[go: up one dir, main page]

JPS62233943A - Interference compensation circuit - Google Patents

Interference compensation circuit

Info

Publication number
JPS62233943A
JPS62233943A JP61075556A JP7555686A JPS62233943A JP S62233943 A JPS62233943 A JP S62233943A JP 61075556 A JP61075556 A JP 61075556A JP 7555686 A JP7555686 A JP 7555686A JP S62233943 A JPS62233943 A JP S62233943A
Authority
JP
Japan
Prior art keywords
signal
output
interference
phase
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61075556A
Other languages
Japanese (ja)
Other versions
JPH06105899B2 (en
Inventor
Hideaki Matsue
英明 松江
Takehiro Murase
村瀬 武弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61075556A priority Critical patent/JPH06105899B2/en
Priority to US06/921,093 priority patent/US4736455A/en
Priority to CA000521944A priority patent/CA1257658A/en
Priority to DE8686308589T priority patent/DE3685645T2/en
Priority to EP86308589A priority patent/EP0228786B1/en
Publication of JPS62233943A publication Critical patent/JPS62233943A/en
Publication of JPH06105899B2 publication Critical patent/JPH06105899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Noise Elimination (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To eliminate an interference component leaked in a main signal by detecting an interference signal, supplying its signal to a bipolar variable attenuator whose polarity is varied in bipolar and adding the result to an output of a detector of the main signal. CONSTITUTION:The main signal is inputted to a demodulator 100. Phase detectors 8,9 apply orthogonal phase detection to the signal to obtain an in-phase and an orthogonal base band signal. Further, an interference signal is supplied to a phase detector 10, from which a base band signal is obtained. The interference signal is used, two bipolar variable attenuators 16,17 adjust the bopolar amplitude and the result is added to the in-phase and orthogonal component base band signals of the main signal. In order to detect a residual interference component, the component is fed to error signal generating circuits 20, 21, and on the other band, the base hand signal of the interference signal is identified by an identifier 22 by using a clock signal 23 recovered by the main signal. The identification signal output and the output of the circuits 20, 21 of the main signal side are subject to correlation detection to control the bipolar variable attenuator.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ディジタル通信方式においてディジタル信号
が受ける他方式からの干渉を除去する干渉補償回路の構
成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the configuration of an interference compensation circuit that eliminates interference from other systems that a digital signal receives in a digital communication system.

(従来の技術) 従来の構成IPljを第4図に示す(%願昭6〇−28
7881)以下第4図を詳しく説明する。主信号受信用
の主アンテナ1で受信した信号は必要に応じSハを良く
するため帯域通過フィルタ2を通した後周波数変換器3
によりIP帯に変換される。一方、干渉信号受信用の補
助アンテナで受信した干渉信号は必要に応じsAを良く
するため帯域通過フィルタ5を通した後主信号と共通の
局部発振器7を用いて周波数変換器6によりIF帯に変
換される。IF帯に変換された干渉信号は位相および振
幅を調整するため、可変位相回路9および可変振幅回路
8を通り、主信号中にもれ込んでいる干渉成分とほぼ逆
相、等振幅となるよう制御される。干渉信号と主信号と
を合成回路11で加算することにより主信号中の干渉成
分は除去される。つぎに可変位相回路と可変振幅回路の
制御方法について述べる。11による合成後の主信号を
復調器100に入力する。復調器100では再生した基
準搬送波20を用いて入力信号が12.13により直交
位相検波され、その出力信号をそれぞれ高調波除去フィ
ルタ14.15に通すことにより同相および直交分のベ
ースバンド信号を得る。得られたベースバンド信号はそ
れぞれ誤差信号発生回路102゜103に入力される。
(Prior art) A conventional configuration IPlj is shown in FIG.
7881) FIG. 4 will be explained in detail below. The signal received by the main antenna 1 for receiving the main signal is passed through a band pass filter 2 to improve S as necessary, and then passed through a frequency converter 3.
is converted into an IP band. On the other hand, the interference signal received by the auxiliary antenna for interference signal reception is passed through a band-pass filter 5 to improve the sA if necessary, and then transferred to the IF band by a frequency converter 6 using a local oscillator 7 common to the main signal. converted. In order to adjust the phase and amplitude of the interference signal converted to the IF band, it passes through a variable phase circuit 9 and a variable amplitude circuit 8 so that it has almost the opposite phase and the same amplitude as the interference component leaking into the main signal. controlled. By adding the interference signal and the main signal in the combining circuit 11, the interference component in the main signal is removed. Next, a method of controlling the variable phase circuit and variable amplitude circuit will be described. 11 is input to the demodulator 100. In the demodulator 100, the input signal is subjected to quadrature phase detection 12.13 using the regenerated reference carrier wave 20, and the output signals are passed through harmonic removal filters 14.15 to obtain in-phase and quadrature baseband signals. . The obtained baseband signals are input to error signal generation circuits 102 and 103, respectively.

ここで主信号として16QAM信号を考える。16 Q
AMを復調すると4値のベースバンド信号を得る。第5
図に示すように、4f[信号を3ビット以上の出力を有
するφ変換語尾通すことにより、その出力のうち上位2
ビツトは識別信号を、上位3ビツト目は誤差信号を表わ
す。
Here, a 16QAM signal is considered as the main signal. 16 Q
When AM is demodulated, a four-level baseband signal is obtained. Fifth
As shown in the figure, by passing the 4f[signal through the φ conversion word tail having an output of 3 bits or more, the upper 2 of the outputs are
The bit represents an identification signal, and the third most significant bit represents an error signal.

従って、上位3ビツト目の出力を用いて、残留の干渉成
分を検出することができる。
Therefore, the residual interference component can be detected using the output of the third most significant bit.

一方、干渉信号を分岐回路10で分岐しその一方を主信
号用基準搬送波20を用いて22.23により直交位相
検波した後、高調波除去フィルタ24.25を通し、主
信号復調器で再生したクロック信号を用いて、識別器2
7.28により干渉信号の識別結果を得る。そして、同
相および直交成分の干渉信号の識別結果と誤差信号との
間で相関検出をおこなう。丁なわち同相分の干渉の故別
信号と同相分の誤差信号との30による乗算(ここでは
ディジタルにおこなっている)した結果と、直交分の干
渉の識別信号と直交分の誤差信号と全29により乗算し
た結果とをアナログ的に抵抗回路33.34を用いて加
算した結果を槓分器38により積分することにより可変
振幅回路8の制御信号とする。また、直交分の干渉の識
別信号と同相分の誤差信号とを31により乗算した結果
と、同相分の干渉の識別信号と直交分の誤差信号とを3
2により乗算した結果とを35.36により減算した信
号を積分器37に通し積分することにより可変位相回路
9の制御信号とする。以上により自動的に干渉補償をお
こなうことができる。
On the other hand, the interference signal is branched by a branching circuit 10, one of which is subjected to quadrature phase detection using the main signal reference carrier 20 by 22.23, passed through a harmonic removal filter 24.25, and reproduced by a main signal demodulator. Using the clock signal, the discriminator 2
7.28 to obtain the interference signal identification result. Then, correlation detection is performed between the identification results of the in-phase and quadrature component interference signals and the error signal. In other words, the result of multiplying the in-phase interference error signal and the in-phase error signal by 30 (this is done digitally here), the orthogonal interference identification signal, the orthogonal error signal, and the total The result obtained by adding the result multiplied by 29 in an analog manner using resistance circuits 33 and 34 is integrated by an integrator 38, thereby providing a control signal for the variable amplitude circuit 8. In addition, the result of multiplying the orthogonal interference identification signal and the in-phase error signal by 31, and the in-phase interference identification signal and the orthogonal error signal are multiplied by 31.
A signal obtained by subtracting the result of multiplication by 2 by 35.36 is passed through an integrator 37 and integrated, thereby providing a control signal for the variable phase circuit 9. As described above, interference compensation can be automatically performed.

(発明が解決しようとする問題点) しかしながら、従来の方式では、高周波又は中間周波領
域で干渉波補償を行なうので、高速製作の回路素子が必
要であるという欠点がある。又、動作が高速な為、ディ
ジタル回路には不適であった。
(Problems to be Solved by the Invention) However, in the conventional method, since interference wave compensation is performed in a high frequency or intermediate frequency region, there is a drawback that circuit elements that are manufactured at high speed are required. Also, because of its high speed operation, it was unsuitable for digital circuits.

本発明はこの欠点を改善し、ベースバンド領域で動作す
る干渉補償回路を提供することを目的とする。
The present invention aims to improve this drawback and provide an interference compensation circuit that operates in the baseband region.

(問題点を解決するための手段〕 上記目的を達成するための本発明のひとつの特徴は、主
信号受信用の主アンテナと、干渉信号受信手段と、主ア
ンテナの出力及び主信号から再生した基準搬送波を入力
として同相成分と直交成分に分解する直交位相検波器と
、前記干渉信号受信手段に結合し、該回路からの信号に
対し、前記直交位相検波器と同じ基準床送波により位相
検波する位相検波器と、該位相検波器の出力を入力とす
る第1及び第2の両極性可変減衰器と、前記直交位相検
波器の出力の同相成分及び直交成分と、前記第1及び第
2の両極性可変減衰器の出力との和を各々とる第1及び
第2の加算器と、該加算器の出力を各々入力信号とする
第1及び第2の誤差信号発生回路と、前記位相検波器の
出力と第1の誤差信号発生回路の出力との槓を提供する
第1の乗算器と、前記位相検波器の出力と第2の誤差信
号発生回路の出力との積を提供する第2の乗算器と、第
1の乗算器の出力に結合する第1の積分器と、第2の乗
算器の出力に結合する第2の積分器とを有し、第1の積
分器の出力により第1の両極性可変Md器を制御し、第
2の積分器の出力により第2の両極性可変Md器を制御
する干渉補償回路にある。
(Means for Solving the Problems) One feature of the present invention for achieving the above object is that it includes a main antenna for receiving a main signal, an interference signal receiving means, and a signal regenerated from the output of the main antenna and the main signal. A quadrature phase detector that inputs a reference carrier wave and decomposes it into an in-phase component and a quadrature component, and is coupled to the interference signal receiving means, and performs phase detection on the signal from the circuit by using the same reference floor transmission as the quadrature phase detector. a phase detector, first and second bipolar variable attenuators receiving the output of the phase detector, an in-phase component and a quadrature component of the output of the quadrature phase detector, and the first and second bipolar variable attenuators; first and second adders that each calculate the sum of the output of the bipolar variable attenuator, first and second error signal generation circuits that each use the output of the adder as an input signal, and the phase detector. a first multiplier that provides a multiplier between the output of the phase detector and the output of the first error signal generation circuit; and a second multiplier that provides the product of the output of the phase detector and the output of the second error signal generation circuit. a first integrator coupled to the output of the first multiplier, and a second integrator coupled to the output of the second multiplier; The interference compensation circuit controls the first bipolar variable MD device and controls the second bipolar variable Md device using the output of the second integrator.

(作用) 従来、搬送波帯において干渉信号の振幅および位相を可
変する場合、可変振幅回路および可変位相回路を用いて
いたが、本発明では主信号および干渉信号を検波した後
、ベースバンド帯において干渉補償をおこなう。すなわ
ち、干渉信号を検波した後、その信号を正負両極性にわ
たシ、可変できる両極性可変Md器に通し、主信号の検
波器出力と加算することにより主信号中にもれ込んだ干
渉成分を消去する点が従来技術とは異なる。低周波のベ
ースバンド帯で動作するので回路の実現が容易であり、
又ディジタル回路により実現することもできる。
(Function) Conventionally, when varying the amplitude and phase of an interference signal in the carrier band, a variable amplitude circuit and a variable phase circuit were used, but in the present invention, after detecting the main signal and the interference signal, the interference signal is detected in the baseband band. Make compensation. In other words, after detecting the interference signal, the signal is passed through a bipolar variable Md device that can change the polarity between positive and negative polarities, and is added to the main signal detector output to detect the interference components that have leaked into the main signal. This method differs from the conventional technology in that it erases . Since it operates in the low frequency baseband band, it is easy to implement the circuit.
It can also be realized by a digital circuit.

(実施例) 特許請求の範囲(1)の具体的な実施例を第1図に示す
。以下詳しく説明する。主信号受信用の主アンテナ1よ
り受1Hした主信号を必要に応じS/N f良くするた
め帯域通過フィルタ2に通した後、周波数変換器3によ
りIF帝に変換される。一方、補助アンテナ4より受信
した干渉信号は必要に応じS/Nを良くするため帯域、
lff1過フイルタ5に通した後、主信号と共通の局部
発振器7を用いて周波数変換器6によりIP帯に変換さ
れる。IF帯に変換された主信号は複調6100に入力
される。俊調器内では、再生した基準搬送波12にょシ
8,9により直交位相検波され高調波除去フィルタ13
゜14を通した後、同相および直交のベースバンド信号
を得る。また、工F帯に変換された干渉信号は主信号復
調器で再生した基準搬送波を用いて1oにより位相検波
した後、高調波除去フィルタ15に通すことにより、干
渉信号のベースバンド信号を得る。この干渉信号を用い
て2個の両極性可変減衰器16.17により、正負込み
の振幅を調蟹した後、主信号中にもれ込んだ干渉成分を
消去するため、主信号の同相および直交成分のベースバ
ンド信号とをそれぞれ7JO算(1s 、 19)する
。加昇することにより主信号中にもれ込んだ干渉成分は
ほとんど消去される。同相および直交分について残留す
る干渉成分を検出するために誤差信号発生回路(20、
21)に則す。主信号として例えば16QAM信号を考
える。その復調後のベース・ぐンド信号は4値信号とな
る。誤差信号発生回路20.21として第5図に示すよ
うに、3ビツト以上の出力を有するA/D変換器を用い
ると出力のうち、上位2ビツトは識別結果、また上位3
ビツト目は誤差信号を茨わす。ここでA//D変換器は
復調器で再生したクロック信号23を用いてサンプリン
グされる。一方干渉信号のベースバンド信号は主信号で
再生されたクロック信号23を用いて、識別器22によ
り識別される。この識別信号出力と主信旬徂する。すな
わち干渉信号の識別結果22と同相の誤差信号発生回路
21の出力との末算25(ここでは2噸のディジタル信
号であるためEX−θR回路でよい。)をおこない積分
(26辻ることにより同相側の両便性可変#、哀器16
を制御する。また、干渉信号の識別結果22と直交の誤
i信号発生回路20出力との乗算を24によりおこない
積分(27”)することにより直交側の両極性可変減衰
器17を制御する。従って、主信号中にもれ込んだ干渉
成分を自動的に除去することができる。
(Example) A specific example of claim (1) is shown in FIG. This will be explained in detail below. The main signal received from the main antenna 1 for receiving the main signal is passed through a band pass filter 2 to improve the S/N f if necessary, and then converted to an IF signal by a frequency converter 3. On the other hand, the interference signal received from the auxiliary antenna 4 is
After passing through the lff1 overfilter 5, it is converted into the IP band by a frequency converter 6 using a local oscillator 7 common to the main signal. The main signal converted to the IF band is input to the demodulation 6100. In the high frequency regulator, quadrature phase detection is performed by the regenerated reference carrier wave 12 and 8 and 9, and the harmonic removal filter 13
14, in-phase and quadrature baseband signals are obtained. Further, the interference signal converted to the optical F band is phase-detected by 1o using the reference carrier wave regenerated by the main signal demodulator, and then passed through the harmonic removal filter 15 to obtain the baseband signal of the interference signal. Using this interference signal, two bipolar variable attenuators 16 and 17 adjust the positive and negative amplitudes, and then in-phase and quadrature The component baseband signal is calculated by 7JO (1s, 19). By boosting the signal, most of the interference components that have leaked into the main signal are eliminated. An error signal generation circuit (20,
21). Consider, for example, a 16QAM signal as the main signal. The base gundo signal after demodulation becomes a four-level signal. If an A/D converter with an output of 3 bits or more is used as the error signal generating circuit 20.21, as shown in FIG.
The second bit causes the error signal to fluctuate. Here, the A//D converter is sampled using the clock signal 23 reproduced by the demodulator. On the other hand, the baseband signal of the interference signal is identified by the discriminator 22 using the clock signal 23 reproduced from the main signal. This identification signal output corresponds to the main signal. That is, by performing the summation 25 (here, an EX-θR circuit is sufficient since it is a 2-digit digital signal) of the interference signal identification result 22 and the output of the in-phase error signal generation circuit 21, and integrating (26), Ambidextrous variable # on the same phase side, sad instrument 16
control. Further, the bipolar variable attenuator 17 on the orthogonal side is controlled by multiplying the interference signal identification result 22 and the output of the orthogonal erroneous i signal generation circuit 20 by 24 and integrating (27''). Interfering components that have leaked into the system can be automatically removed.

特許請求の範囲(2)の実施例を第2図に示す。請求の
範囲(1)の第1図と異なる点は、干渉補償をすべてデ
ィジクル処理によりおこなうことである。
An embodiment of claim (2) is shown in FIG. The difference from FIG. 1 in claim (1) is that all interference compensation is performed by digital processing.

すなわち主信号の復調した同相および直交のベースバン
ド信号如対し十分な量子化精度を有するl変換器21.
20によりディジタル化する。
That is, the l converter 21 has sufficient quantization accuracy for the in-phase and quadrature baseband signals demodulated from the main signal.
Digitize by 20.

このとき、サンプリングタイミングは主信号で再生した
クロック信号23を用いる。また、検波した干渉信号も
主信号で再生したクロック信号23により十分な量子化
精度を有するA/D変換器22によりディジタル化する
。例として、主信号に16 QAM、 A/’I) K
換器として8ビツトを考える。
At this time, the clock signal 23 reproduced from the main signal is used as the sampling timing. Further, the detected interference signal is also digitized by the A/D converter 22 having sufficient quantization accuracy using the clock signal 23 regenerated from the main signal. As an example, the main signal is 16 QAM, A/'I) K
Consider an 8-bit converter.

8ビツトで表わされる干渉信号を2つの両極性可変減衰
器30.31に入力する。両極性可変減衰器30.31
としては正負の演算が可能な例えば8ビツト×6ビツト
のディジタル乗算器とする。
The interference signal, represented by 8 bits, is input to two bipolar variable attenuators 30, 31. Bipolar variable attenuator 30.31
For example, an 8-bit x 6-bit digital multiplier capable of performing positive and negative operations is used.

(6ビツトは制御信号)両極性可変減衰器30の出力8
ビツト(レリえば)と主信号の同相側のめ変換器21出
力8ビツトとを加算する8ピツト+8ビツトの全加算器
32の出力には干渉が除去された同相分を得る。
(6 bits are control signals) Output 8 of bipolar variable attenuator 30
The output of an 8-pit + 8-bit full adder 32 which adds the bit (if correct) and the 8-bit output from the in-phase converter 21 of the main signal is the in-phase component from which interference has been removed.

また、両極性可変減衰器31の出力8ビツトと主信号の
直交側のADD変換器20出力8ビットとを卵質する8
ビツト+8ビツトの全加算器33の出力には干渉が除去
された直交分を得る。全加算器32 、.33出力の上
位2ビツトは干渉の除去された4値信号の識別信号、ま
た上位3ビツト目以下は誤差成分となる。とりわけ上位
3ビツト目は誤差信号の方向を表わしている。また、干
渉信号をディジタル化するめ変換器22出力の最上位ビ
ットは干渉信号の極性を犬わしている。第2図では、こ
の干渉信号と、残留する誤差信号との相関をとる場合、
極性だけに注目したIIFIJを示している。すなわち
、干渉信号の極性(A/D変換器22の最上位ビット出
力)と同相側の誤差極性(全加算器32出力の上位3ビ
ツト目)とを排他的論理和(EX−θR)回路35によ
り乗算した後ディジタル的に積分する積分器36を通し
、その出力6ビツトを同相側の両極性可変減衰器30の
制御信号とする。また、干渉信号の極性と直交側の誤差
極性(全加算器33出力の上位3ビツト目)との乗算3
4をおこなった後、ディジタル化に積分する積分器37
に通し、その出力6ビツトを直交側の両極性可変減衰器
31の制御信号とする。すなわち干渉補償をベースバン
ド帯において、全てディジクル処理によりおこなうもの
である。ここでディジタル的な積分器としては例えば可
逆カウンタが考えられる。すなわち、乗算した結果を可
逆カウンタのu p/d own ”端子に入力し、例
えば6ビツトの制御出力を得ようとする場合、6段以上
の可逆カウンタを用意し、その出力の上位6ビツトを積
分器出力とすることで容易に実現できる。
In addition, 8 bits of the output of the bipolar variable attenuator 31 and 8 bits of the output of the ADD converter 20 on the orthogonal side of the main signal are combined.
At the output of the bit+8 bit full adder 33, an orthogonal component from which interference has been removed is obtained. Full adder 32, . The upper 2 bits of the 33 output are the identification signal of the 4-level signal from which interference has been removed, and the upper 3 bits and below are error components. In particular, the third most significant bit represents the direction of the error signal. Further, in order to digitize the interference signal, the most significant bit of the output of the converter 22 ignores the polarity of the interference signal. In Figure 2, when correlating this interference signal with the remaining error signal,
It shows IIFIJ that focuses only on polarity. That is, the polarity of the interference signal (the most significant bit output of the A/D converter 22) and the error polarity on the in-phase side (the third most significant bit of the output of the full adder 32) are combined in the exclusive OR (EX-θR) circuit 35. After being multiplied by , the signal is passed through an integrator 36 that digitally integrates the signal, and its 6-bit output is used as a control signal for the bipolar variable attenuator 30 on the in-phase side. In addition, multiplication 3 of the polarity of the interference signal and the error polarity on the orthogonal side (the upper 3rd bit of the output of the full adder 33)
After performing step 4, an integrator 37 integrates the digital data.
The 6-bit output is used as a control signal for the bipolar variable attenuator 31 on the orthogonal side. In other words, all interference compensation is performed in the baseband by digital processing. Here, the digital integrator may be, for example, a reversible counter. In other words, if you want to input the multiplication result to the up/down'' terminal of a reversible counter and obtain, for example, a 6-bit control output, prepare a reversible counter with 6 or more stages and input the upper 6 bits of the output. This can be easily achieved by using the integrator output.

特許請求の範囲(1)および(2ンでは、干渉15号を
検波する場合、位相検波器を用いるため、回路構成が簡
易であるという長所を有していたが、干渉信号の変調方
式に制約を受けていた。すなわち、ここでは復調後のベ
ースバンド帯で干渉補償を行うために干渉信号として、
振幅変調信号であれば正常に動作するが、直交振幅変調
(QAM )方式では補償することが不可能である。そ
こで、あらゆる変調方式の干渉信号に対し補償可能とす
る干渉補償回路として、特許請求の範囲(3)を特徴す
る特許請求の範囲(3)の実施列を第3図に示す。特許
請求の範囲(2)の実施例である第2図と異なる点とし
ては、第2図では干渉信号を検波する位相検波器を用い
ているが第3図では位相検波器のかわりに直交位相検波
器を用いる。従って、直交位相検波した干渉信号をディ
ノタル化するの変換器、その出力を入力信号とする両極
性可変減衰器2個、また全加算器2個、乗算器2個、積
分器2個がさらに必要となる。しかし、干渉信号の変調
方式に制約を受けないという長所を有している。
Claims (1) and (2) have the advantage that the circuit configuration is simple because a phase detector is used to detect interference No. 15, but there are restrictions on the modulation method of the interference signal. In other words, here, in order to perform interference compensation in the baseband after demodulation, as an interference signal,
An amplitude modulated signal will work normally, but it is impossible to compensate for quadrature amplitude modulation (QAM). FIG. 3 shows an embodiment of claim (3) as an interference compensation circuit capable of compensating for interference signals of any modulation method. The difference from FIG. 2, which is an embodiment of claim (2), is that while FIG. 2 uses a phase detector to detect the interference signal, FIG. 3 uses a quadrature phase detector instead of a phase detector. Use a detector. Therefore, a converter for converting the quadrature-phase detected interference signal into a di-notional signal, two bipolar variable attenuators whose output is used as an input signal, two full adders, two multipliers, and two integrators are also required. becomes. However, it has the advantage of not being restricted by the modulation method of the interference signal.

(発明の効果) 以上説明したように、主信号中にもれ込んだ干渉成分を
除去する場合、主信号および干渉信号を検波した後ベー
スバンド帯において干渉を除去するため、構成回路の動
作速度は低くなり、搬送波帯において除去する場合に比
べ実現性が高い。また、請求の範囲(2)のように、ベ
ースバンド帯において、全てディノタル的に干渉補償を
おこなうことにより、高精度化、無調整化が図られ、L
SI化に適するという利点を有する。
(Effects of the Invention) As explained above, when removing interference components that have leaked into the main signal, the operating speed of the component circuits is is lower, and the feasibility is higher than when removing in the carrier band. In addition, as claimed in claim (2), by performing interference compensation entirely in the baseband band, high accuracy and no adjustment are achieved, and L
It has the advantage of being suitable for SI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による干渉補償回路のブロック図、第2
図は本発明による干渉補償回路の別の実施例のブロック
図、第3図は本発明による干渉補償回路の更に別の実施
ダ]のブロック図、第4図は従来の干渉補償回路のブロ
ック図、第5図は誤差信号発生回路の説明図である。 (符号の説明;第1図) 1・・・主アンテナ、4・・・補助アンテナ、2,5・
・・帯域通過フィルタ、3,6・・・周波数変換器、7
・・・局部発振器、8,9.10・・・位相検波器、1
1・・・90°移相器、12・・・再生搬送波、13.
14゜15・・・高調波除去フィルタ、16.17・・
・両極性可変減衰器、18.19・・・加算器、20.
21・・・誤差信号発生回路、22・・・識別回路、2
3・・・再生クロック信号、24.25・・・EX−0
8回路、26゜27・・・積分器、100・・・復調器
、101・・・制御回路。
FIG. 1 is a block diagram of an interference compensation circuit according to the present invention, and FIG.
FIG. 3 is a block diagram of another embodiment of the interference compensation circuit according to the present invention, FIG. 3 is a block diagram of yet another embodiment of the interference compensation circuit according to the present invention, and FIG. 4 is a block diagram of a conventional interference compensation circuit. , FIG. 5 is an explanatory diagram of the error signal generation circuit. (Explanation of symbols; Fig. 1) 1... Main antenna, 4... Auxiliary antenna, 2, 5...
・・Band pass filter, 3, 6 ・・Frequency converter, 7
...Local oscillator, 8,9.10...Phase detector, 1
1... 90° phase shifter, 12... Regenerated carrier wave, 13.
14゜15...Harmonic removal filter, 16.17...
- Bipolar variable attenuator, 18.19... adder, 20.
21...Error signal generation circuit, 22...Identification circuit, 2
3...Regenerated clock signal, 24.25...EX-0
8 circuits, 26°27... Integrator, 100... Demodulator, 101... Control circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)主信号受信用の主アンテナと、 干渉信号受信手段と、 主アンテナの出力及び主信号から再生した基準搬送波を
入力として同相成分と直交成分に分解する直交位相検波
器と、 前記干渉信号受信手段に結合し、該回路からの信号に対
し、前記直交位相検波器と同じ基準搬送波により位相検
波する位相検波器と、 該位相検波器の出力を入力とする第1及び第2の両極性
可変減衰器と、 前記直交位相検波器の出力の同相成分及び直交成分と、
前記第1及び第2の両極性可変減衰器の出力との和を各
々とる第1及び第2の加算器と、該加算器の出力を各々
入力信号とする第1及び第2の誤差信号発生回路と、 前記位相検波器の出力と第1の誤差信号発生回路の出力
との積を提供する第1の乗算器と、前記位相検波器の出
力と第2の誤差信号発生回路の出力との積を提供する第
2の乗算器と、第1の乗算器の出力に結合する第1の積
分器と、第2の乗算器の出力に結合する第2の積分器と
を有し、 第1の積分器の出力により第1の両極性可変減衰器を制
御し、第2の積分器の出力により第2の両極性可変減衰
器を制御することを特徴とする干渉補償回路。
(1) a main antenna for receiving the main signal; an interference signal receiving means; a quadrature phase detector that inputs the output of the main antenna and a reference carrier wave regenerated from the main signal and decomposes it into an in-phase component and a quadrature component; and the interference signal. a phase detector that is coupled to the receiving means and performs phase detection on the signal from the circuit using the same reference carrier as the quadrature phase detector; and first and second bipolar devices that receive the output of the phase detector as inputs. a variable attenuator; an in-phase component and a quadrature component of the output of the quadrature phase detector;
first and second adders that each calculate the sum of the outputs of the first and second bipolar variable attenuators, and first and second error signal generators that use the outputs of the adders as input signals, respectively. a first multiplier for providing the product of the output of the phase detector and the output of the first error signal generation circuit; a second multiplier that provides a product; a first integrator coupled to the output of the first multiplier; and a second integrator coupled to the output of the second multiplier; An interference compensation circuit characterized in that a first bipolar variable attenuator is controlled by the output of the integrator, and a second bipolar variable attenuator is controlled by the output of the second integrator.
(2)前記第1及び第2の加算器がディジタル動作の全
加算器であり、前記第1及び第2の両極性可変減衰器が
ディジタル動作のものであり、前記位相検波器の各出力
と全加算器及び両極性可変減衰器との間に主信号から再
生したクロック信号により動作するサンプリングと量子
化のためのA/D変換器がもうけられることを特徴とす
る特許請求の範囲第1項記載の干渉補償回路。
(2) The first and second adders are digitally operated full adders, the first and second bipolar variable attenuators are digitally operated, and each output of the phase detector Claim 1, characterized in that an A/D converter for sampling and quantization is provided between the full adder and the bipolar variable attenuator, and is operated by a clock signal recovered from the main signal. Interference compensation circuit as described.
(3)主信号受信用の主アンテナと、 干渉信号受信手段と、 主アンテナの出力及び主信号から再生した基準搬送波を
入力として同相成分と直交成分に分解する第1の直交位
相検波器と、 前記干渉信号受信手段に結合し、該回路からの信号に対
し、前記第1の直交位相検波器と同じ基準搬送波により
同相成分と直交成分に分解する第2の直交位相検波器と
、 主信号より再生したクロック信号により第1及び第2の
直交位相検波器の同相成分出力及び直交成分出力をサン
プリングして量子化する第1、第2、第3及び第4のA
/D変換器と、 第3のA/D変換器の出力に結合する第1及び第2の両
極性可変減衰器と、 第4のA/D変換器の出力に結合する第3及び第4の両
極性可変減衰器と、 第1及び第3の両極性可変減衰器の出力を加算する第1
の全加算器と、 第2及び第4の両極性可変減衰器出力を加算する第2の
全加算器と、 第1の全加算器の出力と第2のA/D変換器の出力とを
加算する第3の全加算器と、 第2の全加算器の出力と第1のA/D変換器の出力とを
加算する第4の全加算器と、 前記第3及び第4の全加算器の出力と前記第3及び第4
のA/D変換器の出力との間の乗算を行なう4つの乗算
器と、 各乗算器の出力に各々結合する4つの積分器とを有し、 各積分器の出力に従って前記各両極性可変減衰器を制御
することを特徴とする干渉補償回路。
(3) a main antenna for receiving the main signal, an interference signal receiving means, a first quadrature phase detector that inputs the output of the main antenna and the reference carrier wave regenerated from the main signal and decomposes it into an in-phase component and a quadrature component; a second quadrature phase detector coupled to the interference signal receiving means and decomposing the signal from the circuit into an in-phase component and a quadrature component using the same reference carrier as the first quadrature phase detector; first, second, third, and fourth A for sampling and quantizing in-phase component outputs and quadrature component outputs of the first and second quadrature phase detectors using the reproduced clock signal;
/D converter; first and second bipolar variable attenuators coupled to the output of the third A/D converter; and third and fourth bipolar variable attenuators coupled to the output of the fourth A/D converter. a bipolar variable attenuator; and a first bipolar variable attenuator that adds the outputs of the first and third bipolar variable attenuators.
a second full adder that adds the outputs of the second and fourth bipolar variable attenuators; and an output of the first full adder and an output of the second A/D converter. a third full adder that adds together; a fourth full adder that adds the output of the second full adder and the output of the first A/D converter; and the third and fourth full adders. output of the device and the third and fourth
four multipliers that perform multiplication with the output of the A/D converter, and four integrators respectively coupled to the output of each multiplier, and each of the bipolarities is variable according to the output of each integrator. An interference compensation circuit that controls an attenuator.
JP61075556A 1985-12-23 1986-04-03 Interference compensation circuit Expired - Lifetime JPH06105899B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61075556A JPH06105899B2 (en) 1986-04-03 1986-04-03 Interference compensation circuit
US06/921,093 US4736455A (en) 1985-12-23 1986-10-21 Interference cancellation system
CA000521944A CA1257658A (en) 1985-12-23 1986-10-31 Interference cancellation system
DE8686308589T DE3685645T2 (en) 1985-12-23 1986-11-04 SYSTEM FOR COMPENSATING A RADIO INTERFERENCE SIGNAL.
EP86308589A EP0228786B1 (en) 1985-12-23 1986-11-04 Radio signal interference cancellation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61075556A JPH06105899B2 (en) 1986-04-03 1986-04-03 Interference compensation circuit

Publications (2)

Publication Number Publication Date
JPS62233943A true JPS62233943A (en) 1987-10-14
JPH06105899B2 JPH06105899B2 (en) 1994-12-21

Family

ID=13579573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61075556A Expired - Lifetime JPH06105899B2 (en) 1985-12-23 1986-04-03 Interference compensation circuit

Country Status (1)

Country Link
JP (1) JPH06105899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188146A (en) * 1988-01-22 1989-07-27 Nippon Telegr & Teleph Corp <Ntt> Interference compensating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188146A (en) * 1988-01-22 1989-07-27 Nippon Telegr & Teleph Corp <Ntt> Interference compensating circuit

Also Published As

Publication number Publication date
JPH06105899B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4731796A (en) Multi-mode radio transceiver
US3993956A (en) Digital detection system for differential phase shift keyed signals
EP0074858B1 (en) Radio receiver
US5048059A (en) Log-polar signal processing
US5268647A (en) Method and arrangement of coherently demodulating PSK signals using a feedback loop including a filter bank
US3800228A (en) Phase jitter compensator
US4750214A (en) Digital FM demodulator using delayed signal product with arctangent
JPS61105948A (en) Multi-mode radio transmitter-receiver
KR100581059B1 (en) Apparatus and method for compensating phase and gain mismatch between in-phase channel and orthogonal channel using variable loop gain in orthogonal demodulation receiving system
CA2054173C (en) Digital radio receiver having amplitude limiter and logarithmic detector
US4823361A (en) Interference immune digital modulation receiver
JP2001136223A (en) Demodulator and demodulating method
US6483883B1 (en) Automatic gain control type demodulation apparatus having single automatic gain control circuit
US5067140A (en) Conversion of analog signal into i and q digital signals with enhanced image rejection
JPS62233943A (en) Interference compensation circuit
GB1594320A (en) Method and device for measuring the difference in envelope delay at the extreme frequences of channel passband in a data transmission system
JPS62233942A (en) Interference compensation circuit
JPH0761023B2 (en) Interference compensation circuit
CA1283710C (en) Interference immune digital modulation receiver
EP2797225B1 (en) Method of and apparatus for demodulating an amplitude modulated signal
JPH01256253A (en) Data demodulation system
JPS60183858A (en) Clock synchronizing circuit of msk demodulator
JPH0583314A (en) Demodulation circuit
JPH0998198A (en) Digital signal demodulator
JPH04220843A (en) Channel balance correction method for quadrature phase detection output and channel balance automatic correction type quadrature phase detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term