Fig. 4 is a multi-value (four-value) identification Circuit (error signal generation circuit)
The input/output relationship diagram in FIG. 5 shows a conventional interference wave compensation circuit. Explanation of symbols (Fig. 1) l...Main antenna, 2.5-...Band filter,
: I, 6-... Frequency converter, 4... Auxiliary antenna,
7... Receiving local oscillator, 8... Variable attenuator, 9...
・Variable phase shifter, 10-...Distributor, 11...Synthesizer, 12, 13, 22, 2]...Detector, 2
1.26-90° phase shifter, 20-...regenerated carrier wave, +4
.. 15, 24.25...Low pass filter, 16.17-
...Identification circuit, 18.19-...Attenuator, 27.2
8,29. :10...multiplier, 31-...adder,
32--Attenuator, 33.34--Integrator,
100--Demodulator, +01--Control circuit, 102.10:J--Error signal generation circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)主信号受信用の主アンテナと、干渉信号受信用の
補助アンテナと、該補助アンテナ出力の振幅および位相
を可変するお互いに縦続に接続された可変位相回路およ
び可変振幅回路と、該可変位相回路および該可変振幅回
路により位相および振幅を制御された干渉信号と該主ア
ンテナ出力とを合成する合成回路(11)と、該合成回
路の出力を入力信号として、再生した基準搬送波を用い
て同相成分および直交成分に分解する第1の直交位相同
期検波器(12、13)と、同相成分および直交成分の
該直交位相検波器の出力をそれぞれ入力信号とし合成回
路の出力に残留する干渉成分を検出する2つの誤差信号
発生回路(102、103)と、前記干渉信号を同相成
分および直交成分に分解するため、該干渉信号を入力信
号とし前記直交位相同期検波器(12、13)と共通の
基準搬送波を用いて直交位相検波する第2の直交位相検
波器(22、23)と、直交位相検波器(22、23)
の出力信号と該誤差信号発生回路(102、103)の
2つの出力との相関をそれぞれ独立にとる少なくとも2
個以上の乗算器(27、28、29、30)とその出力
信号を入力信号とする2個以上の積分器(33、34)
とを具備し、該積分器(33、34)の出力を前記可変
振幅回路および前記可変位相回路の振幅および位相の制
御信号とすることを特徴とする干渉補償回路。
(1) A main antenna for receiving the main signal, an auxiliary antenna for receiving the interference signal, a variable phase circuit and a variable amplitude circuit connected in cascade to each other that vary the amplitude and phase of the output of the auxiliary antenna, and the variable a combining circuit (11) that combines the main antenna output with an interference signal whose phase and amplitude are controlled by the phase circuit and the variable amplitude circuit; and a regenerated reference carrier wave using the output of the combining circuit as an input signal A first quadrature phase synchronous detector (12, 13) that decomposes the in-phase component and quadrature component, and an interference component that remains in the output of the synthesis circuit using the outputs of the quadrature phase detector for the in-phase component and quadrature component as input signals, respectively. two error signal generation circuits (102, 103) for detecting the interference signal, and a circuit common to the quadrature phase synchronized detector (12, 13) using the interference signal as an input signal in order to decompose the interference signal into an in-phase component and a quadrature component. a second quadrature phase detector (22, 23) that performs quadrature phase detection using a reference carrier wave; and a quadrature phase detector (22, 23).
and the two outputs of the error signal generating circuit (102, 103) independently.
Two or more multipliers (27, 28, 29, 30) and two or more integrators (33, 34) whose output signals are input signals
An interference compensation circuit characterized in that the output of the integrator (33, 34) is used as an amplitude and phase control signal for the variable amplitude circuit and the variable phase circuit.
(2)主信号受信用の主アンテナと、干渉信号受信用の
補助アンテナと、該補助アンテナ出力の振幅および位相
を可変するお互いに縦続に接続された可変位相回路およ
び可変振幅回路と、その出力を前記主アンテナの出力と
合成する合成回路(11)と、前記可変位相回路と前記
可変振幅回路との間に挿入され可変位相回路の出力を分
岐する2分配器と、前記合成回路の出力を入力信号とし
て、再生した基準搬送波を用いて同相成分および直交成
分に分解する第1の直交位相同期検波器(12、13)
と、同相成分および直交成分の該直交位相検波器の出力
をそれぞれ入力信号とし合成回路の出力に残留する干渉
成分を検出する2つの誤差信号発生回路(102、10
3)と、 前記干渉信号を同相成分および直交成分に分解するため
、前記2分配器の分岐出力信号を入力信号とし前記直交
位相同期検波器(12、13)と共通の基準搬送波を用
いて直交位相検波する第2の直交位相検波器(22、2
3)と、直交位相検波器(22、23)の出力信号と該
誤差信号発生回路(102、103)の2つの出力との
相関をそれぞれ独立にとる少なくとも2個以上の乗算器
(27、28、29、30)とその出力を入力信号とす
る2個以上の積分器(33、34)とを具備し、該積分
器(33、34)の出力を前記可変振幅回路および前記
可変位相回路の振幅および位相の制御信号とすることを
特徴とする干渉補償回路。
(2) A main antenna for receiving the main signal, an auxiliary antenna for receiving the interference signal, a variable phase circuit and a variable amplitude circuit connected in cascade to each other that vary the amplitude and phase of the output of the auxiliary antenna, and their outputs. a combining circuit (11) for combining the output of the main antenna with the output of the main antenna; a two-way divider inserted between the variable phase circuit and the variable amplitude circuit for branching the output of the variable phase circuit; A first quadrature phase synchronized detector (12, 13) that uses the regenerated reference carrier wave as an input signal to decompose it into an in-phase component and a quadrature component.
and two error signal generation circuits (102 and 10
3) In order to decompose the interference signal into an in-phase component and a quadrature component, the branch output signal of the two-way splitter is used as an input signal, and a common reference carrier wave is used as the quadrature phase synchronized detector (12, 13). A second quadrature phase detector (22, 2
3), and at least two or more multipliers (27, 28) each independently correlating the output signal of the quadrature phase detector (22, 23) with the two outputs of the error signal generation circuit (102, 103). , 29, 30) and two or more integrators (33, 34) whose outputs are used as input signals, and the outputs of the integrators (33, 34) are input to the variable amplitude circuit and the variable phase circuit. An interference compensation circuit characterized in that the amplitude and phase control signals are used as control signals.
JP60287881A 1985-12-23 1985-12-23 Interference compensation circuit Expired - Lifetime JPH0761023B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60287881A JPH0761023B2 (en) 1985-12-23 1985-12-23 Interference compensation circuit
US06/921,093 US4736455A (en) 1985-12-23 1986-10-21 Interference cancellation system
CA000521944A CA1257658A (en) 1985-12-23 1986-10-31 Interference cancellation system
DE8686308589T DE3685645T2 (en) 1985-12-23 1986-11-04 SYSTEM FOR COMPENSATING A RADIO INTERFERENCE SIGNAL.
EP86308589A EP0228786B1 (en) 1985-12-23 1986-11-04 Radio signal interference cancellation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287881A JPH0761023B2 (en) 1985-12-23 1985-12-23 Interference compensation circuit

Publications (2)

Publication Number Publication Date
JPS62147818A true JPS62147818A (en) 1987-07-01
JPH0761023B2 JPH0761023B2 (en) 1995-06-28

Family

ID=17722935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287881A Expired - Lifetime JPH0761023B2 (en) 1985-12-23 1985-12-23 Interference compensation circuit

Country Status (1)

Country Link
JP (1) JPH0761023B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188145A (en) * 1988-01-22 1989-07-27 Nippon Telegr & Teleph Corp <Ntt> Interference compensating circuit
JPH0530443A (en) * 1991-07-19 1993-02-05 Matsushita Electric Ind Co Ltd Television signal receiver and transmitter
EP1128716A2 (en) * 2000-02-23 2001-08-29 Lucent Technologies Inc. Method and apparatus for suppressing interference using active shielding techniques
WO2011114726A1 (en) * 2010-03-18 2011-09-22 パナソニック株式会社 Radio reception device for vehicle and noise cancellation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111132A (en) * 1980-12-26 1982-07-10 Nec Corp Disturbing wave rejecting and receiving system
JPS58131852A (en) * 1982-01-30 1983-08-05 Nec Corp Interference wave erasing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111132A (en) * 1980-12-26 1982-07-10 Nec Corp Disturbing wave rejecting and receiving system
JPS58131852A (en) * 1982-01-30 1983-08-05 Nec Corp Interference wave erasing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188145A (en) * 1988-01-22 1989-07-27 Nippon Telegr & Teleph Corp <Ntt> Interference compensating circuit
JPH0530443A (en) * 1991-07-19 1993-02-05 Matsushita Electric Ind Co Ltd Television signal receiver and transmitter
EP1128716A2 (en) * 2000-02-23 2001-08-29 Lucent Technologies Inc. Method and apparatus for suppressing interference using active shielding techniques
EP1128716A3 (en) * 2000-02-23 2004-02-04 Lucent Technologies Inc. Method and apparatus for suppressing interference using active shielding techniques
WO2011114726A1 (en) * 2010-03-18 2011-09-22 パナソニック株式会社 Radio reception device for vehicle and noise cancellation method
US9100081B2 (en) 2010-03-18 2015-08-04 Panasonic Intellectual Property Management Co., Ltd. Radio reception device for vehicle and noise cancellation method
JP5842140B2 (en) * 2010-03-18 2016-01-13 パナソニックIpマネジメント株式会社 In-vehicle radio receiver and noise canceling method

Also Published As

Publication number Publication date
JPH0761023B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US4470145A (en) Single sideband quadricorrelator
US9338041B1 (en) Extracting carrier signals from modulated signals
US5268647A (en) Method and arrangement of coherently demodulating PSK signals using a feedback loop including a filter bank
JPS5925500B2 (en) Carrier wave regeneration circuit
US4814719A (en) Unsymmetrical QPSK demodulator
JPS644707B2 (en)
US3991377A (en) Differential phase shift keying demodulator
US4520493A (en) Adaptive recursive frequency offset tracking system
JPS62147818A (en) Interference compensation circuit
JPS6324347B2 (en)
US5081650A (en) Data receiver
US2943193A (en) Synchronous detection system
US5056115A (en) Device for the division, at an optimum sampling rate, of a passband signal into its components on two carriers in quadrature
JPH0654890B2 (en) Interference compensation circuit
JPH06105897B2 (en) Interference compensation circuit
JPH06105898B2 (en) Interference compensation circuit
JPH0583314A (en) Demodulation circuit
EP2797225B1 (en) Method of and apparatus for demodulating an amplitude modulated signal
JPS62142429A (en) Phase locked loop
JPS62233943A (en) Interference compensation circuit
SU593622A1 (en) Synchronizing device
JPH0479183B2 (en)
JPH0748077B2 (en) Carrier phase measurement method
JPS5948583B2 (en) clock regenerator
Guyer Unsymmetrical QPSK demodulator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term