JPS62145728A - Functional deposited film and manufacture of the same - Google Patents
Functional deposited film and manufacture of the sameInfo
- Publication number
- JPS62145728A JPS62145728A JP28710285A JP28710285A JPS62145728A JP S62145728 A JPS62145728 A JP S62145728A JP 28710285 A JP28710285 A JP 28710285A JP 28710285 A JP28710285 A JP 28710285A JP S62145728 A JPS62145728 A JP S62145728A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- space
- film
- deposited film
- film forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 138
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 230000004913 activation Effects 0.000 claims abstract description 39
- 239000002994 raw material Substances 0.000 claims abstract description 17
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical group 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 23
- 230000015572 biosynthetic process Effects 0.000 abstract description 20
- 239000004065 semiconductor Substances 0.000 abstract description 19
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 5
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract description 5
- 229940126062 Compound A Drugs 0.000 abstract description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 abstract description 3
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 137
- 230000005281 excited state Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- -1 polycyclic hydrocarbons Chemical class 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002070 alkenylidene group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910000074 antimony hydride Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical compound [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 1
- RXJKFRMDXUJTEX-UHFFFAOYSA-N triethylphosphine Chemical compound CCP(CC)CC RXJKFRMDXUJTEX-UHFFFAOYSA-N 0.000 description 1
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Electrodes Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業」−の利用分野〉
本発明は、機能性膜、殊に半導体デバイス等の用途に有
用な非晶質乃至多結晶性の所謂非単結晶性の機能性堆積
膜およびその製造法に関する。Detailed Description of the Invention <Field of Application in Industry> The present invention is directed to a functional film, particularly a so-called non-single-crystalline functional film, which is amorphous to polycrystalline and is useful for applications such as semiconductor devices. Concerning membranes and their manufacturing methods.
〈従来技術〉
堆積膜の形成には、真空蒸着法、プラズマCVD法、熱
CVD法、光CVD法1反応性スパッタリング法、イオ
ンブレーティング法などが試みられており、一般的には
、プラズマCVD法が広く用いられ、企業化されている
。<Prior art> Vacuum deposition method, plasma CVD method, thermal CVD method, photo CVD method 1 reactive sputtering method, ion blating method, etc. have been tried for forming the deposited film, and generally, plasma CVD method is used. Laws are widely used and corporatized.
百年ら、これ等の堆積膜形成法によって得られる堆積膜
はより高度の機能が求められる電子デバイスへの適用が
求められていることから電気的、光学的特性及び、繰返
し使用での疲労特性あるいは使用環境特性、更には均一
性。Since the deposited films obtained by these deposited film formation methods are required to be applied to electronic devices that require higher functionality, Hyakunen et al. Usage environment characteristics and even uniformity.
再現性を含めて生産性、量産性の点において更に総合的
な特性の向上を図る余地がある。There is room for further improvement in overall characteristics in terms of productivity and mass production, including reproducibility.
ところで、従来から一般化されているプラズマCVD法
による堆積膜の形成に於いての反応プロセスは、従来の
所謂、熱CVD法に比較してかなり複雑であり、その反
応機構も不明な点が少なくなかった。又、その堆積膜の
形成パラメーターも多く(例えば、基体温度、導入ガス
の流量と比、形成時の圧力、高周波電力、電極構造9反
応容器の構造、排気速度、プラズマ発生方式など)これ
らの多くのパラメーターの組み合せによるため、時には
プラズマが不安定な状態になり、形成された堆積膜に著
しい悪影響を与えることが少なくなかった。そのうえ、
装置特有のパラメーターを装置ごとに選定しなければな
らず、したがって製造条件を一般化することがむずかし
いというのが実状であった。By the way, the reaction process in forming a deposited film by the conventionally popular plasma CVD method is considerably more complicated than that of the conventional so-called thermal CVD method, and there are many unknown points about the reaction mechanism. There wasn't. In addition, there are many formation parameters for the deposited film (e.g., substrate temperature, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure 9 reaction vessel structure, pumping speed, plasma generation method, etc.). Due to the combination of these parameters, the plasma sometimes becomes unstable, which often has a significant negative effect on the deposited film. Moreover,
The reality is that parameters unique to each device must be selected for each device, making it difficult to generalize manufacturing conditions.
その中でも1例えばアモルファスシリコン膜として、電
気的、光学的特性が各用途を十分に満足させ得るものを
発現させることが出来るという点で、現状ではプラズマ
CVD法によって形成することが最良とされている。Among them, for example, it is currently considered best to form an amorphous silicon film using the plasma CVD method in that it can develop electrical and optical properties that fully satisfy each application. .
百年ら、堆積膜の応用用途によっては、大面積化、膜厚
の均一性、膜品質の均一性を十分に満足させて、再現性
のある量産化を図らねばならないため、プラズマCVD
法による堆積IQの形成においては、量産装置に多大な
設備投資が必要となり、またその量産の為の管理項目も
複雑になり、管理許容幅も狭くなり、装置の調整も微妙
であることから、これらのことが、今後改善すべき問題
点として指摘されている。According to Hyakunen et al., depending on the application of the deposited film, it is necessary to fully satisfy the requirements of large area, uniformity of film thickness, and uniformity of film quality, and mass production with reproducibility.
Formation of deposition IQ by the method requires a large capital investment in mass production equipment, the control items for mass production are complicated, the control tolerance is narrow, and the adjustment of the equipment is delicate. These have been pointed out as problems that should be improved in the future.
さらに堆積膜の種類によっては、プラズマCVD法は必
ずしも適当でないこと、加えてプラズマCVD法の欠点
である膜へのプラズマダメージの影響が要求される膜特
性に現われて所望する機能を果たさない様になること等
が挙げられる。殊に高機能性の電子デバイス用の堆積膜
の作成に於ては上記のプラズマダメージの影響は、スト
レートに膜特性に現われるために出来る限り回避されな
ければならない点である。Furthermore, depending on the type of deposited film, the plasma CVD method is not necessarily suitable.In addition, the drawback of the plasma CVD method is the effect of plasma damage on the film, which may affect the required film properties and prevent it from fulfilling the desired function. Examples include becoming. Particularly in the production of deposited films for highly functional electronic devices, the effects of the plasma damage mentioned above directly appear on the film properties and must be avoided as much as possible.
他方、通常のCVD法による従来の技術では、高温を必
要とすると共に、企業的なレベルでは必ずしも満足する
様な特性を有する堆積膜が得られていなかった。On the other hand, the conventional technique using the normal CVD method requires high temperatures and has not been able to provide a deposited film with characteristics that are necessarily satisfactory at a commercial level.
これ等の解決されるべき問題点は、殊更、周期律表第1
I族乃至第■族の元素によって構成される機能性堆積膜
の作成の場合に憂慮される。These problems to be solved are particularly important in the first part of the periodic table.
This is a concern when creating a functional deposited film composed of Group I to Group II elements.
−上述の如く、機能性膜の形成に於いて、その実用可能
な特性、均一性を維持させながら低コストな装置で量産
化できる形成方法を開発することが切望されている。- As mentioned above, in forming a functional film, there is a strong desire to develop a method of forming a functional film that can be mass-produced using low-cost equipment while maintaining its practically usable characteristics and uniformity.
く目的〉
本発明は、上述した従来の堆積膜形成法、殊にプラズマ
CVD法の欠点を除去すると回持に、従来の形成方法に
よらない新規な堆積膜形成法を提供するものである。OBJECTIVES> The present invention provides a novel method for forming a deposited film that does not rely on conventional methods, while eliminating the drawbacks of the above-mentioned conventional methods for forming a deposited film, particularly the plasma CVD method.
本発明の]]的は、機能性!!@の特性を容易に管理化
出来、少なくとも従来法で得た良質の膜の特性を保持す
ると共に、堆積速度の向l−,を図りながら、膜形成条
件の管理の簡素化、膜の量産化を容易に達成させること
の出来る堆積膜及びその形成法を提供することである。The purpose of the present invention is functionality! ! It is possible to easily manage the properties of the film, maintain at least the properties of the high-quality film obtained by the conventional method, and improve the deposition rate while simplifying the management of the film formation conditions and mass producing the film. An object of the present invention is to provide a deposited film and a method for forming the same that can easily achieve the following.
く構成〉
本発明の機能性堆積膜は機能性の堆積膜の形成用の原料
となる下記の一般式(A)で表わされる化合物(A)と
、該化合物(A)と化学反応する活性種とを成膜空間に
導入するに際して、前記活性種は、前記成膜空間に連絡
する輸送空間(A)を通じ前記化合物(A)は、前記輸
送空間(A)内に設けられ前記成膜空間に連絡する輸送
空間(B)を通じて夫々前記成膜空間に導入してこれ等
を化学反応させることにより形成された事を特徴とする
。Structure> The functional deposited film of the present invention comprises a compound (A) represented by the following general formula (A), which is a raw material for forming the functional deposited film, and an active species that chemically reacts with the compound (A). When introducing the compound (A) into the film forming space, the active species is introduced into the film forming space through a transport space (A) communicating with the film forming space, and the compound (A) is provided in the transport space (A) and into the film forming space. It is characterized in that it is formed by being introduced into the film forming space through the communicating transport space (B) and causing a chemical reaction therebetween.
本発明の機能性堆積膜の製造法は、機能性堆積膜の形成
に利用yれる用な原料となる下記の一般式(A)及び(
B)で夫々表わせる化合物(A)及び化合物(B)と、
これ等の化合物(A)及び化合物(B)の少なくとも一
方と化学反応する活性種とを成膜空間に導入して、該成
膜空間内に配されている基体上に機能性堆積膜を形成す
る機能性堆積膜の製造法に於て、前記活性種は、前記成
膜空間に下流側で連絡する輸送空間(A)を通じ、前記
化合物(A)及び化合物(B)は、前記輸送空間(A)
内に設けられ前記成膜空間に連絡する輸送空間CB)を
通じて夫々、前記成膜空間内に導入することを特徴とす
る。The method for producing a functional deposited film of the present invention uses the following general formula (A) and (
Compound (A) and compound (B) respectively represented by B),
An active species that chemically reacts with at least one of these compounds (A) and (B) is introduced into the film forming space to form a functional deposited film on the substrate disposed within the film forming space. In the method for producing a functional deposited film, the active species passes through a transport space (A) that communicates with the film formation space on the downstream side, and the compound (A) and compound (B) pass through the transport space ( A)
The film is introduced into the film forming space through a transport space CB provided therein and communicating with the film forming space.
Rn M m −−−−−−−−−−−−−(A )A
a B b −−−−−−−−−−−−−−(B )
但し、mはHの価数に等しいか又は整数倍の正整数、n
はMの価数に等しいか又は整数倍の正整数、Mは周期律
表の第■族に属する元素、Rは水素(H)、ハロゲン(
X)、炭化水素基を夫々示す。Rn M m ---------------(A)A
a B b ----------------(B)
However, m is a positive integer equal to or an integral multiple of the valence of H, n
is a positive integer that is equal to or an integral multiple of the valence of M, M is an element belonging to Group Ⅰ of the periodic table, R is hydrogen (H), halogen (
X) and each represent a hydrocarbon group.
aはBの価数に等しいかまたは整数倍の正整数、bはA
の価数に等しいかまたは整数倍の正整数、Aは周期律表
の第V族に属する元素、Bは水素(H)、ハロゲン(X
)、炭化水素基を夫々示す。a is a positive integer equal to or an integral multiple of the valence of B, b is A
A is an element belonging to Group V of the periodic table, B is hydrogen (H), halogen (X
), each represents a hydrocarbon group.
〈発明の具体的説明〉
本発明に於いては、活性種は輸送空間(A)を通じて、
又、化合物(A)及び化合物(B)は輸送空間(B)を
通じて夫々成膜空間に導入されるが、輸送空間(B)の
輸送空間(A)内での開放位置を種々変化させる事によ
って、化合物(A)および化合物(B)の輸送空間(A
)内での滞留時間を適宜設定することが出来る。この場
合、化合物(A)および化合物(B)の輸送空間(B)
に於ける輸送速度も前記の滞留時間を制御するための管
理パラメーターの1つとして選択することが出来る。<Specific description of the invention> In the present invention, active species are transported through the transport space (A),
Moreover, the compound (A) and the compound (B) are introduced into the film forming space through the transport space (B), but by varying the opening position of the transport space (B) within the transport space (A), , transport space for compound (A) and compound (B) (A
) can be set as appropriate. In this case, the transport space (B) for compound (A) and compound (B)
The transport speed at the pump can also be selected as one of the control parameters for controlling the residence time.
本発明に於いては、輸送空間(A)、及び輸送空間(B
)の成膜空間への開放位置は、活性種や、又、化合物(
A)及び化合物(B)を必要に応じて励起する場合には
励起状態の化合物(A)及び化合物(B)の寿命に応じ
て適宜法められる。In the present invention, the transportation space (A) and the transportation space (B
) is open to the film forming space, where active species or compounds (
When A) and compound (B) are excited as necessary, the method is appropriately determined depending on the lifetimes of compound (A) and compound (B) in the excited state.
本発明の場合、化合物(A)及び化合物(B)としては
、一般に成膜空間まで基底状態のまま輸送する一方、使
用される活性種としては、比較的短寿命のものが多いの
で、輸送空間(A)の成膜空間への開放位置は、成膜空
間に近い方が好ましい。In the case of the present invention, while the compound (A) and compound (B) are generally transported in their ground state to the film forming space, the active species used are often relatively short-lived, so the transport space is The opening position to the film forming space (A) is preferably closer to the film forming space.
輸送空間(A)の成膜空間への開放口部及び輸送空間(
B)の輸送空間(A)への開放口部はノズル状、或はオ
リフィス状とされているのが望ましい。殊にノズル状と
されている場合にはノズル開口の成膜空間内に配されて
いる基体の成膜表面近傍に位置付けることによって、成
膜効率と原料消費実効効率を著しく上げることが出来る
。The opening of the transport space (A) to the film forming space and the transport space (
It is desirable that the opening of B) into the transport space (A) is shaped like a nozzle or an orifice. In particular, in the case of a nozzle-shaped nozzle, by positioning it near the film-forming surface of the substrate disposed within the film-forming space of the nozzle opening, the film-forming efficiency and the effective raw material consumption efficiency can be significantly increased.
本発明に於いては、活性種は輸送空間(A)にその1−
流で連絡する活性化空間で生成され、化合物(A)及び
化合物(B)は、必要に応じて輸送空間(B)にその上
流で連絡する励起空間で励起されるが、これ等に本発明
は限定されるものではなく、例えば輸送空間(A)は活
性化空間を、輸送空間(B)は励起空間を夫々兼用する
ことも出来る。In the present invention, the active species is transported into the transport space (A) in its 1-
Compound (A) and compound (B) are generated in an activation space that communicates with the transport space (B) as needed, and are excited in an excitation space that communicates with the transport space (B) upstream thereof. are not limited; for example, the transport space (A) can also be used as an activation space, and the transport space (B) can also be used as an excitation space.
殊に、両輸送空間が、夫々活性化空間、励起空間を兼用
する場合には、活性化手段と励起手段とを別々に設ける
ことなく、同一の手段で兼用することも出来る。In particular, when both transport spaces are used as activation space and excitation space, respectively, the same means can be used as activation means and excitation means without providing them separately.
例えば、輸送空間(A)と輸送空間(B)とを二重ガラ
ス管構造とし、外側ガラス管の周囲ニRF 7’ラズマ
装置又はマイクロ波プラズマ装置を設けることによって
、輸送方向に対して、同位置で活性種と励起状態の化合
物(A)、Uび化合物(B)とを同時に生成することが
出来る。For example, by making the transport space (A) and the transport space (B) have a double glass tube structure, and providing an RF 7' lasma device or a microwave plasma device around the outer glass tube, the transport space (A) and the transport space (B) can be constructed in the same manner in the transport direction. Active species and excited state compounds (A) and U-compounds (B) can be generated at the same time.
本発明に於いては輸送空間(A)と輸送空間(B)との
開放口部は成膜空間の内部に位置しているのが好ましい
。In the present invention, it is preferable that the openings of the transport space (A) and the transport space (B) are located inside the film forming space.
本発明に於ぞは、輸送空間(A)と、該輸送空間(A)
の内部に設けた輸送空間(B)とから成る二重空間構造
体は成膜装置に、1つに限らず、複数設けることによっ
て、夫々の二重空間構造体に導入する活性種及び化合物
(A)及び化合物(B)の種類を変えることで、異なる
特性を有する堆積膜の夫々を成膜空間に配されている基
体の夫々の上に形成することが出来る。In the present invention, the transportation space (A) and the transportation space (A)
By providing not only one but a plurality of double space structures in the film forming apparatus, the active species and compounds (B) to be introduced into each double space structure may be By changing the types of compound A) and compound (B), deposited films having different characteristics can be formed on each of the substrates disposed in the film forming space.
又、輸送空間(B)は、化合物(A)及び化合物(B)
を混合して輸送する場合には夫々の化合物を輸送する同
一空間とされ、別々に輸送する場合には化合物(A)及
び化合物(B)に対応して分割された空間とされても良
い。Moreover, the transport space (B) is a compound (A) and a compound (B).
When the compounds are mixed and transported, the same space may be used to transport each compound, and when they are transported separately, the space may be divided into spaces corresponding to the compounds (A) and (B).
更には、本発明の方法によれば、従来のプラズマCVD
法と異なり、成膜空間と活性化空間、必要に応じて設け
られる励起空間とが夫々分離されている為、成膜空間の
内壁からの汚染物や成膜空間内に残留する残留ガスの影
響を実質的になくすことが出来るという特徴がある。Furthermore, according to the method of the present invention, conventional plasma CVD
Unlike the conventional method, the deposition space, the activation space, and the excitation space provided as necessary are separated, so the influence of contaminants from the inner walls of the deposition space and residual gas remaining in the deposition space is reduced. It has the characteristic of being able to virtually eliminate the
尚、発明での「活性種」とは、前記化合物(A)及び化
合物(B)の少なくとも一方と化学的相互作用を起して
例えば化合物(A)及び化合物(B)の少なくとも一方
にエネルギーを与えたり、化合物(A)又は化合物(B
)と化学的に反応したりして、化合物(A)又は化合物
(B)を堆積膜を形成することが出来る状態にする役目
を荷うものを云う。従って、活性種としては、形成され
る堆積膜を構成する構成要素に成る構成要素を含んでい
ても良く、或はその様な構成要素を含んでいなくとも良
い。In addition, the "active species" in the invention refers to a species that chemically interacts with at least one of the compound (A) and the compound (B) to impart energy to at least one of the compound (A) and the compound (B). or give compound (A) or compound (B
) is responsible for chemically reacting with the compound (A) or compound (B) to form a deposited film. Therefore, the active species may include constituent elements constituting the deposited film to be formed, or may not include such constituent elements.
本発明に於いて使用される前記一般式(A)及び一般式
(B)で夫々示される化合物(A)及び化合物(B)と
しては、成膜される基体が存在する空間に於いて、前記
の活性種と分子的衝突を起して化学反応を起し、基体上
に形成される堆積膜の形成に寄与する化学種を自発的に
発生するものを選択するのがより望ましい。The compound (A) and the compound (B) represented by the general formula (A) and general formula (B), respectively, used in the present invention may be used in the space where the substrate on which the film is formed exists. It is more desirable to select a material that causes molecular collision with the active species of the substrate to cause a chemical reaction and spontaneously generates chemical species that contribute to the formation of the deposited film formed on the substrate.
しかしながら、通常の存在状態では、前記の活性種とは
不活性であったり、或は、それ程の活性々がない場合に
は、化合物(A)又は化合物(B)に該化合物(A)又
は化合物(B)が前記一般式(A)中のM又は前記一般
式(B)中のAを完全解離しない程度の強さの励起エネ
ルギーを成膜前又は成膜時に与えて、化合物(A)又は
化合物(B)を活性種と化学反応し得る励起状態にする
ことが必要であり、又、その様な励起状態にし得る化合
物を、本発明の方法に使用される化合物(A)及び化合
物(B)の1種として採用するものである。However, in the case where the active species is inert or does not have such activity in its normal state of existence, compound (A) or compound (B) does not contain the active species. The compound (A) or It is necessary to bring the compound (B) into an excited state where it can chemically react with the active species, and the compound that can be put into such an excited state is used as the compound (A) and compound (B) used in the method of the present invention. ) is adopted as one of the types.
尚1本発明に於いては、化合物(A)又は化合物(B)
が前記の励起状態になっているものを特に示す場合には
以後[励起種(A)又は化合物(B)」と呼称すること
にする。Note that in the present invention, compound (A) or compound (B)
When specifically indicating a substance in which is in the above-mentioned excited state, it will be referred to as [excited species (A) or compound (B)] hereinafter.
本発明では、化合物(A)又は化合物(B)を必要に応
じて予め励起して励起状態の化合物(A)又は励起状態
の化合物(B)を生成する場合には、成膜空間に導入さ
れる輸送空間(B)からの励起状態の化合物(A)又は
励起状態の化合物(B)が、その寿命が好ましくは0.
01秒重重1−1より好ましくは0.1秒以上、最適に
は1秒置−1−あって長寿命であるのが望ましいが、い
ずれにしても所望に従って選択されて使用され、この化
合物(A)及び化合物(B)の構成要素が夫々成膜空間
で形成される堆積膜を構成する主成分を構成するものと
なる。In the present invention, when compound (A) or compound (B) is excited in advance as necessary to generate excited state compound (A) or excited state compound (B), the The excited-state compound (A) or the excited-state compound (B) from the transport space (B) is preferably such that its lifetime is 0.
It is desirable to have a long life, preferably 0.1 seconds or more, optimally 1 second per second, but in any case, it is selected and used as desired, and this compound ( The constituent elements of A) and compound (B) constitute the main components constituting the deposited film formed in the film forming space, respectively.
活性種は成膜空間で堆積膜を形成する際、同時に輸送空
間(B)から成膜空間に導入され、形成される堆積膜の
主構成成分となる構成要素を含む前記化合物(A)及び
化合物(B)の少なくとも一方と化学的に相V作用する
。その結果、所望の基板上に所望の堆積膜が容易に形成
される。本発明の方法によれば、成膜空間内でプラズマ
を生起させないで形成される堆積膜は、エツチング作用
、或はその他の例えば異常放電作用等による悪影響を受
ける事はない。又、本発明によれば成膜空間の雰囲気温
度、基体温度を所望に従って任意に制御することにより
。When forming a deposited film in the film-forming space, the active species are simultaneously introduced into the film-forming space from the transport space (B), and the compound (A) and the compound containing the constituent elements that will be the main constituents of the deposited film to be formed are introduced into the film-forming space. It chemically interacts with at least one of (B) in phase V. As a result, a desired deposited film can be easily formed on a desired substrate. According to the method of the present invention, the deposited film that is formed without generating plasma in the film-forming space is not adversely affected by etching action or other effects such as abnormal discharge action. Further, according to the present invention, the atmospheric temperature in the film forming space and the substrate temperature are arbitrarily controlled as desired.
より安定したCVD法とすることができる。A more stable CVD method can be achieved.
本発明の方法が従来のCVD法と違う点の1つは、あら
かじめ成膜空間とは異なる空間「活性化空間(C)」に
於いて活性化された活性種を使うことである。この事に
より、従来のCVD法に比べて堆積速度を飛躍的に伸ば
すことが出来ると同時に品質の高い膜を得ることが出来
、加えて堆積膜形成の際の基体温度も一層の低温化を図
ることが可能になり、膜品質の安定した堆積膜を工業的
に大量に、しかも低コストで提供できる。One of the differences between the method of the present invention and the conventional CVD method is that active species activated in advance in an "activation space (C)" different from the film forming space are used. This makes it possible to dramatically increase the deposition rate compared to conventional CVD methods, and at the same time to obtain a high-quality film.In addition, the substrate temperature during deposition film formation can be further reduced. This makes it possible to provide deposited films with stable film quality in large quantities industrially and at low cost.
本発明に於いて活性化空間(A)で生成される活性種は
放電、光、熱等のエネルギーで或いはそれ等の併用によ
って生成されるばかりではなく、触媒等との接触、ある
いは添加により生成されてもよい。In the present invention, the active species generated in the activation space (A) are not only generated by energy such as electric discharge, light, heat, etc., or by a combination thereof, but also by contact with or addition of a catalyst, etc. may be done.
本発明に於いて、前記一般式(A)で示される化合物(
A)RnMmとして、有効に使用されるものとしては以
下の化合物を挙げることが出来る。In the present invention, the compound represented by the general formula (A) (
A) The following compounds can be mentioned as compounds that can be effectively used as RnMm.
本発明に於いて、前記一般式(A)及び化合物(B)で
夫々示される化合物(A)RnMm及び(B)化合物(
B)AaBbとして、有効に使用されるものとしては以
下の化合物を挙げることが出来る。In the present invention, compound (A) RnMm and (B) compound (
B) The following compounds can be mentioned as compounds that can be effectively used as AaBb.
即ち、Mとして周期律表の第■族に属する元素、具体的
にはB、Au、Ga、In、Tflの第■族Bに属する
元素rAJとして周期率表の第V族に属する元素、具体
的には、N、P。That is, as M, an element belonging to Group Ⅰ of the periodic table, specifically, an element belonging to Group Ⅲ B of B, Au, Ga, In, and Tfl, rAJ, an element belonging to Group V of the periodic table, specifically. Specifically, N, P.
As、Sb、Biの第V族Bに属する元素を有する化合
物を夫々、化合物(A)及び化合物(B)として挙げる
ことが出来る。Compounds containing elements belonging to Group V B, such as As, Sb, and Bi, can be cited as Compound (A) and Compound (B), respectively.
rRJ及びrBJ としては、直鎖状及び側鎖状の飽和
炭化水素や不飽和炭化水素から誘導される一価、二価及
び三価の炭化水素基、或は、飽和又は不飽和の単環状の
及び多環状の炭化水素より誘導される一価、二価及び三
価の炭化水素基を有する化合物を挙げることが出来る。rRJ and rBJ include monovalent, divalent and trivalent hydrocarbon groups derived from linear and side chain saturated hydrocarbons and unsaturated hydrocarbons, or saturated or unsaturated monocyclic hydrocarbon groups. and compounds having monovalent, divalent, and trivalent hydrocarbon groups derived from polycyclic hydrocarbons.
不飽和の炭化水素基としては、炭素・炭素の結合は単一
種の結合だけではなく、−重結合。As an unsaturated hydrocarbon group, the carbon-carbon bond is not only a single type of bond, but also a double bond.
二重結合、及び三重結合の中の少なくとも2種の結合を
有しているものも本発明の目的の達成に違うものであれ
ば有効に採用され得る。Those having at least two types of double bonds and triple bonds can also be effectively adopted as long as they are different from each other in achieving the object of the present invention.
又、二重結合を複数有する不飽和炭化水素基の場合、非
集積二重結合であっても集積二重結合であっても差支え
ない。Further, in the case of an unsaturated hydrocarbon group having a plurality of double bonds, it does not matter whether the double bonds are non-integrated double bonds or integrated double bonds.
非環状炭化水素基としてはアルキル基、アルケニル基、
アルキニル基、アルキリデン基。Examples of acyclic hydrocarbon groups include alkyl groups, alkenyl groups,
Alkynyl group, alkylidene group.
アルケニリデン基、アルキニリデン基、アルキリジン基
、アルケニリジン基、アルキニリジン基等を好ましいも
のとして挙げることが出来、殊に炭素数としては、好ま
しくは1−10より好ましくは炭素数1〜7、最適には
炭素数1〜5のものが望ましい。Preferred examples include an alkenylidene group, an alkynylidene group, an alkylidine group, an alkenylidine group, an alkynylidine group, etc. In particular, the number of carbon atoms is preferably 1 to 10, more preferably 1 to 7 carbon atoms, and most preferably carbon number 1 to 5 is desirable.
本発明に於いては、有効に使用される化合物(A)及び
化合物(B)として、標準状態で気体状であるか或は使
用環境下に於いて容易に気化し得るものが選択される様
に」1記に列挙したrRJと「M」及びrAJとrBJ
との選択に於いて、適宜所望に従って、r R,Jとr
MJ及びrAJ と「B」との組合せの選択がなされる
。In the present invention, as the compound (A) and compound (B) to be effectively used, compounds that are gaseous in a standard state or that can be easily vaporized in the usage environment are selected. rRJ and “M” and rAJ and rBJ listed in 1.
In the selection of r R, J and r
A combination of MJ and rAJ and "B" is selected.
本発明に於いて、化合物(A)として、有効に使用され
る具体的なものとしてはBeMe3゜AM?Me6.G
aMe3.InMe3゜TiMe3 、BEt3 、A
、uEt6゜GaEt3.InEt3.T、1LEt3
.BX3゜B2H6、Ga2H6等を、化合物(B)と
して、有効に使用される具体的なものとしては、Me3
N、Me3P、Me3As、Me3S。In the present invention, specific examples of compounds that can be effectively used as the compound (A) include BeMe3°AM? Me6. G
aMe3. InMe3゜TiMe3, BEt3, A
, uEt6°GaEt3. InEt3. T, 1LEt3
.. BX3゜B2H6, Ga2H6, etc. are effectively used as compounds (B), such as Me3
N, Me3P, Me3As, Me3S.
Me3Bi 、Et3N、Et3P、Et3As。Me3Bi, Et3N, Et3P, Et3As.
Et3Sb、Et3Bi 、NX3.PX3゜Asx3
、NH3、PH3、AsH3。Et3Sb, Et3Bi, NX3. PX3゜Asx3
, NH3, PH3, AsH3.
SbH3等を挙げることが出来る。Examples include SbH3.
上記に於いて、Xはハロゲン(F 、 CI 。In the above, X is halogen (F, CI).
Br、I)、Meはメチル基、Etはエチル基を示す。Br, I), Me represent a methyl group, and Et represents an ethyl group.
本発明で使用される活性種の寿命は、化合物(A)又は
/及びCB)との反応性を考慮すれば短い方が良く、成
膜時の取扱い易さ及び成膜空間への輸送等を考慮すれば
長い方が良い。又、活性種の寿命は、成膜空間の内圧に
も依存する。The lifetime of the active species used in the present invention is preferably short in consideration of reactivity with compound (A) and/or CB), and ease of handling during film formation and transport to the film formation space. Considering this, the longer the better. Furthermore, the lifetime of the active species also depends on the internal pressure of the film forming space.
従って使用される活性種は、所望する特性を有する機能
性膜が生産効率も加味して効果的に得られるように選択
されて決定される他の成膜条件との関連性に於いて、適
当な寿命を有する活性種が適宜選択されて使用される。Therefore, the active species to be used are selected and determined in such a way that a functional film having the desired properties can be effectively obtained, taking production efficiency into account. Active species having a long lifespan are appropriately selected and used.
本発明に於いて使用される活性種は、その寿命として、
上記の点を鑑みて適宜選択された寿命を有する活性種が
具体的に使用される化合物(A)との化学的親和性の適
合範囲内の中より所望に従って適宜選択されるが、好ま
しくは、その寿命としては、本発明の適合範囲の環境下
に於いてI X I O−4秒以上、より好ましくはt
xto−:1秒以上、最適にはl X l O−2秒以
上であるのが望ましい。The active species used in the present invention has a lifespan of:
The active species having a lifespan appropriately selected in view of the above points is appropriately selected as desired from within the compatible range of chemical affinity with the compound (A) specifically used, but preferably, Its lifespan is IXI O-4 seconds or more, more preferably t, in an environment within the scope of the present invention.
xto-: 1 second or more, most preferably lXlO-2 seconds or more.
本発明に於いて使用される活性種は、化合物(A)又は
/及び(B)との化学反応が連鎖的に起こる場合には所
謂開始剤(initiat e r)としての働きを最
小限すれば良いことから、成膜空間に導入される導入量
としては、化学反応が連鎖的に効率良く起こる程度の縫
が確保されれば良い。The active species used in the present invention should minimize its function as a so-called initiator when the chemical reaction with compound (A) or/and (B) occurs in a chain reaction. From a good point of view, the amount introduced into the film forming space should be sufficient to ensure that the chemical reaction occurs efficiently in a chain reaction.
本発明に於いて使用される活性種は成膜空間(A)で堆
積膜を形成する最、同時に成膜空間(A)に導入され、
形成される堆積膜の主構成成分となる構成要素を含む前
記化合物(A)及び化合物(B)又は/及び該化合物(
A)の励起種(A)又は/及び化合物(B)の励起種と
化学的に相互作用する。その結果所望の基体上に所望の
機能性を有するm−v族化合物堆積膜が容易に形成され
る。The active species used in the present invention are introduced into the film forming space (A) at the same time as forming the deposited film in the film forming space (A),
The compound (A) and compound (B) or/and the compound (
Chemically interacts with the excited species (A) of A) or/and the excited species of compound (B). As a result, an m-v group compound deposited film having desired functionality can be easily formed on a desired substrate.
本発明によれば成膜空間(A)の雰囲気温度、基体温度
を所望に従って任意に制御することにより、より安定し
たCVD法とする事ができる。According to the present invention, a more stable CVD method can be achieved by arbitrarily controlling the atmospheric temperature and substrate temperature of the film forming space (A) as desired.
本発明に於て、活性化空間(C)に導入され、活性種を
生成させる原料としては、好ましくは気体上のまたは容
易に気化し得る物質で、水素ラジカルを生成する物質を
挙げることが出来、具体的にはH2,D2.HD等が挙
げられ、その他、He、Ar等の稀ガスも挙げることが
出来る。In the present invention, the raw material introduced into the activation space (C) to generate active species is preferably a gaseous or easily vaporizable substance, which can generate hydrogen radicals. , specifically H2, D2. Examples include HD, and rare gases such as He and Ar may also be used.
]−述したものに、活性化空間(C)で熱、光、放電な
どの活性化エネルギーを加えることにより、活性種が生
成される。この活性種を成膜空間(A)へ導入する。こ
の際、活性種の寿命が望ましくはI X ]、 O−4
秒以」二重重ることが必要で、その様な寿命を有するこ
とで堆積効率及び和積速度の上昇を促進させ、成膜空間
(A)に導入される化合物(A)及び化合物(B)との
化学反応の効率を増す。] - Activated species are generated by adding activation energy such as heat, light, or electric discharge to the above-mentioned material in the activation space (C). This active species is introduced into the film forming space (A). At this time, the lifespan of the active species is desirably IX], O-4
The compound (A) and compound (B) introduced into the film forming space (A) are increases the efficiency of chemical reactions with
活性化空間(C)に於いて活性種生成物質に活性化作用
を起す活性化エネルギーとしては、旦体的には抵抗加熱
、赤外線加熱等による熱エネルギー、レーザー光、水銀
ランプ光。Activation energy that causes an activation effect on the active species generating substance in the activation space (C) includes thermal energy such as resistance heating, infrared heating, laser light, and mercury lamp light.
ハロゲンラブ光等の光エネルギー、マイクロ波。Light energy such as halogen light, microwave.
RF、低周波、DC等の放電を利用する電気エネルギー
等々を挙げることが出来、これ等の活性化エネルギーは
活性空間(C)に於いて単独で活性種生成物質に作用さ
せても良く。Examples include electric energy using discharge such as RF, low frequency, and DC, and these activation energies may act alone on the active species generating substance in the active space (C).
また、2種以上を併用して作用させても良い。Further, two or more types may be used in combination.
成膜空間(A)に導入される化合物(A)と化合物(B
)及び活性種としては、そのままでも分子レベル的相互
衝突によって化学反応を生起し、所望の基体」二に機能
成膜を堆積させることが出来るものを前記に列挙したも
のの中より夫々選釈することが出来るが、化合物(A)
。Compound (A) and compound (B) introduced into the film forming space (A)
) and active species, those listed above should be selected from those listed above, which can cause a chemical reaction by mutual collision at the molecular level and deposit a functional film on the desired substrate. However, compound (A)
.
化合物(B)及び活性種の夫々の選択の仕方によって、
前記の化学反応性に乏しい場合、或いは一層効果的に化
学反応を行わせて、効率良く堆積膜を基体−トに生成す
る場合には、成膜空間(A)に於いて、化合物(A)、
化合物(B)又は/及び活性種に作用する反応促進エネ
ルギー、例えば前述の活性化空間(C)に於いて使用さ
れる活性化エネルギーを使用しても差支えないものであ
る。又は成膜空間(A)に導入する前に化合物(A)又
は化合物(B)を他の活性化空間(D)に於いて、化合
物(A)又は化合物(B)を前述した励起状態にする為
に励起エネルギーを作用させても良い。Depending on the selection of the compound (B) and the active species,
When the chemical reactivity is poor, or when a chemical reaction is to be carried out more effectively to efficiently form a deposited film on the substrate, the compound (A) is added in the film forming space (A). ,
There is no problem in using the reaction promoting energy that acts on the compound (B) and/or the active species, such as the activation energy used in the above-mentioned activation space (C). Or, before introducing the compound (A) or compound (B) into the film forming space (A), bring the compound (A) or compound (B) into the above-mentioned excited state in another activation space (D). Therefore, excitation energy may be applied.
本発明に於て成膜空間(A)に導入される化合物(A)
と化合物(B)の総量と活性化空間(C)から導入され
る活性種の量の割合は、堆積条件、化合物(A)、化合
物(B)及び活性種の種類、所望される機能成膜の特性
などで適宜所望に従って決められるが好ましくは100
0:1〜1 : 10 (導入流量比)が適当であり、
より好ましくは500:1〜l:5とされるのが望まし
い。Compound (A) introduced into the film forming space (A) in the present invention
The ratio of the total amount of compound (B) and the amount of active species introduced from the activation space (C) depends on the deposition conditions, the types of compound (A), compound (B), and active species, and the desired functional film formation. Although it can be determined as desired depending on the characteristics of
0:1 to 1:10 (introduction flow rate ratio) is appropriate;
More preferably, the ratio is 500:1 to 1:5.
活性種が化合物(A)または/および化合物(B)と連
鎖的化学反応を起さない場合には、上記の導入量の割合
は、好ましくはlO:1〜1:10、より好ましくは4
:l〜2:3とされるのが望ましい。When the active species does not cause a chain chemical reaction with compound (A) and/or compound (B), the above introduction amount ratio is preferably lO:1 to 1:10, more preferably 4
:1 to 2:3 is desirable.
成膜時に於る成膜空間(A)の内圧としては、化合物(
A)、化合物(B)及び活性種の選択される種類及び堆
積条件等に従って適宜決定されるが、好ましくはlX1
0−2〜5X103Pa。The internal pressure of the film-forming space (A) during film-forming is as follows:
A), the compound (B) and the active species are selected as appropriate depending on the type and deposition conditions, but preferably lX1
0-2~5X103Pa.
より好ましくは5Xl(12〜1X103Pa 。More preferably 5Xl (12 to 1X103Pa).
最適にはtxto−t 〜5X102Paとされるのが
望ましい。また、成Iり時に基体を加熱する必要がある
場合には基体温度としては好ましくは、50〜1000
°C9より好ましくは100〜900 ’0 、最適に
は100〜750°Cとされるのが望ましい。Optimally, it is desirable that txto-t ~5X102Pa. In addition, if it is necessary to heat the substrate during formation, the substrate temperature is preferably 50 to 1000.
The temperature is preferably 100-900'0, most preferably 100-750°C.
本発明に於いて、成膜用の基体として使用されるのは、
導電性でも電気絶縁性であっても良い。導電性基体とし
ては、例えば、NiCr。In the present invention, the substrate used for film formation is:
It may be electrically conductive or electrically insulating. As the conductive substrate, for example, NiCr.
ステンレス、AJlj、Cr、Mo、Au、Ir。Stainless steel, AJlj, Cr, Mo, Au, Ir.
N b 、 T a 、 V 、 T i 、 P t
、 P d等の金属又はこれら等の合金が挙げられる
。N b , T a , V , T i , P t
, Pd, or alloys thereof.
電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネート、七ローズアセテート、ポリプロピ
レン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチ
レン、ポリアミド等の合成樹脂のフィルム又はシート、
ガラス。Examples of the electrically insulating substrate include films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, heptarose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and polyamide;
glass.
セラミック、紙等が通常使用される。これ等の電気絶縁
性基体は、好適には少なくともその一方の表面が導電処
理され、該導電処理された表面側に他の層が設けられる
のが望ましい。Ceramic, paper, etc. are commonly used. Preferably, at least one surface of these electrically insulating substrates is conductively treated, and another layer is preferably provided on the conductively treated surface side.
例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.
Afl、Cr、Mo、Au、Ir、Nb、Ta。Afl, Cr, Mo, Au, Ir, Nb, Ta.
V、Ti、Pt、Pd、In2O3,5n02゜ITO
(I n203+5n02)等の薄膜を設ける事によっ
て導電処理され、或いはポリエステルフィルム等の合成
樹脂フィルムであれば、NiCr、Ajl、Ag、Pd
、Zn、Ni。V, Ti, Pt, Pd, In2O3, 5n02゜ITO
(I n203 + 5n02), etc., or if it is a synthetic resin film such as polyester film, NiCr, Ajl, Ag, Pd
, Zn, Ni.
Au、Cr、Mo、Ir、Nb、Ta、V。Au, Cr, Mo, Ir, Nb, Ta, V.
Ti、Pt等の金属で真空蒸着、電子ビーム蒸着、スパ
ッタリング等で処理し、又は、前記金属でラミネート処
理して、その表面が導電処理される。基体の形状として
は、円筒状、ベルト状、板状等、任意の形状として得、
所望によってその形状は決定される。The surface is treated with a metal such as Ti or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal to make the surface conductive. The shape of the base body can be any shape such as cylindrical, belt-like, plate-like, etc.
Its shape is determined as desired.
これ等の他にS i 、Ge 、GaAs 、SO3等
の半導体基体或いは既に他の機能性膜が形成されている
前記の基体も使用することが出来る。In addition to these, semiconductor substrates such as Si, Ge, GaAs, SO3, or the above-mentioned substrates on which other functional films are already formed can also be used.
成膜空間(A)に化合物(A)、化合物(B)及び活性
種を導入する際の導入の仕方は、成膜空間(A)に連結
されている輸送管を通じて導入しても良いし、或いは成
膜空間(A)に設置しである基体の成膜表面近くまで前
記の輸送管を延在させて、先端をノズル状となして導入
しても良とし、輸送管を二重にして内側の管で一方を、
外側の管で他方を、例えば内側の管で活性種を、外側の
管で化合物(A)及び化合物(B)を夫々輸送して成膜
空間(A)中に導入しても良い。The compound (A), the compound (B), and the active species may be introduced into the film forming space (A) through a transport pipe connected to the film forming space (A); Alternatively, the transport pipe may be installed in the film forming space (A) and extended to near the film forming surface of the substrate, and the tip may be introduced with a nozzle shape, or the transport pipe may be doubled. one side with the inner tube,
The other may be transported into the film forming space (A) using the outer pipe, for example, the active species may be transported using the inner pipe, and the compound (A) and the compound (B) may be transported using the outer pipe.
又、輸送管に連結されている2本のノズルを用意し、該
2木のノズルの先端を成膜空間(A)に既に設置されて
いる基体の表面近傍に配して、基体の表面近くに於いて
夫々のノズルより吐出される化合物(A)、化合物(B
)と活性種とが混合される様にして導入しても良い。こ
の場合には、基体上に選択的に機能成膜を形成すること
が可能なので成膜と同時にパターン化が出来る為に好都
合である。In addition, two nozzles connected to the transport pipe are prepared, and the tips of the two nozzles are placed near the surface of the substrate already installed in the film forming space (A). Compound (A) and compound (B) are discharged from the respective nozzles.
) and the active species may be introduced in a mixed manner. In this case, it is possible to selectively form a functional film on the substrate, which is convenient because patterning can be performed simultaneously with film formation.
本発明に於いて、輸送空間(A)内への輸送空間(B)
の開放口の位置は、輸送空間(A)の成膜空間への開放
口の位置より好ましくは0、1 m m〜200 mm
が適当であり、より好ましくは1 m m −100m
mとするのが望ましい。In the present invention, the transport space (B) into the transport space (A)
The position of the opening of the transport space (A) is preferably 0.1 mm to 200 mm from the position of the opening of the transport space (A) to the film forming space.
is suitable, more preferably 1 mm - 100 m
It is desirable to set it to m.
次に本発明の堆積膜製造方法によって形成される半導体
部材の典型的な例を挙げて本発明を説明する。Next, the present invention will be explained by citing typical examples of semiconductor members formed by the deposited film manufacturing method of the present invention.
第1図は、本発明によって得られる典型的な半導体部材
の構成例を説明するための図である。FIG. 1 is a diagram for explaining an example of the configuration of a typical semiconductor member obtained by the present invention.
第1図に示す半導体部材100は、半導体部材用として
の支持体lotの上に半導体層102とギャップ型電極
103とで構成される層構造を有している。以下の説明
では、半導体層102を本発明の方法で作成する場合を
述べる。A semiconductor member 100 shown in FIG. 1 has a layered structure consisting of a semiconductor layer 102 and a gap-type electrode 103 on a support lot for a semiconductor member. In the following description, a case will be described in which the semiconductor layer 102 is formed by the method of the present invention.
支持体101としては、電気絶縁性であることが必要で
ある。半導体層102は、半導体部材としての機能を十
分に発揮することができるような半導体特性を持つよう
に、本発明の方法によって作成される。The support 101 needs to be electrically insulating. The semiconductor layer 102 is formed by the method of the present invention so as to have semiconductor characteristics that allow it to fully function as a semiconductor member.
即ち、半導体層102の形成は先ず、活性化空間(A)
に、H2等の活性種生成用の原料ガスが導入され所定の
活性化エネルギーの作用により水素ラジカル等の活性種
が生成され、輸送空間(A)を介して成膜空間に導入さ
れる。That is, the formation of the semiconductor layer 102 first begins with the activation space (A).
Then, a raw material gas for generating active species such as H2 is introduced, and activated species such as hydrogen radicals are generated by the action of a predetermined activation energy, and introduced into the film forming space via the transport space (A).
他方、たとえば、(CH3)2.Ga。On the other hand, for example, (CH3)2. Ga.
AsH3等の半導体形成材料の原料となる化合物(A)
及び化合物(B)は輸送空間(B)を通じて、その開放
口位置より下流側で前記の活性種と混合されて、化学的
相互作用を起す。Compound (A) that is a raw material for semiconductor forming materials such as AsH3
and compound (B) are mixed with the active species through the transport space (B) downstream of the opening position to cause chemical interaction.
化合物(A)、化合物(B)及び活性種から成る混合ガ
スは、成膜空間内に導入され、成膜空間に配されている
基体101上に形成される。A mixed gas consisting of the compound (A), the compound (B), and the active species is introduced into the film forming space and is formed on the substrate 101 disposed in the film forming space.
実施例1
第2図に示す装置を使い、以下の如き操作により、平板
状の基板上に半導体層を作製した。Example 1 Using the apparatus shown in FIG. 2, a semiconductor layer was fabricated on a flat substrate by the following operations.
第2図に於いて、201は成膜室(A)、202は活性
化室(B)、203.204は活性化エネルギー導入用
及び活性種用原料ガス放lfj用壁、205は堆積膜形
成用の化合物(A)のガス放出パイプ、206は活性化
エネルギー源であるマイクロ波電源、207は堆積膜形
成用のガラス基板208はガラス基板加熱用ヒーター、
209はヒーター用の電線、210は基板ホルダー、2
11は化合物(A)及び化合物(B)用のガス導入パイ
プ、212は活性種となる原ネ1ガスの導入用パイプで
あり、213は活性化室(B)202から成膜室(A)
201へ活性種、化合物(A)及び化合物(B)の混合
ガスの導入用ノズルである。In Fig. 2, 201 is a film forming chamber (A), 202 is an activation chamber (B), 203 and 204 are walls for introducing activation energy and releasing raw material gas for active species lfj, and 205 is a deposited film forming wall. 206 is a microwave power source as an activation energy source; 207 is a glass substrate for forming a deposited film; 208 is a heater for heating the glass substrate;
209 is the electric wire for the heater, 210 is the substrate holder, 2
11 is a gas introduction pipe for compound (A) and compound (B), 212 is a pipe for introduction of raw material 1 gas which becomes active species, and 213 is a pipe for introducing gas from the activation chamber (B) 202 to the film forming chamber (A).
This is a nozzle for introducing a mixed gas of active species, compound (A), and compound (B) into 201.
本実施例に於いては原料ガス導入用パイプ205の先端
の位置は、ノズル213から約5cmのところに設定し
た。In this embodiment, the tip of the raw material gas introduction pipe 205 was set at a distance of about 5 cm from the nozzle 213.
成膜室(A)201にガラス基板207をいれ、拮気バ
ルブ(不図示)を開け、成膜室(A)及び活性化室(B
)を約1O−5torrの真空度にした。次に加熱ヒー
ター208によりガラス基板温度を約300℃に保持し
た。次に活性化室(B)202に活性種生成用の原料ガ
スとしてH2ガス50SCCMをガス導入用パイプ21
2を通じて導入した。別に活性化室(B)202に半導
体層形成用の原料ガスとし、Heガスによりバブリング
された(c H3)’2GaをlOm mol/mi
nの割合で、又、AsH3ガスを10m mol/m
inの割合で夫々導入した。流量が安定してから排気バ
ルブを調節して成膜室(A)の内圧を0.002Too
rとした。内圧が一定になってからマイクロ波電源20
6を動作させ、活性化室(B)202に280Wの放電
エネルギーを投入した。A glass substrate 207 is placed in the film forming chamber (A) 201, an antagonism valve (not shown) is opened, and the film forming chamber (A) and the activation chamber (B) are opened.
) was brought to a vacuum of about 1 O-5 torr. Next, the temperature of the glass substrate was maintained at about 300° C. using a heater 208. Next, 50 SCCM of H2 gas is introduced into the activation chamber (B) 202 through the gas introduction pipe 202 as a raw material gas for generating active species.
It was introduced through 2. Separately, in the activation chamber (B) 202, 1Om mol/mi of (c H3)'2Ga bubbled with He gas was used as a raw material gas for forming a semiconductor layer.
In addition, AsH3 gas was added at a ratio of 10 mmol/m
Each was introduced at a rate of in. After the flow rate stabilizes, adjust the exhaust valve to reduce the internal pressure of the film forming chamber (A) to 0.002 Too.
It was set as r. After the internal pressure becomes constant, turn on the microwave power supply 20
6 was operated, and 280 W of discharge energy was input into the activation chamber (B) 202.
この状態で1.5時間保ち成膜室(A)201内のガラ
ス基板207上に、約1.2川厚のGaAs膜を堆積し
た。この様にして作成したGaAs膜」−にギャップ長
2.5cm、キャップ間隔0、2 m mのくし型AM
電極を形成した。This state was maintained for 1.5 hours, and a GaAs film having a thickness of about 1.2 mm was deposited on the glass substrate 207 in the film forming chamber (A) 201. A comb-shaped AM with a gap length of 2.5 cm and a cap spacing of 0.2 mm was used in the GaAs film prepared in this way.
An electrode was formed.
上記の試料のGaAs膜の膜特性を評価したところ、膜
厚の斑がなく、又、半導体特性も場所による依存性が殆
どない良質な膜であることが確認された。When the film properties of the GaAs film of the above sample were evaluated, it was confirmed that the film had no unevenness in film thickness and was of good quality with almost no dependence on semiconductor properties depending on location.
実施例2
実施例1に於いて(CH3)2Ga及びAsH3の代り
に第1表に示す原料ガスを化合物(A)及び化合物(B
)として夫々使用し、導入量を1mmo交/ m t
nとし、第1表に記載した条件とした以外は、実施例1
と略々同様にして成膜したところ第1表に示す薄膜が形
成された。 これ等の薄膜に就いて電気的及び光学的
な膜特性の評価を行ったところいずれも均一膜厚で均一
で高品質の膜特性に優れた膜であることが確認された。Example 2 In Example 1, the raw material gases shown in Table 1 were used instead of (CH3)2Ga and AsH3 for compound (A) and compound (B).
), and the introduced amount was 1 mm/m t.
Example 1 except that n was set and the conditions listed in Table 1 were used.
When the film was formed in substantially the same manner as above, the thin film shown in Table 1 was formed. When these thin films were evaluated for electrical and optical film characteristics, it was confirmed that they were all films with uniform thickness, high quality, and excellent film characteristics.
第1表
実施例3
実施例1に於いて、ノズル213の周囲に設置されたR
F放電装置(不図示)13.56MHzの高周波で3W
の電力を投入してノズル213内にプラズマ雰囲気を形
成した。この場合、基体207はプラズマ雰囲気には直
接触れない様にプラズマ雰囲気の下流測的1cmの位置
においた。成膜開始後1.5時間で約i、aJL圧のG
aAs膜が形成できた。この際の基体温度は250℃に
保った。上記以外は実施例1と同様にして行った。Table 1 Example 3 In Example 1, R installed around the nozzle 213
F discharge device (not shown) 3W at a high frequency of 13.56MHz
A plasma atmosphere was created in the nozzle 213 by applying electric power. In this case, the base 207 was placed at a position 1 cm downstream of the plasma atmosphere so as not to come into direct contact with the plasma atmosphere. G of about i, aJL pressure 1.5 hours after the start of film formation
An aAs film was formed. The substrate temperature at this time was maintained at 250°C. Except for the above, the same procedure as in Example 1 was carried out.
このGaAs膜を設けた試料を実施例1と同様に評価し
たところ、良好なデバイス特性を示すことが確認された
。When the sample provided with this GaAs film was evaluated in the same manner as in Example 1, it was confirmed that it exhibited good device characteristics.
又、基体からの剥離もなく機械的にも優れたA文膜であ
った。Furthermore, the A-patterned film did not peel off from the substrate and was mechanically excellent.
本発明の堆積膜形成法によれば、形成される膜に所望さ
れる電気的、光学的、光導電的及び機械的特性が向上し
、又、成膜に於る再現性が向上し、膜品質の向上と膜質
の均一化が可能になると共に、膜の大面積化に有利であ
り、膜の生産性の向」二並びに量産化を容易に達成する
ことができる。According to the deposited film forming method of the present invention, the desired electrical, optical, photoconductive, and mechanical properties of the formed film are improved, and the reproducibility in film formation is improved, resulting in improved film formation. It is possible to improve the quality and make the film quality uniform, and it is also advantageous for increasing the area of the film, and it is possible to easily achieve improvements in the productivity of the film and mass production.
更に、低温での成膜も可能であるために、耐熱性に乏し
い基体上にも成膜できる、低温処理によって工程の短縮
化を図れるといった効果が発揮される。Further, since it is possible to form a film at a low temperature, the film can be formed even on a substrate with poor heat resistance, and the process can be shortened by low-temperature treatment.
第1図は、本発明の方法を用いて作成される半導体部材
の1実施態様例を説明する為に層構造を示した模式図で
ある。
第2図は、本発明の製造法を具現化する為の装置の1例
を示す模式的説明図である。
201−−−一成膜室(A)、
202−−−一活性化室(B)、
203.204−−−一活性化エネルギー導入壁及び活
性種用原料ガス放出壁、
205−−−−ガス放出パイプ、
206−−−−マイクロ波電源、
207−−−−ガラス基板、
208−−−一加熱用ヒーター、
209−一−−ヒーター用電線、
210−−−一基板ホルダー、
2 t t−−−−ガス導入パイプ、
212−−−−ガス導入パイプ、
213−−−−ノズル。FIG. 1 is a schematic diagram showing a layered structure for explaining one embodiment of a semiconductor member produced using the method of the present invention. FIG. 2 is a schematic explanatory diagram showing an example of an apparatus for implementing the manufacturing method of the present invention. 201---1 film formation chamber (A), 202---1 activation chamber (B), 203.204---1 activation energy introduction wall and activated species raw material gas discharge wall, 205---- Gas release pipe, 206---Microwave power source, 207---Glass substrate, 208----1 heating heater, 209-1--heater electric wire, 210----1 substrate holder, 2 t t -----Gas introduction pipe, 212---Gas introduction pipe, 213---Nozzle.
Claims (7)
式(A)及び(B)で夫々表わされる化合物(A)及び
化合物(B)と、これ等の化合物(A)及び化合物(B
)の少なくとも一方と化学反応する活性種とを成膜空間
に導入するに際して、前記活性種は、前記成膜空間に連
絡する輸送空間(A)を通じ、前記化合物(A)及び化
合物(B)は、前記輸送空間(A)内に設けられ前記成
膜空間に連絡する輸送空間(B)を通じて夫々前記成膜
空間に導入してこれ等を化学反応させることにより形成
された事を特徴とする機能性堆積膜。 R_nM_m−−−−−−−−−−−−−−(A)A_
aB_b−−−−−−−−−−−−−−(B)但し、m
はRの価数に等しいかまたはその 整数倍の正整数、nはMの価数に等しいかまたは整数倍
の正整数、Mは周期律表の第III族に属する元素、Rは
水素(H)、ハロゲン (X)、炭化水素基を夫々示す。 aはBの価数に等しいかまたはその整数倍 の正整数、bはAの価数に等しいかまたは整数倍の正整
数、Aは周期律表の第V族に属する元素、Bは水素(H
)、ハロゲン(X)、炭化水素基を夫々示す。(1) Compound (A) and compound (B) represented by the following general formulas (A) and (B), respectively, which serve as raw materials for forming a functional deposited film, and these compounds (A) and compounds (B
) When introducing an active species that chemically reacts with at least one of , a function characterized in that the film is introduced into the film-forming space through a transport space (B) provided in the transport space (A) and communicating with the film-forming space, and is formed by chemically reacting them. Deposited film. R_nM_m------------(A)A_
aB_b---------------(B) However, m
is a positive integer equal to or an integral multiple of the valence of R, n is a positive integer equal to or an integral multiple of the valence of M, M is an element belonging to Group III of the periodic table, R is hydrogen (H ), halogen (X), and hydrocarbon group, respectively. a is a positive integer equal to or an integral multiple of the valence of B, b is a positive integer equal to or an integral multiple of the valence of A, A is an element belonging to Group V of the periodic table, B is hydrogen ( H
), halogen (X), and hydrocarbon group, respectively.
下記の一般式(A)及び(B)で夫々表わされる化合物
(A)及び化合物(B)と、これ等の化合物(A)と化
合物(B)の少なくとも一方と化学反応する活性種とを
成膜空間に導入して、該成膜空間内に配されている基体
上に機能性堆積膜を形成する機能性堆積膜の製造法に於
て、前記活性種は、前記成膜空間に下流側で連絡する輸
送空間(A)を通じ、前記化合物(A)及び化合物(B
)は、前記輸送空間(A)内に設けられ前記成膜空間に
連絡する輸送空間(B)を通じて夫々 前記成膜空間内に導入することを特徴とする機能性堆積
膜の製造法。 R_nM_m−−−−−−−−−−−−−−(A)A_
aB_b−−−−−−−−−−−−−−(B)但し、m
はRの価数に等しいかまたは整数 倍の正整数、nはMの価数に等しいかまたは整数倍の正
整数、Mは周期律表の第III族に属する元素、Rは水素
(H)、ハロゲン(X)、炭化水素基を夫々示す。 aはBの価数に等しいかまたはその整数倍 の正整数、bはAの価数に等しいかまたは 整数倍の正整数、Aは周期律表の第V族に属する元素、
Bは水素(H)、ハロゲン(X)、炭化水素基を夫々示
す。(2) Compound (A) and compound (B) represented by the following general formulas (A) and (B), respectively, which serve as raw materials used for forming a functional deposited film, and these compounds (A ) and compound (B) and an active species that chemically reacts with at least one of them is introduced into a film forming space to form a functional deposited film on a substrate disposed in the film forming space. In the production method, the active species is transported to the compound (A) and the compound (B) through a transport space (A) that communicates downstream with the film forming space.
) is a method for producing a functional deposited film, characterized in that the films are introduced into the film forming spaces through transport spaces (B) provided in the transport spaces (A) and communicating with the film forming spaces. R_nM_m------------(A)A_
aB_b---------------(B) However, m
is a positive integer equal to or an integral multiple of the valence of R, n is a positive integer equal to or an integral multiple of the valence of M, M is an element belonging to Group III of the periodic table, R is hydrogen (H) , halogen (X), and a hydrocarbon group, respectively. a is a positive integer equal to or an integral multiple of the valence of B, b is a positive integer equal to or an integral multiple of the valence of A, A is an element belonging to Group V of the periodic table,
B represents hydrogen (H), halogen (X), or a hydrocarbon group, respectively.
た活性化空間に於いて生成される特許請求の範囲第2項
に記載の機能性堆積膜の製造法。(3) The method for producing a functional deposited film according to claim 2, wherein the activated species are generated in an activation space provided upstream of the transport space (A).
許請求の範囲第2項に記載の機能性 堆積膜の製造法。(4) The method for producing a functional deposited film according to claim 2, wherein the transport space (A) also serves as an activation space.
一方は、前記輸送空間(B)の上流に設けた励起空間で
予め励起される特許請求の範囲第2項に記載の機能性堆
積膜の製造法。(5) The functional deposited film according to claim 2, wherein at least one of the compound (A) and the compound (B) is excited in advance in an excitation space provided upstream of the transport space (B). manufacturing method.
許請求の範囲第2項に記載の機能性堆積膜の製造法。(6) The method for producing a functional deposited film according to claim 2, wherein the transport space (B) also serves as an excitation space.
B)とに分割されている特許請求の範囲第2項に記載の
機能性堆積膜の製造法。(7) The transport space (B) contains the compound (A) and the compound (
B) A method for producing a functional deposited film according to claim 2, which is divided into:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28710285A JPS62145728A (en) | 1985-12-20 | 1985-12-20 | Functional deposited film and manufacture of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28710285A JPS62145728A (en) | 1985-12-20 | 1985-12-20 | Functional deposited film and manufacture of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62145728A true JPS62145728A (en) | 1987-06-29 |
Family
ID=17713084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28710285A Pending JPS62145728A (en) | 1985-12-20 | 1985-12-20 | Functional deposited film and manufacture of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62145728A (en) |
-
1985
- 1985-12-20 JP JP28710285A patent/JPS62145728A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01198481A (en) | Formation of deposited film by microwave plasma cvd | |
JPS61222280A (en) | Photovoltaic element and its manufacturing method and manufacturing equipment | |
JPH01306565A (en) | Formation of deposited film | |
US4772486A (en) | Process for forming a deposited film | |
JPS61222121A (en) | Functional deposit-film and method and apparatus for manufacturing said film | |
US5178904A (en) | Process for forming deposited film from a group II through group VI metal hydrocarbon compound | |
JPS62145728A (en) | Functional deposited film and manufacture of the same | |
JPS61189649A (en) | Formation of deposited film | |
JPH08143393A (en) | Electron emitting membrane and its preparation | |
JPS62150709A (en) | Functional deposition film and manufacture thereof | |
JPS62145727A (en) | Functional deposited film and manufacture of the same | |
JPS62149119A (en) | Functional deposit film and manufacture thereof | |
JPS62149120A (en) | Functional deposit film and manufacture thereof | |
JPS61189650A (en) | Formation of deposited film | |
JPS61189629A (en) | Formation of deposited film | |
JPS61189630A (en) | Formation of deposited film | |
JPS62145724A (en) | Functional deposited film and manufacture of the same | |
JPS62139875A (en) | Deposited film formation method | |
JPS61222113A (en) | Forming method for deposit-film | |
JPS61189634A (en) | Formation of deposited film | |
JPS62142780A (en) | Formation of deposited film | |
JPS6296675A (en) | Formation of deposited film | |
JP2003026497A (en) | Method for producing iron silicide crystal | |
JPS61188929A (en) | Formation of deposited film | |
JPH0645883B2 (en) | Deposited film formation method |