[go: up one dir, main page]

JPS62145724A - Functional deposited film and manufacture of the same - Google Patents

Functional deposited film and manufacture of the same

Info

Publication number
JPS62145724A
JPS62145724A JP28669185A JP28669185A JPS62145724A JP S62145724 A JPS62145724 A JP S62145724A JP 28669185 A JP28669185 A JP 28669185A JP 28669185 A JP28669185 A JP 28669185A JP S62145724 A JPS62145724 A JP S62145724A
Authority
JP
Japan
Prior art keywords
space
film
compound
film forming
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28669185A
Other languages
Japanese (ja)
Other versions
JPH0821540B2 (en
Inventor
Masaaki Hirooka
広岡 政昭
Shigeru Ono
茂 大野
Toshimichi Oda
小田 俊理
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28669185A priority Critical patent/JPH0821540B2/en
Publication of JPS62145724A publication Critical patent/JPS62145724A/en
Publication of JPH0821540B2 publication Critical patent/JPH0821540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To eliminate influence of contaminants from the inner wall of a film forming space and residual gas remaining in the film forming space and improve the film quality and make the film properties uniform by separating a film forming space and an activation space. CONSTITUTION:Material gas for producing activation species, such as H2 gas, is introduced into an activation shape 202 and the activation species are pro duced by the application of a predetermined activation energy and introduced into a film forming space 201. On the other hand, a compound A which is to be row material of electrodes is supplied through a transfer space 205 and mixed with the above mentioned activation species in the downstream side of the open outlet of the transfer space 205 and creates mutual chemical reac tion. The mixed gas composed of the compound A and the activation species is introduced into the film forming space 201 and electrodes 103 are formed on the photoconductive layer 102 of a substrate 207 provided in the film forming space 201 beforehand. The compound A is expressed by a general formula RnMm (wherein M denotes an element belonging to II group, III group, V group, VI group or IV group and R denotes a hydrocarbon radical) for instance BeMe2, MgMe2, Al2Me6, BeEt2, MgEt2, Al2Et6 and so forth.

Description

【発明の詳細な説明】 〈産業トの利用分野〉 本発明は、機能性膜、殊に半導体デバイス等の用途に有
用な非晶質乃至多結晶性の所謂非単結晶性の機能性堆積
膜及びその製造法に関する。
[Detailed Description of the Invention] <Field of Industrial Application> The present invention relates to a functional film, particularly a so-called non-single crystalline functional deposited film that is amorphous to polycrystalline and is useful for applications such as semiconductor devices. and its manufacturing method.

〈従来技術〉 堆積Illの形成には、真空蒸着法、プラズマCVD法
、熱CVD法、光CVD法1反応性スパッタリング法、
イオンブレーティング法などが試みられており、−・般
的には、プラズマCVD法が広く用いられ、企業化され
ている。
<Prior art> For forming the deposit Ill, vacuum evaporation method, plasma CVD method, thermal CVD method, photo CVD method 1 reactive sputtering method,
Ion blating methods and the like have been attempted, and generally, plasma CVD methods are widely used and commercialized.

百年ら、これ等の堆積膜形成法によって得られる堆積膜
はより高度の機能が求められる電子デバイスへの適用が
求められていることから電気的、光学的特性及び、繰返
し使用での疲労特性あるいは使用環境特性、更には均一
性、再現性を含めて生産性、量産性の点において更に総
による堆積膜の形成に於いての反応プロセスは、従来の
所謂、熱CVD法に比較してかなり複雑であり、その反
応機構も不明な点が少なくなかった。又、その堆積膜の
形成パラメーターも多く(例えば、基体温度、導入ガス
の流Mと比、形成時の圧力、高周波電力、電極構造1反
応容器の構造、排気速度、プラズマ発生方式など)これ
らの多くのパラメーターの組み合せによるため、時には
プラズマが不安定な状態になり、形成された堆積膜に著
しい悪影響を与えることが少なくなかった。そのうえ、
装置特有のパラメーターを装置ごとに選定しなければな
らず、したがって製造条件を一般化することがむずかし
いというのが実状であった。
Since the deposited films obtained by these deposited film formation methods are required to be applied to electronic devices that require higher functionality, Hyakunen et al. In terms of usage environment characteristics, productivity and mass production including uniformity and reproducibility, the overall reaction process in forming the deposited film is considerably more complex than the conventional so-called thermal CVD method. However, the reaction mechanism is still largely unknown. In addition, there are many formation parameters for the deposited film (for example, substrate temperature, flow M and ratio of introduced gas, pressure during formation, high frequency power, structure of electrode structure 1 reaction vessel, pumping speed, plasma generation method, etc.). Due to the combination of many parameters, the plasma sometimes becomes unstable, which often has a significant negative effect on the deposited film. Moreover,
The reality is that parameters unique to each device must be selected for each device, making it difficult to generalize manufacturing conditions.

その中でも、例えばアモルファスシリコン膜として、電
気的、光学的特性が各用途を十分に満足させ得るものを
発現させることが出来るという点で、現状ではプラズマ
CVD法によって形成することが最良とされている。
Among these, the plasma CVD method is currently considered to be the best method to form an amorphous silicon film, since it can produce electrical and optical properties that fully satisfy various uses. .

百年ら、堆積膜の応用用途によっては、大面積化、膜厚
の均一性、膜品質の均一性を十分に満足させて、再現性
のある量産化を図らねばならないため、プラズマCVD
法による堆積膜の形成においては、量産装置に多大な設
備投資が必要となり、またその量産の為の管理項目も複
雑になり、管理許容幅も狭くなり、装置の調整も微妙で
あることから、これらのことが、今後改善すべき問題点
として指摘されている。
According to Hyakunen et al., depending on the application of the deposited film, it is necessary to fully satisfy the requirements of large area, uniformity of film thickness, and uniformity of film quality, and mass production with reproducibility.
Forming a deposited film by the method requires a large amount of equipment investment for mass production equipment, the control items for mass production are complicated, the control tolerance is narrow, and the adjustment of the equipment is delicate. These have been pointed out as problems that should be improved in the future.

更に堆積膜の種類によっては、プラズマCVD法は必ず
しも適当でないこと、加えてプラズマCVD法の欠点で
ある膜へのプラズマダメージの影響が、要求される膜特
性に現われて所望する機能を果たさない様になること等
が挙げられる。殊に高機能性の電子デバイス用の堆積膜
の作成に於いては上記のプラズマダメージの影響は、ス
トレートに膜特性に現われる為に出来る限り回避されな
ければならない点である。
Furthermore, depending on the type of deposited film, the plasma CVD method is not necessarily suitable, and in addition, the effect of plasma damage on the film, which is a drawback of the plasma CVD method, may affect the required film properties and prevent it from fulfilling the desired function. Examples include becoming. Particularly in the production of deposited films for highly functional electronic devices, the effects of plasma damage mentioned above directly appear on the film properties and must be avoided as much as possible.

他方、通常のCVD法による従来の技術では、高温を必
要とすると共に、企業的なレベルでは必ずしも満足する
様な特性を有する堆積膜が得られていなかった。
On the other hand, the conventional technique using the normal CVD method requires high temperatures and has not been able to provide a deposited film with characteristics that are necessarily satisfactory at a commercial level.

る機能性堆積膜の作成の場合に憂慮される。This is a concern when creating functional deposited films.

(−述の如く、機能性膜の形成に於いて、その実用可能
な特K 、均一・性を雄性させながら低コス]・な装置
でt−産化できる形成方性を開発することが切望されて
いる。
(-As mentioned above, in the formation of functional films, it is desirable to develop a formation method that can produce T-products with a device that has practical characteristics such as uniformity, maleness, and low cost.) has been done.

く目的〉 本発明は、上述した従来の堆積膜形成法、殊にプラズマ
CVD法の欠11(を除去すると同時に、従来の形成り
法によらない新規な堆積l1帖形成法を提供するもので
ある。
Purpose of the Invention The present invention aims to eliminate the deficiencies of the above-mentioned conventional deposited film forming methods, particularly the plasma CVD method, and at the same time provide a novel method for forming 11 layers of deposits that does not rely on conventional forming methods. be.

本発明の目的は、機能性膜の特性を容易に管理化出来、
少なくとも従来法で得た良質の膜の特性を保持すると共
に、堆積速度の向上を図りながら、膜形成条件の管理の
簡素化、膜の量産化を容易に達成させることの出来る堆
積膜及びその形成法を1M供することである。
The purpose of the present invention is to be able to easily control the characteristics of a functional membrane;
A deposited film and its formation that can simplify the management of film formation conditions and easily mass-produce films while maintaining at least the characteristics of a high-quality film obtained by conventional methods and improving the deposition rate. It is to offer 1M of the law.

く構成〉 本発明の機能性堆積膜は機能性の堆積膜の形成用の原料
どなる下記の一般式(A)で表わされる化合物(A)と
、該化合物(A)と化学反応する活性種とを成膜空間に
導入するに際して、前記活性種は、前記成膜空間に連絡
する輸送空間(A)を通じ前記化合物(A)は、前記輸
送空間(A)内に設けられ前記成膜空間に連絡する輸送
空間(B)を通じて夫々前記成膜空間に導入してこれ等
を化学反応させることによ積層の形成に利用される用な
原料となる下記の一般式(A)で表わせる化合物(A)
と該化合物(A)と化学反応する活性種とを成膜空間に
導入して、該成膜空間内に配されている基体上に機能性
堆積膜を形成する機能性堆積膜の製造法に於いて、前記
活性種は、前記成膜空間に下流側で連絡する輸送空間(
A)を通じ、前記化合物(A)は、前記輸送空間(A)
内に設けられ前記成膜空間に連絡する輸送空間(B)を
通じて夫々、前記成膜空間内に導入することを特徴とす
る。
Structure> The functional deposited film of the present invention comprises a compound (A) represented by the following general formula (A), which is a raw material for forming the functional deposited film, and an active species that chemically reacts with the compound (A). When introducing the compound (A) into the film forming space, the active species passes through a transport space (A) communicating with the film forming space, and the compound (A) is provided in the transport space (A) and communicating with the film forming space. A compound (A) represented by the following general formula (A), which becomes a raw material used for forming a laminated layer, is introduced into the film-forming space through the transport space (B) and chemically reacted. )
and an active species that chemically reacts with the compound (A) are introduced into a film-forming space to form a functional deposited film on a substrate disposed within the film-forming space. In this case, the active species is transported to a transport space (
A), the compound (A) is transferred to the transport space (A)
They are each introduced into the film forming space through a transport space (B) provided therein and communicating with the film forming space.

RnMm−−−−−−−(A) 但し、mはRの価数に等しいか又はその整数倍の正整数
、nはMの価数に等しいか又はその整数倍の正整数、M
は周期律表の第2周期以降の第II族に属する元素、第
3周期以降の第■族、第V族及び第■族に属する元素又
は、第4周期の第■族に属する元素を示す。Rは、炭化
水素基を示す。
RnMm---------(A) However, m is a positive integer equal to the valence of R or an integral multiple thereof, n is a positive integer equal to the valence of M or an integral multiple thereof, M
indicates an element belonging to Group II from the second period onwards, an element belonging to Groups ■, V, and Group ■ from the third period onwards, or an element belonging to Group ■ from the fourth period of the periodic table. . R represents a hydrocarbon group.

〈発明の具体的説明〉 本発明に於いては、活性種は輸送空間(A)を通じて、
又、化合物(A)は輸送空間(B ’)を通じて夫々成
膜空間に導入されるが、輸送空間(B)の輸送空間(A
)内での開放位置を種々変化させることによって、化合
物(A)の輸送空間(A)内での滞留時間を適宜設定す
ることが出来る。この場合、化合物(A)の輸送空間(
B)に於ける輸送速度も前記の滞留時間を制御する為の
管理パラメーターの1つとして選択することが出来る。
<Specific description of the invention> In the present invention, active species are transported through the transport space (A),
Further, the compound (A) is introduced into each film forming space through the transport space (B'), but the transport space (A) of the transport space (B) is
) The residence time of the compound (A) in the transport space (A) can be set appropriately by varying the opening position within the transport space (A). In this case, the transport space for compound (A) (
The transport speed in B) can also be selected as one of the control parameters for controlling the residence time.

本発明に於いては、輸送空間(A)、及び輸送空間(B
)の成膜空間への開放位置は、活性種や、又、化合物(
A)を必要に応じて励起する場合には励起状態の化合物
(A)の寿命に応じて適宜法められる。
In the present invention, the transportation space (A) and the transportation space (B
) is open to the film forming space, where active species or compounds (
When A) is to be excited as necessary, the method is determined as appropriate depending on the lifetime of the compound (A) in the excited state.

本発明の場合、化合物(A)としては、一般に成膜空間
まで基底状態のまま輸送する一方、使用される活性種と
しては、比較的短寿命のものが多いので、輸送空間(A
)の成膜空間への開放位置は、成膜空間に近い方が好ま
しい。
In the case of the present invention, while the compound (A) is generally transported in its ground state to the film forming space, the active species used are often relatively short-lived.
) is preferably closer to the film forming space.

輸送空間(A)の成膜空間への開放口部及び輸送空間(
B)の輸送空間(A)への開放口部はノズル状、或はオ
リフィス状とされているのが望ましい。殊にノズル状と
されている場合にはノズル開口の成膜空間内に配されて
いる基体の成膜表面近傍に位置付けることによって、成
膜効率と原料消費実効効率を著しく−hげることか出来
る。
The opening of the transport space (A) to the film forming space and the transport space (
It is desirable that the opening of B) into the transport space (A) is shaped like a nozzle or an orifice. In particular, in the case of a nozzle-shaped nozzle, by positioning it near the film-forming surface of the substrate arranged in the film-forming space of the nozzle opening, the film-forming efficiency and effective raw material consumption efficiency can be significantly increased. I can do it.

本発明に於いては、活性種は輸送空間(A)にその上流
で連絡する活性化空間で生成され、化合物(A)は、必
要に応じて輸送空間(B)にその上流で連絡する励起空
間で励起されるが、これ等に本発明は限定されるもので
はなく、例えば輸送空間(A)は活性化空間を、輸送空
間(B)は励起空間を夫々兼用することも出来る。
In the present invention, active species are generated in an activation space that communicates with the transport space (A) upstream thereof, and compounds (A) are generated in an activated space that communicates with the transport space (B) upstream thereof, as necessary. Although excited in these spaces, the present invention is not limited to these. For example, the transport space (A) can also be used as an activation space, and the transport space (B) can also be used as an excitation space.

殊に、両輸送空間が、夫々活性化空間、励起空間を兼用
する場合には、活性化手段と励起手段とを別々に設ける
ことなく、同一の手段で兼用することも出来る。
In particular, when both transport spaces are used as activation space and excitation space, respectively, the same means can be used as activation means and excitation means without providing them separately.

例えば、輸送空間(A)と輸送空間(B)とを二重ガラ
ス管構造とし、外側ガラス管の周囲にRFプラズマ装置
又はマイクロ波プラズマ装置を設けることによって、輸
送方向に対して、同位置で活性種と励起状態の化合物(
A)とを同時に生成することが出来る。
For example, by making the transport space (A) and the transport space (B) have a double glass tube structure, and providing an RF plasma device or a microwave plasma device around the outer glass tube, the transport space (A) and the transport space (B) can be placed at the same position in the transport direction. Active species and excited state compounds (
A) can be generated simultaneously.

本発明に於いては輸送空間(A)と輸送空間(B)と=
1の開放口部は成膜空間の内部に位置しているのが好ま
しい。
In the present invention, transportation space (A) and transportation space (B) =
It is preferable that the opening portion 1 is located inside the film forming space.

本発明に於ては、輸送空間(A)と、該輸送空間(A)
の内部に設けた輸送空間(B)とから成る二重空間構造
体は成膜装置に、1つに限らず、複数設けることによっ
て、夫々の二重空間構造体は導入する活性種及び化合物
(A)の種類を変えることで、異なる特性を有する堆積
膜の夫々を成膜空間に配されている基体の夫々の」−に
形成することが出来る。
In the present invention, a transportation space (A);
By providing not only one but a plurality of double space structures in the film forming apparatus, each double space structure is configured to transport active species and compounds ( By changing the type of A), deposited films having different characteristics can be formed on each of the substrates disposed in the film forming space.

更には、本発明の方法によれば、従来のプラズマCVD
法と異なり、成膜空間と活性化空間、必要に応じて設け
られる励起空間とが夫々分離されている為、成膜空間の
内壁からの汚染物や成膜空間内に残留する残留ガスの影
響を実質的になくすことが出来るという特徴がある。
Furthermore, according to the method of the present invention, conventional plasma CVD
Unlike the conventional method, the deposition space, the activation space, and the excitation space provided as necessary are separated, so the influence of contaminants from the inner walls of the deposition space and residual gas remaining in the deposition space is reduced. It has the characteristic of being able to virtually eliminate the

尚、発明での「活性種」とは、前記化合物(A)と化学
的相互作用を起して例えば化合物(A)にエネルギーを
与えたり、化合物(A)と化学的に反応したりして、化
合物(A)を堆積膜を形成することが出来る状態にする
役目を荷うものを云う。従って、活性種としては、形成
される堆積膜を構成する構成要素に成る構成要素を含ん
でいても良く、或はその様な構成要素を含んでいなくと
も良い。
In addition, the "active species" in the invention refers to species that chemically interact with the compound (A) to give energy to the compound (A), or chemically react with the compound (A). , refers to a substance that plays the role of bringing the compound (A) into a state where it can form a deposited film. Therefore, the active species may include constituent elements constituting the deposited film to be formed, or may not include such constituent elements.

本発明に於いて使用される前記一般式(A)で示される
化合物(A)としては、成膜される基体が存在する空間
に於いて、前記の活性種と分子的衝突を起して化学反応
を起し、基体上に形成される堆積膜の形成に寄与する化
学種を自発的に発生するものを選択するのがより望まし
い。しかしながら、通常の存在状態では、前記の活性種
とは不活性であったり、或は、それ程の活性々がない場
合には、化合物(A)に該化合物(A)が前記一般式(
A)中のMを完全解離しない程度の強さの励起エネルギ
ーを成膜前又は成膜時に与えて、化合物(A)を活性種
と化学反応し得る励起状態にすることが必要であり、又
、その様な励起状態にし得る化合物を、本発明の方法に
使用される化合物(A)の1種として採用するものであ
る。
The compound (A) represented by the general formula (A) used in the present invention may cause chemical collisions with the active species in the space where the substrate on which the film is to be formed exists. It is more desirable to select a material that causes a reaction and spontaneously generates a chemical species that contributes to the formation of the deposited film formed on the substrate. However, in the case where the active species is inert or does not have such activity in its normal state of existence, the compound (A) has the general formula (
A) It is necessary to apply excitation energy strong enough to not completely dissociate M in the compound (A) before or during film formation to bring the compound (A) into an excited state in which it can chemically react with the active species, and , a compound that can be brought into such an excited state is employed as one type of compound (A) used in the method of the present invention.

尚、本発明に於いては、化合物(A)が前記の励起状態
になっているものを特に示す場合には以後「励起種(A
)」と呼称することにする。
In the present invention, when the compound (A) is in the above-mentioned excited state, the term "excited species (A)" will be used hereinafter.
)”.

本発明では5、化合物(A)を必要に応じて予め励起し
て励起状態の化合物(A)を生成する場合には、成膜空
間に導入される輸送空間(B)からの励起状態の化合物
(A)が、その寿命が好ましくは0.01秒以上、より
好ましくは0.1秒以上、最適には1秒以上あって長寿
命であるのが望ましいが、いずれにしても所望に従って
選択されて使用され、この化合物(A)の構成要素が成
膜空間で形成される堆積膜を構成する主成分を構成する
ものとなる。
In the present invention, 5, when the compound (A) is excited in advance as necessary to generate the compound (A) in the excited state, the compound in the excited state is introduced into the film forming space from the transport space (B). It is desirable that (A) has a long life, preferably 0.01 seconds or more, more preferably 0.1 seconds or more, and optimally 1 second or more, but in any case, it is selected according to desire. The constituent elements of this compound (A) constitute the main components constituting the deposited film formed in the film forming space.

活性種は成膜空間で堆積膜を形成する際、同時に輸送空
間(B)から成膜空間に導入され、形成される堆積膜の
主構成成分となる構成要素を含む前記化合物(A)と化
学的に相互作用する。その結果、所望の基板上に所望の
堆積膜が容易に形成される。本発明の方法によれば、成
膜空間内でプラズマを生起させないで形成される堆積膜
は、エツチング作用、或はその他の例えば異常放電作用
等による悪影響を受けることはない。又、本発明によれ
ば成膜空間の雰囲気温度、基体温度を所望に従って任意
に制御することにより、より安定したCVD法とするこ
とができる。本発明の方法が従来のCVD法と違う点の
1つは、あらかじめ成膜空間とは異なる空間「活性化空
間(C)」に於いて活性化された活性種を使うことであ
る。このことにより、従来のCVD法に比べて堆積速度
を飛躍的に伸ばすことが出来ると同時に品質の高い膜を
得ることが出来、加えて堆積膜形成の際の基体温度も一
層の低温化を図ることが可能になり、膜品質の安定した
堆積膜を工業的に大量に、しかも低コストで提供できる
When forming a deposited film in the film-forming space, the active species is simultaneously introduced into the film-forming space from the transport space (B), and is chemically combined with the compound (A) containing the constituent elements that will be the main constituents of the deposited film to be formed. interact with each other. As a result, a desired deposited film can be easily formed on a desired substrate. According to the method of the present invention, the deposited film that is formed without generating plasma in the film forming space is not adversely affected by etching action or other adverse effects such as abnormal discharge action. Further, according to the present invention, a more stable CVD method can be achieved by arbitrarily controlling the atmospheric temperature in the film forming space and the substrate temperature as desired. One of the differences between the method of the present invention and the conventional CVD method is that active species activated in advance in an "activation space (C)" different from the film forming space are used. As a result, the deposition rate can be dramatically increased compared to conventional CVD methods, and at the same time, a high-quality film can be obtained.In addition, the substrate temperature during the formation of the deposited film can also be lowered. This makes it possible to provide deposited films with stable film quality in large quantities industrially and at low cost.

本発明に於いて活性化空間(A)で生成される活性種は
放電、光、熱等のエネルギーで或いはそれ等の併用によ
って生成されるばかりではなく、触媒等との接触、ある
いは添加により生成されてもよい。
In the present invention, the active species generated in the activation space (A) are not only generated by energy such as electric discharge, light, heat, etc., or by a combination thereof, but also by contact with or addition of a catalyst, etc. may be done.

本発明に於いて、前記一般式(A)で示される化合物(
A)、RnMmとして、有効に使用されるものとしては
以下の化合物を挙げることが出来る。
In the present invention, the compound represented by the general formula (A) (
A) The following compounds can be mentioned as compounds that can be effectively used as RnMm.

即ち、Mとして周期律表の第2周期以降の第II族に属
する元素、周期率表の$3周期以降の第■族、第■族及
び第■族に属する元素又は第4周期以降の第■族に属す
る元素具体的にはBe、Mg、Ca、Sr、Ba、Zn
、Cd。
That is, as M, elements belonging to Group II from the second period onwards of the periodic table, elements belonging to Groups ■, Groups ■, and Group ■ from the $3 period onwards of the periodic table, or elements belonging to Group II from the fourth period onwards. ■Elements belonging to group Specifically, Be, Mg, Ca, Sr, Ba, Zn
, Cd.

Hg、AM、Ga、In、Tu、Ge、Sn。Hg, AM, Ga, In, Tu, Ge, Sn.

Pb、P、As、Sb、Bi、S、Se、Te等を有す
る化合物を挙げることが出来る。
Compounds containing Pb, P, As, Sb, Bi, S, Se, Te, etc. can be mentioned.

これ等の元素の中、各局の(b)属に属する元素を有す
る化合物を選択するのが望ましい。
Among these elements, it is desirable to select a compound having an element belonging to group (b) of each group.

Rとしては、直鎖状及び側鎖状の飽和炭化水素や不飽和
炭化水素から誘導される一価、二価及び三価の炭化水素
基、或は、飽和又は不飽和の単環状の及び多環状の炭化
水素より誘導される一価、二価及び三価の炭化水素基を
有する化合物を挙げることが出来る。
R is a monovalent, divalent, or trivalent hydrocarbon group derived from a linear or side chain saturated hydrocarbon or unsaturated hydrocarbon, or a saturated or unsaturated monocyclic or polyvalent hydrocarbon group. Compounds having monovalent, divalent and trivalent hydrocarbon groups derived from cyclic hydrocarbons can be mentioned.

不飽和の炭化水素基としては、炭素・炭素の結合は単一
種の結合だけではなく、−重結合。
As an unsaturated hydrocarbon group, the carbon-carbon bond is not only a single type of bond, but also a double bond.

二重結合、及び三重結合の中の少なくとも2種の結合を
有しているものも本発明の目的の達成に違うものであれ
ば有効に採用され得る。
Those having at least two types of double bonds and triple bonds can also be effectively adopted as long as they are different from each other in achieving the object of the present invention.

又、二重結合を複数有する不飽和炭化水素基の場合、非
集積二重結合であっても集積二重結合であっても差支え
ない。
Further, in the case of an unsaturated hydrocarbon group having a plurality of double bonds, it does not matter whether the double bonds are non-integrated double bonds or integrated double bonds.

非環状炭化水素基としてはアルキル基、アルケニル基、
アルキニル基、アルキリデン基。
Examples of acyclic hydrocarbon groups include alkyl groups, alkenyl groups,
Alkynyl group, alkylidene group.

アルケニリデン基、アルキニリデン基、アルギリジン基
、アルケニリジン基、′フルキニリジン基等を好ましい
ものとして挙げることが出来、殊に炭素数としては、好
ましくは1〜lOより好ましくは炭素数1〜7、最適に
は炭素数1〜5のものが望ましい。
Preferable examples include alkenylidene groups, alkynylidene groups, argyridine groups, alkenylidine groups, and 'flukynylidine groups. In particular, the number of carbon atoms is preferably 1 to 10, more preferably 1 to 7, and most preferably carbon Numbers 1 to 5 are desirable.

本発明に於いては、有効に使用される化合物(A)とし
て、標準状態で気体状であるか或は使用環境下に於いて
容易に気化し得るものが選択される様に上記に列挙した
RとMとの選択に於いて、適宜所望に従って、RとMの
組合せの選択がなされる。
In the present invention, as the compound (A) to be effectively used, those listed above are selected so as to be gaseous in the standard state or easily vaporized in the usage environment. In selecting R and M, a combination of R and M is selected as desired.

本発明に於いて、化合物(A)として、有効に使用され
る具体的なものとしては B eMe 2 、MgMe 2 、AJ12Me 6
 。
In the present invention, specific compounds that can be effectively used as compound (A) include BeMe 2 , MgMe 2 , AJ12Me 6
.

G aMe 3 、 I nMe 3 、 TIMe 
3 。
GaMe 3 , InMe 3 , TIMe
3.

GeMe4  、S  nMe4  、PbMe4  
GeMe4, SnMe4, PbMe4
.

M e  3  P  、  M e  3  A  
s  、 M e 3 S  b  。
M e 3 P, M e 3 A
s, M e 3 S b .

M e  3 B  i  、 M e  2 S  
、 M e  2 S  e  。
M e 3 B i , M e 2 S
, M e 2 S e .

Me2Te  、BeEt2.MgEt2  。Me2Te, BeEt2. MgEt2.

AM2Et6.GeEt3.InEt3゜TuEt  
3 、GeEt  4.5nEt  4 。
AM2Et6. GeEt3. InEt3゜TuEt
3, GeEt4.5nEt4.

PbEt4  、Et  3P、Et3As  。PbEt4, Et3P, Et3As.

Et3Sb、Et  3Bj、Et2S。Et3Sb, Et  3Bj, Et2S.

Et 2Se 、Et 2Te等を挙げることが出来る
。上記に於いて、Meはメチル基、Etは工(A)との
反応性を考慮すれば短い方が良く、成膜時の取扱い易さ
及び成膜空間への輸送等を考慮すれば長い方が良い。又
、活性種の寿命は、成膜空間の内圧にも依存する。
Examples include Et 2Se and Et 2Te. In the above, Me is a methyl group, and Et is a shorter one in consideration of its reactivity with the chemical (A), but a longer one is better in terms of ease of handling during film formation and transport to the film formation space. is good. Furthermore, the lifetime of the active species also depends on the internal pressure of the film forming space.

従って使用される活性種は、所望する特性を有する機能
性膜が生産効率も加味して効果的に得られるように選択
されて決定される他の成膜条件との関連性に於いて、適
当な寿命を有する活性種が適宜選択されて使用される。
Therefore, the active species to be used are selected and determined in such a way that a functional film having the desired properties can be effectively obtained, taking production efficiency into account. Active species having a long lifespan are appropriately selected and used.

本発明に於いて使用Sれる活性種は、その寿命として、
上記の点を鑑みて適宜選択された寿命を有する活性種が
具体的に使用される化合物(A)との化学的親和性の適
合範囲内の中より所望に従って適宜選択されるが、好ま
しくは、その寿命としては、本発明の適合範囲の環境下
あるのが望ましい。
The active species used in the present invention has a lifespan of:
The active species having a lifespan appropriately selected in view of the above points is appropriately selected as desired from within the compatible range of chemical affinity with the compound (A) specifically used, but preferably, As for its lifespan, it is desirable that the lifespan be within the environment compatible with the present invention.

本発明に於いて使用される活性種は、化合物(A)との
化学反応が連鎖的に起こる場合には所謂開始剤(ini
tiater)としての働きを最小限すれば良いことか
ら、成膜空間に導入される導入量としては、化学反応が
連鎖的に効率良く起こる程度の量が確保されれば良い。
The active species used in the present invention is a so-called initiator (initiator) when a chemical reaction with compound (A) occurs in a chain reaction.
Since it is sufficient to minimize the function as a teater, the amount introduced into the film-forming space should be such that a chemical reaction can occur efficiently in a chain reaction.

本発明に於いて使用される活性種は成膜空間(A)で堆
積膜を形成する最、同時に成膜空間(A)に導入され、
形成される堆積膜の主構成成分となる構成要素を含む前
記化合物(A)又は/及び該化合物(A)の励起種(A
)と化学的に相互作用する。その結果所望の基体上に所
望の機能性を有する玲積層が容易に形成される。
The active species used in the present invention are introduced into the film forming space (A) at the same time as forming the deposited film in the film forming space (A),
The compound (A) containing the constituent elements that will be the main constituents of the deposited film to be formed or/and the excited species (A) of the compound (A)
) interacts chemically with As a result, a laminated layer having desired functionality can be easily formed on a desired substrate.

本発明によれば成膜空間(A)の雰囲気温度、基体温度
を所望に従って任意に制御する事により、より安定した
CVD法とする事ができる。
According to the present invention, a more stable CVD method can be achieved by arbitrarily controlling the ambient temperature and substrate temperature of the film forming space (A) as desired.

本発明に於て、活性化空間(C)に導入され、活性種を
生成させる原料としては、好ましくは気体」二の又は容
易に気化し得る物質で、水素ラジカルを生成する物質を
挙げることが出来、具体的にはH2,D2.HD等が挙
げられ、その他、He、Ar等の稀ガスも挙げることが
出来る。
In the present invention, the raw material introduced into the activation space (C) to generate active species is preferably a gaseous or easily vaporizable substance, and may include a substance that generates hydrogen radicals. Success, specifically H2, D2. Examples include HD, and rare gases such as He and Ar may also be used.

上述したものに、活性化空間(C)で熱、光、放電など
の活性化エネルギーを加えることにより、活性種が生成
される。この活性種を成膜空間(A)へ導入する。この
際、活性種の寿命が望ましくはlXl0−4秒以上であ
ることが必要で、その様な寿命を有することで堆積効率
及び堆積速度の−Fiを促進させ、成膜空間(A)に導
入される化合物(A)との化学反応の効率を増す。
Activated species are generated by adding activation energy such as heat, light, discharge, etc. to the above-described energy in the activation space (C). This active species is introduced into the film forming space (A). At this time, it is necessary that the lifetime of the active species is preferably lXl0-4 seconds or more, and having such a lifetime promotes deposition efficiency and deposition rate -Fi, and introduces the active species into the film forming space (A). increases the efficiency of the chemical reaction with compound (A).

活性化空間(C)に於いて活性種生成物質に活性化作用
を起す活性化エネルギーとしては、具体的には抵抗加熱
、赤外線加熱等による熱エナルギー、レーザー光、水銀
ランプ光、ハロゲンラブ光等の光エネルギー、マイクロ
波、RF、低周波、DC等の放電を利用する電気エネル
ギー等々を挙げることが出来、これ等の活性化エネルギ
ーは活性空間(C)に於いて単独で活性種生成物質に作
用させても良く、又、2種以上を併用して作用させても
良い。成膜空間(A)に導入される化合物(A)及び活
性種としては、そのままでも分子レベル的相互衝突によ
って化学反応を生起し、所望の基体上に機能成膜を堆積
させることが出来るものを前記に列挙したものの中より
夫々選択することが出来るが、化合物(A)及び活性種
の夫々の選択の仕方によって、前記の化学反応性に乏し
い場合、或いは一層効果的に化学反応を行わせて、効率
良く堆積膜を基体上に生成する場合には、成膜空間(A
)に於いて、化合物(A)又は/及び活性種に作用する
反応促進エネルギー、例えば前述の活性化空間(C)に
於いて使用される活性化エネルギーを使用しても差支え
ないものである。又は成膜空間(A)に導入する前に化
合物(A)を他の活性化空間(D)に於いて、化合物(
A)を前述した励起状態にする為に励起エネルギーを作
用させても良い。
Examples of the activation energy that causes an activation effect on the active species generating substance in the activation space (C) include thermal energy such as resistance heating, infrared heating, laser light, mercury lamp light, halogen lab light, etc. Examples include light energy, microwave, RF, low frequency, electrical energy using discharge such as DC, etc., and these activation energies can be used alone to generate active species in the active space (C). They may be allowed to act, or two or more types may be used in combination. The compound (A) and active species introduced into the film forming space (A) are those that can cause a chemical reaction by mutual collision at the molecular level and deposit a functional film on the desired substrate. Each of the compounds listed above can be selected, but depending on the selection of the compound (A) and the active species, the chemical reaction may be poor, or the chemical reaction may be carried out more effectively. , in order to efficiently generate a deposited film on a substrate, the film forming space (A
), there is no problem in using the reaction promoting energy acting on the compound (A) or/and the active species, such as the activation energy used in the above-mentioned activation space (C). Alternatively, before introducing the compound (A) into the film forming space (A), the compound (A) is added to another activation space (D).
Excitation energy may be applied to bring A) into the above-mentioned excited state.

本発明に於て成膜空間(A)に導入される化合物(A)
の量と活性化空間(C)から導入される活性種の量の割
合は、堆積条件、化合物(A)及び活性種の種類、所望
Xれる機能成膜の特性などで適宜所望に従って決められ
るが好ましくは1000:l〜1:10(導入流量比)
が適当であり、より好ましくは500:1〜l:5とさ
れるのが望ましい。
Compound (A) introduced into the film forming space (A) in the present invention
The ratio between the amount of the active species introduced from the activation space (C) can be determined as desired depending on the deposition conditions, the types of the compound (A) and the active species, the desired characteristics of functional film formation, etc. Preferably 1000:l to 1:10 (introduction flow rate ratio)
is suitable, and more preferably 500:1 to 1:5.

活性種が化合物(A)と連鎖的化学反応を起さない場合
には、1−記の導入量の割合は、好ましくは10:1〜
1:10、より好ましくは4:1〜2:3とされるのが
望ましい。
When the active species does not cause a chain chemical reaction with the compound (A), the ratio of the amount introduced in 1- is preferably 10:1 to 10:1.
The ratio is preferably 1:10, more preferably 4:1 to 2:3.

成膜時に於ける成膜空間(A)の内圧としては、化合物
(A)及び活性種の選択される種類及び堆積条件等に従
って適宜決定されるが、好ましくは1X10−2〜5×
103Pa、より好ましくは5XlO−2〜lX103
Pa、最適にはlXl0−1〜5X 102 Paとさ
れるのが望ましい。又、成膜時に基体を加熱する必要が
ある場合には基体温度としては好ましくは、30〜45
0℃、より好ましくは50〜300°C。
The internal pressure of the film forming space (A) during film formation is appropriately determined according to the selected types of compound (A) and active species, deposition conditions, etc., but is preferably 1×10 −2 to 5×
103Pa, more preferably 5XlO-2 to lX103
Pa, preferably 1X10-1 to 5X102 Pa. In addition, if it is necessary to heat the substrate during film formation, the substrate temperature is preferably 30 to 45
0°C, more preferably 50-300°C.

最適には50〜25000とされるのが望ましい。The optimum number is preferably 50 to 25,000.

本発明に於いて、成膜用の基体として使用されるのは、
導電性でも電気絶縁性であっても良い。導電性基体とし
ては、例えば、NiCr。
In the present invention, the substrate used for film formation is:
It may be electrically conductive or electrically insulating. As the conductive substrate, for example, NiCr.

ステンレス、AM、Cr、Mo、Au、Ir。Stainless steel, AM, Cr, Mo, Au, Ir.

Nb、Ta、V、Ti、Pt、Pd等の金属又はこれら
等の合金が挙げられる。
Examples include metals such as Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネート、七ローズアセテート、ポリプロピ
レン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチ
レン、ポリアミド等の合成樹脂のフィルム又はシート、
ガラス。
Examples of the electrically insulating substrate include films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, heptarose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and polyamide;
glass.

セラミック、紙等が通常使用される。これ等の電気絶縁
性基体は、好適には少なくともその一方の表面が導電処
理され、該導電処理された表面側に他の層が設けられる
のが望ましい。
Ceramic, paper, etc. are commonly used. Preferably, at least one surface of these electrically insulating substrates is conductively treated, and another layer is preferably provided on the conductively treated surface side.

例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.

AM、Cr、Mo、Au、Ir、Nb、Ta。AM, Cr, Mo, Au, Ir, Nb, Ta.

V、Ti、Pt、Pd、In2O3,5n02゜ITO
(I n203+5n02)等の薄膜を設ける事によっ
て導電処理され、或いはポリエステルフィルム等の合成
樹脂フィルムであれば、NiCr、AM、Ag、Pd、
Zn、Ni。
V, Ti, Pt, Pd, In2O3, 5n02゜ITO
(I n203+5n02), etc., or if it is a synthetic resin film such as polyester film, NiCr, AM, Ag, Pd,
Zn, Ni.

Au、Cr、Mo、Ir、Nb、Ta、V。Au, Cr, Mo, Ir, Nb, Ta, V.

Tj、Pt等の金属で真空蒸着、電子ビーム蒸着、スパ
ッタリング等で処理し、又は、前記金属でラミネート処
理して、その表面が導電処理される。基体の形状として
は、円筒状、ベルト状、板状等、任意の形状として得、
所望によってその形状は決定される。
The surface is treated with a metal such as Tj or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal to make the surface conductive. The shape of the base body can be any shape such as cylindrical, belt-like, plate-like, etc.
Its shape is determined as desired.

これ等の他にS i 、Ge 、GaAs 、SO3等
の半導体基体或いは既に他の機能性膜が形成されている
前記の基体も使用することが出来る。
In addition to these, semiconductor substrates such as Si, Ge, GaAs, SO3, or the above-mentioned substrates on which other functional films are already formed can also be used.

成膜空間(A)に化合物(A)及び活性種を導入する際
の導入の仕方は、成膜空間(A)に連結yれている輸送
管を通じて導入しても良いし、或いは成膜空間(A)に
設置しである基体の成膜表面近くまで前記の輸送管を延
在させて、先端をノズル状となして導入しても良とし、
輸送管を二重にして内側の管で一方を、外側の管で他方
を、例えば内側の管で活性種を、外側の管で化合物(A
)を夫々輸送して成膜空間(A)中に導入しても良い。
The compound (A) and active species may be introduced into the film forming space (A) through a transport pipe connected to the film forming space (A), or through a transport pipe connected to the film forming space (A). The transport pipe may be extended to near the film forming surface of the substrate installed in (A), and the tip may be introduced with a nozzle shape,
The transport tubes are doubled, with the inner tube carrying one side and the outer tube carrying the other side. For example, the inner tube carries the active species, and the outer tube carries the compound (A).
) may be transported and introduced into the film forming space (A).

又、輸送管に連結されている2木のノズルを用意し、該
2木のノズルの先端を成膜空間(A)に既に設置されて
いる基体の表面近傍に配して、基体の表面近くに於いて
夫々のノズルより吐出される化合物(A)と活性種とが
混合される様にして導入しても良い。この場合には、基
体上に選択的に機能成膜を形成することが可能なので成
膜と同時にパターン化が出来る為に好都合である。
In addition, two wooden nozzles connected to the transport pipe are prepared, and the tips of the two wooden nozzles are placed near the surface of the substrate already installed in the film forming space (A). In this step, the compound (A) discharged from each nozzle and the active species may be mixed and introduced. In this case, it is possible to selectively form a functional film on the substrate, which is convenient because patterning can be performed simultaneously with film formation.

本発明に於いて、輸送空間(A)内への輸送空間(B)
の開放口の位置は、輸送空間(A)の成膜空間への開放
口の位置より好ましくは0゜1mm〜200 m mが
適当であり、より好ましくは1mm”100mmとする
のが望ましい。
In the present invention, the transport space (B) into the transport space (A)
The position of the opening of the transport space (A) to the film forming space is preferably 0.1 mm to 200 mm, more preferably 1 mm to 100 mm.

次に本発明の堆積膜製造方法によって形成される光導電
部材の典型的な例を挙げて本発明を説明する。
Next, the present invention will be explained by citing typical examples of photoconductive members formed by the deposited film manufacturing method of the present invention.

第1図は、本発明によって得られる典型的な光導電部材
の構成例を説明する為の図である。
FIG. 1 is a diagram for explaining an example of the configuration of a typical photoconductive member obtained by the present invention.

第1図に示す光導電部材100は、光導電部材用として
の支持体lotの−にに光導電層102とギャップ型電
極103とで構成される層構造を有している。以下の説
明では、電極103を本発明の方法で作成する場合を述
べる。
A photoconductive member 100 shown in FIG. 1 has a layered structure consisting of a photoconductive layer 102 and a gap-type electrode 103 on the bottom of a support for a photoconductive member. In the following description, a case will be described in which the electrode 103 is created by the method of the present invention.

支持体lotとしては、電気絶縁性であることが必要で
ある。光導電層102は、光導電部材としての機能を十
分に発揮することができるような光導電特性を持つよう
に、例えばシリコン原子を母体とし、ハロゲン(X)を
含み、必要に応じて水素原子(H)を含むアモルファス
シリコン5−5iX(H)で構成される。
The support lot needs to be electrically insulating. The photoconductive layer 102 is made of, for example, silicon atoms, contains halogen (X), and hydrogen atoms as necessary, so as to have photoconductive properties that allow it to fully function as a photoconductive member. It is composed of amorphous silicon 5-5iX (H) containing (H).

電極103の形成は先ず、活性化空間(A)に、82等
の活性種生成用の原料ガスが導入され所定の活性化エネ
ルギーの作用により活性種が生成され、輸送空間(A)
を介して成膜空間に導入される。
To form the electrode 103, first, a raw material gas for generating active species such as 82 is introduced into the activation space (A), active species are generated by the action of a predetermined activation energy, and then the material gas is introduced into the transport space (A).
is introduced into the film-forming space through.

他方、たとえば、(CH3)3A文。On the other hand, for example, (CH3) 3A sentence.

(C2H5)3 I n等の電極材料の原料となる化合
物(A)は輸送空間(B)を通じて、その開放口位置よ
り下流側で前記の活性種と混合されて、化学的相互作用
を起す。
The compound (A), which is a raw material for the electrode material such as (C2H5)3In, is mixed with the active species through the transport space (B) on the downstream side of the open opening position to cause chemical interaction.

化合物(A)と活性種から成る混合ガスは、成膜空間内
に導入され、予め光導電層102が形成され、成膜空間
に配されている基体の前記光導電層102 、、l二に
電極103が形成される。
A mixed gas consisting of the compound (A) and active species is introduced into the film forming space, and is applied to the photoconductive layer 102 of the substrate on which the photoconductive layer 102 has been formed in advance and which is placed in the film forming space. Electrode 103 is formed.

実施例1 第2図に示す装置を使い、以下の如き操作により、平板
状の基板]−に予め形成されたA−Si:Hから成る光
導電膜が形成された部材の前記光導電膜」−に電極を作
製した。
Example 1 Using the apparatus shown in FIG. 2, the photoconductive film of a member on which a photoconductive film made of A-Si:H was previously formed on a flat plate-shaped substrate was prepared by the following operations. An electrode was made on -.

第2図に於いて、201は成膜室(A)、出用壁、20
5は堆積膜形成用の化合物(A)のガス放出パイプ、2
06は活性化エネルギー源であるマイクロ波電源、20
7は堆積膜形成用のガラス基板[この実施例に於いては
、既にA−3i:H光導電層が形成されている(不図示
)]、208はガラス基板加熱用ヒーター、209はヒ
ーター用の電線、210は基板ホルダー、211は化合
物(A)用のガス導入パイパイプであり、213は活性
化室(B)202から成膜室(A)201へ活性種及び
化合物(Nllの混合ガスの導入用ノズルである。
In Fig. 2, 201 is a film forming chamber (A), an exit wall, 20
5 is a gas discharge pipe for compound (A) for forming a deposited film; 2
06 is a microwave power source which is an activation energy source, 20
7 is a glass substrate for forming a deposited film [in this example, an A-3i:H photoconductive layer has already been formed (not shown)], 208 is a heater for heating the glass substrate, and 209 is for a heater. 210 is a substrate holder, 211 is a gas introduction pipe for the compound (A), and 213 is a gas introduction pipe for the active species and the compound (Nll) from the activation chamber (B) 202 to the film forming chamber (A) 201. This is an introduction nozzle.

本実施例に於いては原料ガス導入用パイプ205の先端
の位置は、ノズル213から約5cmのところに設定し
た。
In this embodiment, the tip of the raw material gas introduction pipe 205 was set at a distance of about 5 cm from the nozzle 213.

成膜室(A)201にあらかじめ光導電層を形成したガ
ラス基板207をいれ、排気バルブ(不図示)を開け、
成膜室(A)及び活性化室(B)を約1O−5torr
の真空度にした。
A glass substrate 207 on which a photoconductive layer has been formed in advance is placed in the film forming chamber (A) 201, and an exhaust valve (not shown) is opened.
The film forming chamber (A) and activation chamber (B) are heated to approximately 1O-5 torr.
The vacuum level was set to .

次に加熱ヒーター208によりガラス基板温度を約20
0°Cに保持した。次に活性化室(B)202に活性種
生成用の原料ガスとしてH2ガス50SCCMをガス導
入用パイプ212を通じて導入した。別に活性化室(B
)202に電極形成用の原料ガスとし、Heガスにより
バブリングされた(CH3)aA文をlOmmol/m
inの割合で導入した。流量が安定してから排気バルブ
を調節して成膜室(A)の内圧を0.002Toorと
した。内圧が一定になってからマイクロ波電源206を
動作させ、活性化室(B)202に200Wの放電エネ
ルギーを投入した。
Next, the temperature of the glass substrate is raised to about 20°C by heating heater 208.
It was kept at 0°C. Next, 50 SCCM of H2 gas was introduced into the activation chamber (B) 202 through the gas introduction pipe 212 as a raw material gas for generating active species. Separate activation chamber (B
) 202 as a raw material gas for electrode formation, (CH3)aA statement bubbled with He gas was added at 1Ommol/m
It was introduced at a rate of in. After the flow rate became stable, the exhaust valve was adjusted to bring the internal pressure of the film forming chamber (A) to 0.002 Torr. After the internal pressure became constant, the microwave power source 206 was operated, and 200 W of discharge energy was input into the activation chamber (B) 202.

この状態で20分間保ち成膜室(A)201内のガラス
基板207の光導電層上に約300人厚のAn膜を堆積
した。この様にして作成したAn膜を通常のパターニン
グによってギャップ長2.5cm、キャップ間隔0.2
 m mのくし型Ai主電極形成した。この様にして作
成した試料の前記電極間に電圧を印加し、流れる電流を
測定したところ、光照射時と暗時の電流の比はわらなか
った。
This state was maintained for 20 minutes to deposit an An film with a thickness of approximately 300 nm on the photoconductive layer of the glass substrate 207 in the film forming chamber (A) 201. The An film created in this way was patterned with a gap length of 2.5 cm and a cap spacing of 0.2 cm.
A comb-shaped Al main electrode of mm was formed. When a voltage was applied between the electrodes of the sample thus prepared and the flowing current was measured, the ratio of the current during light irradiation and during dark was not different.

実施例2 実施例1に於いて(CH3) 3AJ1の代りに第1表
に示す原料ガスを化合物(A)として夫々使用し、導入
量を1 m m o l / m i nとし、第1表
に記載した条件及びあらかじめ光導電層を形成していな
いガラス基板を用いた以外は、実施例1と略々同様にし
て成膜したところ第1表に示す薄膜が形成された。
Example 2 In Example 1, the raw material gases shown in Table 1 were used as compounds (A) instead of (CH3) 3AJ1, and the amount introduced was 1 mmol/min, and the amounts shown in Table 1 were The thin films shown in Table 1 were formed in substantially the same manner as in Example 1 except for using the conditions described in 1 and using a glass substrate on which no photoconductive layer was previously formed.

これ等の薄膜に就いて電気的及び光学的な膜特性の評価
を行ったところいずれも均一膜厚で均一で高品質の膜特
性に優れた膜であることが確認された。
When these thin films were evaluated for electrical and optical film characteristics, it was confirmed that they were all films with uniform thickness, high quality, and excellent film characteristics.

第1表 実施例3 実施例1に於いて、 ノズル213の周囲に設置された
RF放電装置(不図示)13.56MHzの高周波で3
Wの電力を投入してノズル213内にプラズマ雰囲気を
形成した。この場合、基体207はプラズマ雰囲気には
直接触れない様にプラズマ雰囲気の下流側線1cmの位
置においた。成膜開始後30分で約1000大圧のA文
膜が形成できた。この際の基体温度は100°Cに保っ
た。上記以外は実施例1と同様にした行った。
Table 1 Example 3 In Example 1, an RF discharge device (not shown) installed around the nozzle 213 discharged 3.
Power of W was applied to form a plasma atmosphere inside the nozzle 213. In this case, the base 207 was placed at a position 1 cm downstream of the plasma atmosphere so as not to directly touch the plasma atmosphere. Thirty minutes after the start of film formation, an A film with a pressure of about 1,000 atmospheres was formed. The substrate temperature at this time was maintained at 100°C. Except for the above, the same procedure as in Example 1 was carried out.

このAM膜を設けた試料を実施例1と同様に評価したと
ころ、良好なデバイス特性を示すことが確認された。
When the sample provided with this AM film was evaluated in the same manner as in Example 1, it was confirmed that it exhibited good device characteristics.

又、光導電層からの剥離もなく機械的にも優れたA文膜
であった。
Furthermore, the A pattern film was mechanically excellent without peeling from the photoconductive layer.

〔発明の効果〕〔Effect of the invention〕

本発明の堆積膜形成法によれば、形成される膜に所望さ
れる電気的、光学的、光導電的及び機械的特性が向上し
、また、成膜における再現性が向−1−シ、膜品質の向
」−と膜質の均一化が可能になると共に、膜の大面積化
に有利であり、膜の生産性の向上並びに量産化を容易に
達成することができる。
According to the deposited film forming method of the present invention, the desired electrical, optical, photoconductive, and mechanical properties of the formed film are improved, and the reproducibility in film formation is improved. It is possible to improve the film quality and make the film quality uniform, and it is also advantageous for increasing the area of the film, and it is possible to easily achieve improvement in film productivity and mass production.

更に、低温での成膜も可能であるために、耐熱性に乏し
い基体上にも成膜できる、低温処理によって工程の短縮
化を図れるといった効果が発揮される。
Further, since it is possible to form a film at a low temperature, the film can be formed even on a substrate with poor heat resistance, and the process can be shortened by low-temperature treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を用いて作成される光導電部材
の1実施態様例を説明する為に層構造を示した模式図で
ある。 第2図は、本発明の製造法を具現化する為の装置の1例
を示す模式的説明図である。 201−−−一成膜室(A)、 202−−−一活性化室(B)、 203.204−−−一活性化エネルギー導入壁及び活
性種用原料ガス放出壁、 205−一−−ガス放出パイプ、 206−−−−マイクロ波電源、 207−−−−ガラス基板、 208−−−一加熱用ヒーター、 209−−−−ヒーター用電線、 210−−−一基板ボルダ−, 211−−−−ガス導入パイプ、 212−−m−ガス導入パイプ、 213−−m−ノズル。
FIG. 1 is a schematic diagram showing a layer structure for explaining one embodiment of a photoconductive member produced using the method of the present invention. FIG. 2 is a schematic explanatory diagram showing an example of an apparatus for implementing the manufacturing method of the present invention. 201---1 film formation chamber (A), 202---1 activation chamber (B), 203.204---1 activation energy introduction wall and active species raw material gas discharge wall, 205-1--- Gas release pipe, 206---Microwave power source, 207---Glass substrate, 208----Heating heater, 209---Electric wire for heater, 210----Substrate boulder, 211- ---Gas introduction pipe, 212--m-gas introduction pipe, 213--m-nozzle.

Claims (6)

【特許請求の範囲】[Claims] (1)機能性の堆積膜の形成用の原料となる下記の一般
式(A)で表わされる化合物(A) と、該化合物(A)と化学反応する活性種とを成膜空間
に導入するに際して、前記活性種は、前記成膜空間に連
絡する輸送空間(A)を通じ前記化合物(A)は、前記
輸送空間 (A)内に設けられ前記成膜空間に連絡する輸送空間(
B)を通じて夫々前記成膜空間に導入してこれ等を化学
反応させることにより形成された事を特徴とする機能性
堆積膜。 R_nM_m−−−−−−−(A) 但し、mはRの価数に等しいか又はその整 数倍の正整数、nはMの価数に等しいか又はその整数倍
の正整数、Mは周期律表の第2周期以降の第II族に属す
る元素、第3周期以降の第III族、第V族及び第VI族に
属する元素又は、第4周期の第IV族に属する元素を示す
。 Rは、炭化水素基を示す。
(1) A compound (A) represented by the following general formula (A), which serves as a raw material for forming a functional deposited film, and an active species that chemically reacts with the compound (A) are introduced into the film formation space. At this time, the active species is transported through a transport space (A) communicating with the film forming space, and the compound (A) is transported through a transport space (A) provided within the transport space (A) and communicating with the film forming space.
A functional deposited film characterized in that it is formed by introducing each of the functional deposited films into the film forming space through B) and causing a chemical reaction between them. R_nM_m---(A) However, m is a positive integer equal to or an integral multiple of the valence of R, n is a positive integer equal to or an integral multiple of the valence of M, and M is the period. Indicates an element belonging to Group II from the second period onwards, an element belonging to Group III, V and VI from the third period onward, or an element belonging to Group IV from the fourth period of the Table of Laws. R represents a hydrocarbon group.
(2)機能性堆積膜の形成に利用される用な原料となる
下記の一般式(A)で表わせる化合物(A)と該化合物
(A)と化学反応する活性種とを成膜空間に導入して、
該成膜空間内に配されている基体上に機能性堆積膜を形
成する機能性堆積膜の製造法に於いて、前記活性種は、
前記成膜空間に下流側で連絡する輸送空間(A)を通じ
、前記化合物(A)は、前記輸送空間(A)内に設けら
れ前記成膜空間に連絡する輸送空間(B)を通じて夫々
、前記成膜空間内に導入することを特徴とする機能性堆
積膜の製造法。 R_nM_m−−−−−−−(A) 但し、mはRの価数に等しいか又はその整 数倍の正整数、nはMの価数に等しいか又はその整数倍
の正整数、Mは周期律表の第2周期以降の第II族に属す
る元素、第3周期以降の第III族、第V族及び第VI族に
属する元素又は、第4周期の第IV族に属する元素を示す
。 Rは、炭化水素基を示す。
(2) A compound (A) represented by the following general formula (A), which serves as a raw material used in the formation of a functional deposited film, and an active species that chemically reacts with the compound (A) are placed in the film formation space. By introducing
In the method for producing a functional deposited film, which forms a functional deposited film on a substrate disposed in the film-forming space, the active species is
Through a transport space (A) that communicates with the film forming space on the downstream side, the compound (A) is transferred to the compound (A) through a transport space (B) provided in the transport space (A) and communicating with the film forming space, respectively. A method for producing a functional deposited film characterized by introducing the film into a film forming space. R_nM_m---(A) However, m is a positive integer equal to or an integral multiple of the valence of R, n is a positive integer equal to or an integral multiple of the valence of M, and M is the period. Indicates an element belonging to Group II from the second period onwards, an element belonging to Group III, V and VI from the third period onwards, or an element belonging to Group IV from the fourth period of the Table of Laws. R represents a hydrocarbon group.
(3)前記活性種は、前記輸送空間(A)の上流に設け
た活性化空間に於いて生成される特許請求の範囲第2項
に記載の機能性堆積膜の製造法。
(3) The method for producing a functional deposited film according to claim 2, wherein the activated species are generated in an activation space provided upstream of the transport space (A).
(4)前記輸送空間(A)は活性化空間を兼ねている特
許請求の範囲第2項に記載の機能性堆積膜の製造法。
(4) The method for producing a functional deposited film according to claim 2, wherein the transport space (A) also serves as an activation space.
(5)前記化合物(A)は、前記輸送空間(B)の上流
に設けた励起空間で予め励起される特許請求の範囲第2
項に記載の機能性堆積膜の製造法。
(5) The compound (A) is excited in advance in an excitation space provided upstream of the transport space (B).
The method for producing the functional deposited film described in Section 1.
(6)前記輸送空間(B)は、励起空間を兼ねている特
許請求の範囲第2項に記載の機能性堆積膜の製造法。
(6) The method for producing a functional deposited film according to claim 2, wherein the transport space (B) also serves as an excitation space.
JP28669185A 1985-12-19 1985-12-19 Manufacturing method of functionally deposited film Expired - Lifetime JPH0821540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28669185A JPH0821540B2 (en) 1985-12-19 1985-12-19 Manufacturing method of functionally deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28669185A JPH0821540B2 (en) 1985-12-19 1985-12-19 Manufacturing method of functionally deposited film

Publications (2)

Publication Number Publication Date
JPS62145724A true JPS62145724A (en) 1987-06-29
JPH0821540B2 JPH0821540B2 (en) 1996-03-04

Family

ID=17707724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28669185A Expired - Lifetime JPH0821540B2 (en) 1985-12-19 1985-12-19 Manufacturing method of functionally deposited film

Country Status (1)

Country Link
JP (1) JPH0821540B2 (en)

Also Published As

Publication number Publication date
JPH0821540B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPH01198481A (en) Formation of deposited film by microwave plasma cvd
JPH0647727B2 (en) Deposited film formation method
JPH01306565A (en) Formation of deposited film
US5178904A (en) Process for forming deposited film from a group II through group VI metal hydrocarbon compound
JP2537175B2 (en) Functional deposition film manufacturing equipment
JPH0744069B2 (en) Method for manufacturing electroluminescent device
JPS62145724A (en) Functional deposited film and manufacture of the same
JPS61189649A (en) Formation of deposited film
JPS62150709A (en) Functional deposition film and manufacture thereof
JPS61189650A (en) Formation of deposited film
JPS62145727A (en) Functional deposited film and manufacture of the same
JPS62149119A (en) Functional deposit film and manufacture thereof
JPS61222113A (en) Forming method for deposit-film
JPS62149120A (en) Functional deposit film and manufacture thereof
JPS62145728A (en) Functional deposited film and manufacture of the same
JPH09153456A (en) Polycrystalline silicon laminate, thin-film silicon solar cell, and thin-film transistor
JPS61189630A (en) Formation of deposited film
JPS61189629A (en) Formation of deposited film
JPS61188929A (en) Formation of deposited film
JPH01275761A (en) Deposit film-forming equipment
JP2547728B2 (en) Deposition film forming equipment
JPS6296675A (en) Formation of deposited film
JPH0645883B2 (en) Deposited film formation method
JPS61179870A (en) Method of forming accumulated film
JPS63224216A (en) Formation of deposition film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term