[go: up one dir, main page]

JPS6214103B2 - - Google Patents

Info

Publication number
JPS6214103B2
JPS6214103B2 JP54110892A JP11089279A JPS6214103B2 JP S6214103 B2 JPS6214103 B2 JP S6214103B2 JP 54110892 A JP54110892 A JP 54110892A JP 11089279 A JP11089279 A JP 11089279A JP S6214103 B2 JPS6214103 B2 JP S6214103B2
Authority
JP
Japan
Prior art keywords
region
gate
main electrode
impurity
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110892A
Other languages
Japanese (ja)
Other versions
JPS5635458A (en
Inventor
Masafumi Shinho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP11089279A priority Critical patent/JPS5635458A/en
Priority to GB8027685A priority patent/GB2057760B/en
Priority to US06/183,064 priority patent/US4449284A/en
Publication of JPS5635458A publication Critical patent/JPS5635458A/en
Publication of JPS6214103B2 publication Critical patent/JPS6214103B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は集積回路装置特に縦型静電誘導トラン
ジスタ(SIT)やFETなど電界効果トランジスタ
を含む集積回路装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an integrated circuit device, particularly an integrated circuit device including field effect transistors such as vertical static induction transistors (SITs) and FETs.

電界効果トランジスタ特にSITは高入力インピ
ーダンス、低出力インピーダンス、低容量、高変
換コンダクタンスのため高周波特性が優れている
が、集積回路に組み込んだ場合には高連論理、低
消費電力という長所を有することは衆知の通りで
ある。特に縦型構造とした場合には集積密度が高
く、製作が容易という利点も併せもつ。しかしな
がら、さらなる性能向上のためにはいくつかの製
作上の問題も生じている。横型pnpバイポーラ・
トランジスタ(BJT)を負荷とし、nチヤンネル
SITを駆動トランジスタとした論理回路
(SITL)を例にとつて従来製造方法の問題点につ
いて説明する。第1図には従来型の代表例である
ドレイン電極1とゲート電極4がほぼ同一平面上
にある。いわゆる平面型SITLの平面図(第1図
b)。A―A′線に沿つた断面図(第1図a)、B
―B′線に沿つた断面図(第1図c)を示す。第1
図bの平面図には簡単のため表面酸化膜7、金属
配線(インジエクタ電極5、ゲート電極4、ドレ
イン電極1)は図示してない。この平面型SITL
は、4回のフオトリソグラフイの工程と2回の拡
散工程という簡単な製造工程によつて実現できる
が、p+ゲート領域14と主電極領域の1つであ
るn+ソース領域12の間の容量を小さくするた
めにはp+ゲート領域14の面積をできるだけ小
さくする必要がある。そのためには、p+ゲート
領域14形成のための拡散開孔を細く、しかも拡
散深さを浅くしなければならないが、実際にはノ
ーマリ・オフ特性を必要とするためゲート・スペ
ーシングWGを充分狭く、しかもn+ソース領域1
2から注入される電子に対する電位障壁をn+
レイン領域11からできるだけ遠いn-チヤンネ
ル領域13内に形成させるためp+ゲート領域1
4はある程度深くしなければならない。その結
果、p+ゲート領域14の面積は大きくなつてし
まい、かつ他の主電極領域であるn+ドレイン領
域11とp+ゲート領域14が重畳してしまう。
これはゲート・ドレイン間容量を非常に大きくす
る原因となり、n+ドレイン領域11形成用拡散
開孔は非常な微細加工を必要とするし、深いn+
拡散や位置のずれも許されなくなつてしまう。さ
らにp+ゲート領域14の外側周囲の部分は動作
に全く不要な部分であり接合容量増加と共に、
p+ゲート領域14から正孔がn-領域13内に注
入されてキヤリア蓄積効果を増大させてしまう。
結果的に、動作速度、消費電力の性能向上が果た
せなくなつてしまう。ゲート・ドレイン間容量を
減少させるため、ゲートを段差底面や側面に設け
た段差型あるいはステツプ・カツト型SITLも提
案されているが、段差底面の加工精度があがらな
いこと、配線が難しいことなどによつて必ずしも
充分な性能を出すに至つていない。
Field-effect transistors, especially SITs, have excellent high-frequency characteristics due to their high input impedance, low output impedance, low capacitance, and high conversion conductance, but when incorporated into integrated circuits, they have the advantage of high interconnection logic and low power consumption. is common knowledge. In particular, a vertical structure has the advantage of high integration density and easy manufacturing. However, some manufacturing problems have arisen to further improve performance. Horizontal pnp bipolar
N-channel with transistor (BJT) as load
The problems of conventional manufacturing methods will be explained using a logic circuit (SITL) using SIT as a driving transistor as an example. In FIG. 1, a drain electrode 1 and a gate electrode 4, which are a typical example of the conventional type, are on substantially the same plane. A plan view of the so-called flat type SITL (Fig. 1b). Cross-sectional view along line A-A' (Fig. 1a), B
- shows a cross-sectional view (Fig. 1c) along line B'. 1st
For simplicity, the surface oxide film 7 and metal wiring (injector electrode 5, gate electrode 4, drain electrode 1) are not shown in the plan view of FIG. This planar SITL
can be realized by a simple manufacturing process of four photolithography steps and two diffusion steps, but the In order to reduce the capacitance, it is necessary to make the area of the p + gate region 14 as small as possible. To achieve this, it is necessary to make the diffusion hole for forming the p + gate region 14 narrower and the diffusion depth shallower, but in reality, normally-off characteristics are required, so the gate spacing WG must be made sufficiently large. Narrow and n + source area 1
In order to form a potential barrier for electrons injected from the p + gate region 1 in the n - channel region 13 as far as possible from the n + drain region 11,
4 must be deep to some extent. As a result, the area of the p + gate region 14 becomes large, and the n + drain region 11, which is another main electrode region, overlaps with the p + gate region 14.
This causes the gate-drain capacitance to become extremely large, and the diffusion hole for forming the n+ drain region 11 requires extremely fine processing, and the n +
Diffusion and positional shifts are no longer allowed. Furthermore, the outer peripheral portion of the p + gate region 14 is completely unnecessary for operation, and as the junction capacitance increases,
Holes are injected into the n - region 13 from the p + gate region 14, increasing the carrier accumulation effect.
As a result, it becomes impossible to improve performance in terms of operating speed and power consumption. In order to reduce the gate-drain capacitance, step-type or step-cut type SITLs in which the gate is placed on the bottom or side of the step have been proposed, but these methods do not improve the processing accuracy of the bottom of the step and are difficult to wire. Therefore, sufficient performance is not necessarily achieved.

上述の問題は、第1図のSITLの例にとどまら
ず、n+ソース領域12が主表面側にあるいわゆ
る正立型や他のSIT論理回路、アナログ回路につ
いても、pチヤンネルSIT、ノーマリ・オンSIT
についても同様なことがいえる。
The above-mentioned problem is not limited to the SITL example shown in Fig. 1, but also applies to so-called upright type SIT logic circuits and analog circuits in which the n + source region 12 is on the main surface side, p-channel SIT, normally-on SIT, etc. SIT
The same can be said for .

本発明は、上述の欠点を除いた第2図のSIT構
造の容易な製造方法を提供するものである。第2
図に示したSIT構造は、第2図bに平面図、A―
A′線、B―B′線に沿つたそれぞれの断面図を第
2図aとcに示すように、主電極高不純物密度領
域の1つであるn+ドレイン領域11とp+ゲート
領域14とがほぼ同一平面上に露出し、しかも第
1凹部V1が両領域の間に設けられている。この
第1凹部のためn+ドレイン領域11とp+ゲート
領域14とが高不純物密度で重畳することが妨げ
られ、その結果ゲート・ドレイン間容量、耐圧が
充分改善される。また、p+ゲート領域14の外
側には第2凹部V2が設けられ、p+ゲート領域1
4の面積減少と少数キヤリア蓄積効果減少に役立
つている。望ましくは、第1凹部V1の深さはn+
ドレイン領域11より深くp+ゲート領域14よ
り浅く形成され、第2凹部V2はp+ゲート領域1
4より深く形成される。第2図のSITL構造例で
は第1図と同様な回路例を示しているためSITの
横にp+インジエクタ領域15とn-領域13とp+
ゲート領域14とによりpnpBJTが形成されとい
るが、第2凹部V2と同程度に深い第3凹部V3
ために実質的にベース幅が拡がり、逆に平面距離
は減少して集積密度向上に役立つ。このpnpBJT
構造は、この例に限らず種々の変形があるが、本
発明の製造方法はそれらに容易に適用できる。本
発明の製造方法の目的は、p+ゲート領域14と
n+ドレイン領域11の幅及び位置を1回のマス
ク工程で得るためにSi3N4膜やSiOxNyなど窒化物
を含む酸化膜等の絶縁膜を用い、選択Siエツチ、
選択酸化を利用して高精度、微細化可能な製造工
程を容易にすることである。他の目的は、Si基板
として{100}面を用い、異方性エツチによつて
第1凹部V1と第2凹部V2を同時に形成してさら
に製造を容易にすることであり、n-領域となるSi
単結晶上に高不純物密度多結晶層を堆積し、多結
晶層の拡散、酸化のされ易さを利用し、また上述
の絶縁膜を用いてコンタクト用開孔を容易するな
ど上記の製造方法をとることによりさらに信頼
性、特性の向上したSIT集積回路素子を提供する
ことにある。
The present invention provides an easy method of manufacturing the SIT structure of FIG. 2 that eliminates the above-mentioned drawbacks. Second
The SIT structure shown in the figure is shown in plan view in Fig. 2b, and in A-
As shown in FIGS. 2a and 2c, cross-sectional views taken along lines A' and B-B', the n + drain region 11 and the p + gate region 14, which are one of the high impurity density regions of the main electrode, are shown. are exposed on substantially the same plane, and the first recessed portion V1 is provided between both regions. This first recess prevents the n + drain region 11 and the p + gate region 14 from overlapping with high impurity density, and as a result, the gate-drain capacitance and breakdown voltage are sufficiently improved. Further, a second recess V 2 is provided outside the p + gate region 14, and a second recess V 2 is provided outside the p + gate region 14.
4 is useful for reducing the area and reducing the minority carrier accumulation effect. Preferably, the depth of the first recess V 1 is n +
The second recess V 2 is formed deeper than the drain region 11 and shallower than the p + gate region 14 .
Formed deeper than 4. The SITL structure example in Figure 2 shows a circuit example similar to Figure 1, so there is a p + injector region 15, an n - region 13, and a p + injector region 15 next to the SIT .
A pnp BJT is formed by the gate region 14, but because of the third recess V3, which is as deep as the second recess V2 , the base width is substantially expanded, and conversely, the plane distance is decreased, improving the integration density. useful for. This pnpBJT
Although the structure is not limited to this example and there are various modifications, the manufacturing method of the present invention can be easily applied to them. The purpose of the manufacturing method of the present invention is to
In order to obtain the width and position of the n + drain region 11 in one mask step, an insulating film such as an oxide film containing nitride such as Si 3 N 4 film or SiOxNy is used, and selective Si etching is performed.
The objective is to facilitate a manufacturing process with high precision and miniaturization using selective oxidation. Another purpose is to further facilitate manufacturing by using a {100} plane as the Si substrate and simultaneously forming the first recess V 1 and the second recess V 2 by anisotropic etching . Si area
The above manufacturing method includes depositing a polycrystalline layer with high impurity density on a single crystal, taking advantage of the easiness of diffusion and oxidation of the polycrystalline layer, and using the above-mentioned insulating film to facilitate contact holes. The purpose of this invention is to provide an SIT integrated circuit element with further improved reliability and characteristics.

以下に図面を参照しながら本発明の製造方法に
ついて詳述する。第3図a〜jは、第2図の
SITL構造を実現するための本発明の製造方法の
例である。n+領域12となるn+Si基板にn-チヤ
ンネル領域13及びn-ベース領域13aとなる
n-領域をエピタキシヤル成長によつて堆積す
る。n-領域13の不純物密度、厚みは所期のSIT
特性によつて異なり、1012〜1015cm-3、1〜20μ
mである。典型的には1013〜1014cm-3、3〜7μ
m程度である。第3図aと第3図bにはそれぞれ
n-領域13の表面に酸化膜7をマスクとしてp+
ゲート領域14及びp+インジエクタ領域15を
浅く拡散した断面図と平面図を示す。これらp+
拡散深さは、後工程で最終値になるように調節さ
れるので、極く表面近傍への浅い拡散もしくはテ
ポジシヨンで充分である。また、拡散領域の平面
的形状は、後のSiエツチング工程で最終寸法とな
る様調整されるので、最終寸法より幅広くてもか
まわない。さらに、拡散領域上に形成する酸化膜
7の厚みは、次工程のn+拡散用マスクとなる厚
みで、うすい方が望ましく例えば1000〜2000Åで
ある。第3図cと第3図dとには、それぞれn+
ドレイン領域11形成のためn+拡散した断面図
と平面図を示す。このn+選択拡散は、上記p+
散と同様に最終寸法より幅広く、かつ浅く行な
う。このn+拡散領域上の酸化膜はなくても、ま
たは次工程のSi3N4膜堆積のための緩衝膜となれ
ば充分であり0〜1000Åの厚みで充分である。
n+拡散の表面密度はp+拡散のそれより高くても
低くてもかまわないが、低いときには後述する様
に選択拡散する必要がなく全面に拡散してもよ
い。以上2回のp+,n+拡散工程のマスク開孔
は、寸法的には非常に大雑把でよい。第3図eと
第3図fでは、Si3N4膜またはSiOxNy膜等選択酸
化のマスクとなる絶縁膜を堆積し、ゲート領域1
4、ドレイン領域11、インジエクタ領域15の
所定の平面寸法に各領域上にこの絶縁膜84,8
1,85を残し、かつその下の酸化膜7を残しそ
の他を除去する。この図では、横型pnpBJTのn-
ベース領域(n-領域13)上にも、Si3N4膜83
を残しているが、最終構造を第2図の横型
pnpBJTの様にするためには不要である。第3図
gと第3図hには、Si3N4膜81,83,84,
84をマスクとしてSi選択エツチし、浅い第1凹
部V1、第3凹部V3と深い第2凹部V2を形成し、
その後Si3N4膜81,84,85を将来コンタクト開孔
部になる部分だけ残し他を除去したときの断面図
及び平面図が示されている。第1凹部V1は主に
p+ゲート領域14とn+ドレイン領域11の間に
設けられ、最終的なn+拡散深さより深くp+拡散
深さより浅いことが望ましい。第2凹部V2は、
p+ゲート領域14のの外側や不要部に設けられ
最終的なp+拡散深さより深いことが望ましい。
p+インジエクタ領域15やp+ゲート領域14と
n-ベース領域13の間のそれぞれには、この例
では第1凹部V1と同程度の第3凹部V3が形成さ
れ、少なくとも最終的p+拡散深さより浅いこと
が望ましい。このSi選択エツチは、通常のSiエツ
チング液(HF―HNO3系)、CF4等プラズマ・エ
ツチ、イオン・エツチなど等方性エツチによつて
行なえるが、各凹部形成のためマスク工程とエツ
チング工程が数回必要となる。Si主表面の結晶面
が{100}面で、各領域が〈110〉方向に平行にす
れば、APW,KOH等のアルカリ系水溶液、ccl4
やトリクレンによるプラズマなどによる異方性エ
ツチにより、開孔幅によつて深さの異なる凹部が
同時に形成できる。例えばゲート・ドレイン間の
開孔幅を0.5〜4μmとすれば第1凹部V1は0.35
〜2.8μの深さとなり、第2凹部V2は第1凹部V1
以上の深さとすることができる。これは、異方性
エツチが{111}面に対して極めて遅いからであ
る。またp+領域に対しエツチ速度が遅いことも
あるので、最初他のエツチング方法で高密度部分
を除去することもできる。この異方性エツチ工程
によつて各領域の平面的最終寸法がほぼきまるわ
けで、各領域の相対的位置ずれはマスクの寸法精
度に依存するだけとなる。その後、コンタクト用
開孔を必要とするn+ドレイン領域11、p+ゲー
ト領域14、p+インジエクタ領域15のそれぞ
れの一部にSi3N4膜81,84,85を残す。こ
れにより、コンタクト開孔部の各領域からの位置
ずれは皆無とできる。第3図iには、上記Si3N4
膜81,84,85をマスクとして選択拡散しつ
つ各拡散深さを最終値とした断面図が示されてい
る。p+ゲート領域14は、n+ドレイン領域より
深い必要があるのでp型不純物の拡散係数はn型
不純物のそれよりも大きく選ばれている。例えば
BとAsがそれぞれ用いられる。第3図jには、
Si3N4膜81,84,85を除去し、さらにその
下の酸化膜7を全面エツチによつてSiを露出させ
てコンタクト用開孔部を得、金属(Al,Pt,Al
―Si等…)を蒸着し配線を行なつた断面図を示
す。
The manufacturing method of the present invention will be described in detail below with reference to the drawings. Figures 3 a to j are the same as those in Figure 2.
1 is an example of the manufacturing method of the present invention for realizing a SITL structure. The n + Si substrate becomes the n + region 12, the n - channel region 13 and the n - base region 13a.
The n - region is deposited by epitaxial growth. The impurity density and thickness of n -region 13 are the same as the expected SIT
Depending on the characteristics, 10 12 to 10 15 cm -3 , 1 to 20μ
It is m. Typically 10 13 to 10 14 cm -3 , 3 to 7μ
It is about m. Figures 3a and 3b respectively show
Using the oxide film 7 as a mask on the surface of the n - region 13, p +
A cross-sectional view and a plan view are shown in which gate region 14 and p + injector region 15 are shallowly diffused. These p +
Since the diffusion depth is adjusted to the final value in a subsequent process, shallow diffusion or tipping very close to the surface is sufficient. Furthermore, since the planar shape of the diffusion region is adjusted to the final dimension in the subsequent Si etching step, it may be wider than the final dimension. Further, the thickness of the oxide film 7 formed on the diffusion region is the thickness that will serve as a mask for n + diffusion in the next step, and is preferably thin, for example, 1000 to 2000 Å. Figures 3c and 3d each contain n +
A cross-sectional view and a plan view of n + diffusion to form the drain region 11 are shown. This n + selective diffusion is performed to be wider and shallower than the final dimension, similarly to the p + diffusion described above. It is sufficient that there is no oxide film on this n + diffusion region, or that it serves as a buffer film for the Si 3 N 4 film deposition in the next step, and a thickness of 0 to 1000 Å is sufficient.
The surface density of n + diffusion may be higher or lower than that of p + diffusion, but when it is low, selective diffusion may not be necessary and it may be diffused over the entire surface as will be described later. The mask openings for the above two p + and n + diffusion steps may be very rough in size. In FIGS. 3e and 3f, an insulating film such as a Si 3 N 4 film or a SiOxNy film is deposited to serve as a mask for selective oxidation, and the gate region 1 is
4. The insulating films 84 and 8 are formed on the drain region 11 and the injector region 15 in predetermined plane dimensions on each region.
1 and 85, and the oxide film 7 below, the remaining portions are removed. In this figure, n - of a horizontal pnpBJT
A Si 3 N 4 film 83 is also formed on the base region (n - region 13).
However, the final structure is the horizontal type shown in Figure 2.
It is not necessary to make it like pnpBJT. 3g and 3h show Si 3 N 4 films 81, 83, 84,
84 as a mask to selectively etch Si to form a shallow first recess V 1 , a third recess V 3 and a deep second recess V 2 ,
Thereafter, a cross-sectional view and a plan view are shown in which the Si 3 N 4 films 81, 84, and 85 are removed, leaving only the portions that will become contact openings in the future. The first recess V 1 is mainly
It is preferably provided between the p + gate region 14 and the n + drain region 11 and is deeper than the final n + diffusion depth and shallower than the p + diffusion depth. The second recessed portion V2 is
It is desirable that it be provided outside the p + gate region 14 or in an unnecessary part and be deeper than the final p + diffusion depth.
p + injector region 15 and p + gate region 14
A third recess V 3 is formed between each of the n base regions 13 in this example, the same size as the first recess V 1 and preferably at least shallower than the final p + diffusion depth. This Si selective etching can be performed using a normal Si etching solution (HF-HNO 3 system), plasma etching such as CF 4 , or isotropic etching such as ion etching, but a mask process and etching are required to form each recess. Several steps are required. If the crystal plane of the main Si surface is {100} plane and each region is parallel to the <110> direction, alkaline aqueous solutions such as APW and KOH, CCL 4
By anisotropic etching using plasma such as trichlene or trichloride, recesses with different depths depending on the opening width can be formed at the same time. For example, if the opening width between the gate and drain is 0.5 to 4 μm, the first recess V 1 is 0.35 μm.
The depth is ~2.8μ, and the second recess V 2 is deeper than the first recess V 1
The depth can be greater than or equal to the depth. This is because anisotropic etching is extremely slow for {111} planes. Also, since the etch rate may be slower than in the p + region, other etching methods may be used to first remove the high density areas. This anisotropic etching process substantially determines the final planar dimensions of each region, and the relative positional deviation of each region depends only on the dimensional accuracy of the mask. Thereafter, Si 3 N 4 films 81, 84, and 85 are left in portions of each of the n + drain region 11, p + gate region 14, and p + injector region 15 that require contact openings. Thereby, there is no displacement of the contact opening from each region. In Figure 3 i, the above Si 3 N 4
A cross-sectional view is shown in which selective diffusion is performed using films 81, 84, and 85 as masks, and each diffusion depth is set to a final value. Since the p + gate region 14 needs to be deeper than the n + drain region, the diffusion coefficient of the p type impurity is selected to be larger than that of the n type impurity. For example, B and As are used respectively. In Figure 3j,
The Si 3 N 4 films 81, 84, 85 are removed, and the underlying oxide film 7 is etched over the entire surface to expose the Si to obtain a contact opening, and metal (Al, Pt, Al
-Si, etc.) is deposited and wiring is performed.

以上の様に、本発明によれば、各選択拡散工程
は大雑把な開孔でよく、かつ最終拡散深さを浅く
したい領域には拡散係数の小さな不純物を、深く
したい領域には拡散係数の大きな不純物を添加す
ればよい。第3図のnチヤンネルSITでは、B,
Al,Gs等によりp+ゲート領域を、As,Sb等によ
つてn+ドレイン領域が形成される。pチヤンネ
ルでは逆にp+ドレイン領域にIn,Tl,Bなど、
n+ゲート領域にはpが添加される。勿論、より
深く拡散したい領域は予め深く選択拡散すること
によつて最終値の制御が可能である。また、n-
ベース領域13aには第3図の例と異なり、第2
凹部V2並の深い第3凹部V3を設けなかつたが、
第3図の工程を変えることなく設けることも可能
であるし、第1凹部V1並の浅い第3凹部V3を設
けることによつて容量、表面再結合をある程度減
少すると共に第2凹部V2をn+ソース領域12に
達するまで掘つても横型BJTのベース領域はなく
ならず、かつ第2凹部V2のため素子間分離拡散
をする必要がなくなる。
As described above, according to the present invention, each selective diffusion step requires only rough openings, and impurities with a small diffusion coefficient are injected into the region where the final diffusion depth is desired to be shallow, and impurities with a large diffusion coefficient are added into the region where the final diffusion depth is desired to be deep. Just add impurities. In the n-channel SIT shown in Figure 3, B,
A p + gate region is formed of Al, Gs, etc., and an n + drain region is formed of As, Sb, etc. Conversely, in the p channel, In, Tl, B, etc. are added to the p + drain region.
P is added to the n + gate region. Of course, it is possible to control the final value by preliminarily selectively diffusing the region deeper into the region where it is desired to diffuse deeper. Also, n -
Unlike the example of FIG. 3, the base region 13a has a second
Although the third recess V 3 as deep as recess V 2 was not provided,
It is possible to provide the process without changing the process shown in FIG . 3, and by providing a third recess V3 as shallow as the first recess V1 , the capacitance and surface recombination can be reduced to some extent, and the second recess V3 can be provided. 2 until it reaches the n + source region 12, the base region of the lateral BJT does not disappear, and the second recessed portion V 2 eliminates the need for isolation and diffusion between elements.

第4図には、本発明を第3図と同様な回路例に
適用した他の製造例を説明する断面図が示されて
いる。第4図aにおいては、n+ソース領域12
上にn-領域13をエピタキシヤル成長し、Si3N4
膜等の絶縁膜18を堆積し、p+ゲート領域1
4、p+インジエクタ領域15を浅く選択拡散し
た断面を示す。p+拡散中に薄く酸化膜7を形成
する。第4図bでは、Si3N4膜18を全面エツチ
により除去し、p+拡散領域以外の全表面にn+
散層を形成する。このn+拡散層はn+ドレイン領
域11、n+ベース領域16となるべきものを含
む。各拡散層上の酸化膜7は薄い方が望ましい。
第4図cでは、再びSi3N4膜を堆積した後、各領
域の平面形状、寸法でSi3N4膜81,83,8
4,85,86酸化膜7を残した断面図、第4図
dではSiの異方性、選択エツチして第1凹部V1
第2凹部V2、第3凹部V3を形成後、コンタクト
開孔部上のSi3N4膜81,84,85を残し他の
表面を選択酸化した断面図が示されている。後
は、第3図と同様である。この第4図の例では、
マスク工程が一回減少できると共に、横型BJTの
n-ベース領域13a上にn+ベース領域16が形
成でき、表面再結合が減少し正孔到達率αが向上
する。またこの例では、第2凹部V2は、V字形
に設けたが、第2図の第2凹部と同様な効果をも
つ。
FIG. 4 shows a sectional view illustrating another manufacturing example in which the present invention is applied to the same circuit example as in FIG. 3. In FIG. 4a, n + source region 12
An n - region 13 is epitaxially grown on top of the Si 3 N 4
An insulating film 18 such as a p + gate region 1 is deposited.
4 shows a cross section of p + injector region 15 subjected to shallow selective diffusion. A thin oxide film 7 is formed during p + diffusion. In FIG. 4b, the Si 3 N 4 film 18 is removed by etching the entire surface, and an n + diffusion layer is formed on the entire surface except the p + diffusion region. This n + diffusion layer includes what is to become an n + drain region 11 and an n + base region 16. It is desirable that the oxide film 7 on each diffusion layer be thin.
In FIG. 4c, after depositing the Si 3 N 4 film again, the planar shape and dimensions of each region are the same as Si 3 N 4 films 81, 83, 8.
4, 85, 86 A cross-sectional view in which the oxide film 7 is left, and in FIG .
A cross-sectional view is shown in which after forming the second recess V 2 and the third recess V 3 , the Si 3 N 4 films 81, 84, 85 on the contact openings were left and the other surfaces were selectively oxidized. The rest is the same as in FIG. 3. In this example of Figure 4,
The mask process can be reduced once, and horizontal BJT
The n + base region 16 can be formed on the n base region 13a, reducing surface recombination and improving the hole arrival rate α. Furthermore, in this example, the second recess V 2 is provided in a V-shape, but it has the same effect as the second recess shown in FIG. 2.

最初の浅いp,n両拡散層は、通常のガス拡
散、固体ソース拡散、ソース塗布拡散、ドープ
ト・オキサイド法等が使えるが、不純物添加多結
晶も使うことができる。第5図には、不純物添加
いわゆるドープト多結晶を用いた本発明の方法が
示されている。便宜上、SITの表面近傍のみの断
面図を示した。第5図aでは、まずp型ドープト
多結晶層24を堆積し、将来のゲート領域上を残
し他を除いた後、n型ドープト多結晶層21を全
面に堆積する。このとき、各添加不純物の拡散係
数はp型の方が大で、しかも密度はn型の方が低
である。第5図bでは、多結晶層21上にSi3N4
膜を堆積し、各領域が所要の平面形状になるよう
にSi3N4膜81,85多結晶層21,24を残
し、n-(単結晶)領域13を露出する。次に第
5図cのように、一度選択酸化を行ない、酸化速
度の数倍大きい多結晶層21,24側に、n-
(単結晶)領域13表面より厚く酸化膜7を形成
する。不必要な不純物拡散を避けるには低温高圧
酸化が望ましい。第5図dの様に、酸化膜厚の差
を利用して酸化膜全面エツチによりn-(単結
晶)領域13表面を露出させて異方性エツチを行
ない、第1凹部V1と第2凹部V2を形成する。次
に、第5図eに示すように、コンタクト開孔部分
上のSi3N4膜81,84を残し、他の領域を選択
酸化しつつ拡散する。このときp+ゲート領域1
4のコンタクト開孔部分下の多結晶層21,24
は速い拡散によつてすべてp型になり、かつそれ
以外の多結晶は酸化されやすいため厚く酸化膜7
が形成され配線容量の減少に役立つ。以下の工程
は、第3図の例と同様に行なえばよいわけである
が、多結晶層を介したコンタクトが行なえ、金属
のスパイク現象が防げる。多結晶層21,24の
不純物密度は抵抗性接触が行なえる程度に高けれ
ばよく、この例ではp型が1019〜1020cm-3に対し
n型が5×1018〜9×1019cm-3とわずかに低いだ
けで充分である。ドープト多結晶を用いる拡散
を、第3図や第4図の方法と同様に適用できる
が、側面の選択酸化はサイドエツチ防止のため望
ましい。逆に、p+選択拡散、n+全面拡散(相対
的に低密度)の方法もドープト多結晶に限らず他
の拡散方法でも適用できることはいうまでもな
い。
For the initial shallow p and n diffusion layers, ordinary gas diffusion, solid source diffusion, source coating diffusion, doped oxide method, etc. can be used, but impurity-doped polycrystals can also be used. FIG. 5 shows the method of the invention using an impurity-doped so-called doped polycrystal. For convenience, only a cross-sectional view near the surface of the SIT is shown. In FIG. 5a, first a p-type doped polycrystalline layer 24 is deposited, and after removing the remaining portions except for the future gate region, an n-type doped polycrystalline layer 21 is deposited over the entire surface. At this time, the diffusion coefficient of each added impurity is larger in the p-type, and the density is lower in the n-type. In FIG. 5b, Si 3 N 4 is deposited on the polycrystalline layer 21.
A film is deposited, and the Si 3 N 4 films 81, 85 and polycrystalline layers 21, 24 are left so that each region has a desired planar shape, and the n - (single crystal) region 13 is exposed. Next, as shown in FIG. 5c, selective oxidation is performed once, and n -
Oxide film 7 is formed thicker than the surface of (single crystal) region 13. Low-temperature, high-pressure oxidation is desirable to avoid unnecessary impurity diffusion. As shown in FIG. 5d, the surface of the n - (single crystal) region 13 is exposed by etching the entire surface of the oxide film using the difference in oxide film thickness, and anisotropic etching is performed to form the first recess V 1 and the second recess V 1 . Form a recess V 2 . Next, as shown in FIG. 5e, the Si 3 N 4 films 81 and 84 on the contact openings are left and other regions are selectively oxidized and diffused. At this time p + gate region 1
Polycrystalline layers 21 and 24 under the contact opening portion of No. 4
All polycrystals become p-type due to rapid diffusion, and other polycrystals are easily oxidized, so a thick oxide film 7 is formed.
is formed and helps reduce wiring capacitance. The following steps can be carried out in the same manner as in the example shown in FIG. 3, but contact can be made through the polycrystalline layer and the metal spike phenomenon can be prevented. The impurity density of the polycrystalline layers 21 and 24 is only required to be high enough to make a resistive contact, and in this example, the impurity density of the p-type is 10 19 to 10 20 cm -3 and the impurity density of the n-type is 5×10 18 to 9×10 19 A slightly lower value of cm -3 is sufficient. Diffusion using doped polycrystals can be applied in the same manner as the methods shown in FIGS. 3 and 4, but selective oxidation of the side surfaces is desirable to prevent side etching. Conversely, it goes without saying that p + selective diffusion and n + all-over diffusion (relatively low density) methods can be applied not only to doped polycrystals but also to other diffusion methods.

本発明の製造方法によれば、各領域の平面的形
状、寸法がSi3N4膜(または選択酸化に耐える絶
縁膜例えばSiOxNy膜)を残すマスク工程のみで
ほとんどきまること、それが同一平面上であるこ
とのため精度の高い微細化が可能である。またコ
ンタクト開孔がセルフ・アラインメントで行なえ
るため、位置ずれがなく微細化に有利である。さ
らに、有効に第1凹部、第2凹部、第3凹部等が
1回のエツチングで行なえるため、工程減少にな
ると共に、デバイス特性が凹部のため著しく改善
される利点をもつ。勿論ゲート・ドレイン間の第
1凹部V1は、すべて同じ深さにしなくてもよい
し、他の凹部も同様である。第3図や第4図で示
したように、本発明の寸法は縦型SITだけでなく
横型BJTにも有効であり、n-領域をp-領域とす
るだけで横型pチヤンネルSIT,FETにも効果的
である。さらに、縦型SITとして倒立型を例に述
べたが、n+ソース領域を主表面に設けた正立型
でも同様であり、縦型FETやBJTにも同じこと
がいえる。勿論、各領域の導電型を逆にした相補
型やノーマリ・オン、ノーマリ・オフの両型に応
用できることはいうまでもない。
According to the manufacturing method of the present invention, the planar shape and dimensions of each region are almost determined only by a masking process that leaves a Si 3 N 4 film (or an insulating film that can withstand selective oxidation, such as a SiOxNy film); Because of this, highly accurate miniaturization is possible. Furthermore, since the contact holes can be formed in self-alignment, there is no positional shift, which is advantageous for miniaturization. Further, since the first recess, the second recess, the third recess, etc. can be effectively etched in one step, there are advantages in that the number of steps is reduced and the device characteristics are significantly improved due to the recess. Of course, the first recesses V1 between the gate and drain do not all have to have the same depth, and the same applies to the other recesses. As shown in Figures 3 and 4, the dimensions of the present invention are effective not only for vertical SITs but also for lateral BJTs, and by simply changing the n - region to the p - region, it can be used for lateral p-channel SITs and FETs. is also effective. Furthermore, although an inverted type was described as an example of a vertical SIT, the same applies to an upright type in which an n+ source region is provided on the main surface, and the same can be said to vertical FETs and BJTs. Of course, it goes without saying that it can be applied to a complementary type in which the conductivity types of each region are reversed, and to both normally-on and normally-off types.

以上の様に、本発明の製造方法による集積回路
特にSIT,FET等のトランジスタは低容量、向上
した耐圧が得られるため、高速、低消費電力動作
論理回路、アナログIC、メモリ等トランジスタ
を含むすべてのICに本発明は適用されて特性を
大きく改善することができ、工業的に極めて有効
である。
As described above, since integrated circuits, especially transistors such as SIT and FET, produced by the manufacturing method of the present invention have low capacitance and improved breakdown voltage, all high-speed, low-power operation logic circuits, analog ICs, memory transistors, etc. The present invention can be applied to ICs to greatly improve their characteristics, and is extremely effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図bは従来構造の平面型SITLの平面図、
第1図aと第1図cはそれぞれ第1図bのA―
A′線及びB―B′線に沿つた断面図である。第2
図bは本発明の製造方法が適用さるべき新規な平
面型SITL構造の平面図、第2図aと第2図cは
それぞれ第1bのA―A′線及びB―B′線に沿つ
た断面図である。第3図a〜jはそれぞれ本発明
の製造方法例を説明するための断面図と平面図で
ある。第4図a〜dは本発明の他の製造工程の例
を説明するための断面図、第5図a〜eはさらに
本発明の他の製造工程の例を説明するための一部
拡大断面図である。 1…ドレイン電極、2…ソース電極、4…ゲー
ト電極、5…インジエクタ電極、11…n+ドレ
イン領域、12…n+ソース領域、13…n-(単
結晶)領域(n-チヤンネル領域)、13a…n-
ース領域、14…p+ゲート領域、15…p+イン
ジエクタ領域、16…n+ベース領域、7…酸化
膜、18,81,83,84,85,86…
Si3N4膜、21…n+ドープト多結晶層、24…p+
ドープト多結晶層、V1…第1凹部、V2…第2凹
部、V3…第3凹部。
Figure 1b is a plan view of a planar SITL with a conventional structure.
Figures 1a and 1c are A- in Figure 1b, respectively.
FIG. 3 is a cross-sectional view taken along line A' and line B-B'. Second
Figure b is a plan view of a new planar SITL structure to which the manufacturing method of the present invention is applied, and Figures 2a and 2c are views taken along lines A-A' and B-B' in Figure 1b, respectively. FIG. FIGS. 3a to 3j are a cross-sectional view and a plan view, respectively, for explaining an example of the manufacturing method of the present invention. 4A to 4D are cross-sectional views for explaining examples of other manufacturing processes of the present invention, and FIGS. 5A to 5E are partially enlarged cross-sectional views for further explaining examples of other manufacturing processes of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Drain electrode, 2... Source electrode, 4... Gate electrode, 5... Injector electrode, 11... n + drain region, 12... n + source region, 13... n - (single crystal) region (n - channel region), 13a...n - base region, 14...p + gate region, 15...p + injector region, 16...n + base region, 7... oxide film, 18, 81, 83, 84, 85, 86...
Si 3 N 4 film, 21...n + doped polycrystalline layer, 24...p +
Doped polycrystalline layer, V 1 ... first recess, V 2 ... second recess, V 3 ... third recess.

Claims (1)

【特許請求の範囲】 1 高不純物密度半導体第1主電極領域上の一導
電型低不純物密度単結晶半導体領域の表面に逆導
電型第1不純物を浅く選択添加したゲート領域
と、実質的にゲート領域以外の前記低不純物密度
領域の表面の少なくとも一部に一導電型第2不純
物を浅く選択添加した第2主電極領域とを所定の
面積よりも大きく設ける第1工程と、 ゲート、第2主電極領域上に窒化膜を含む絶縁
膜を堆積する第2工程と、 ゲート、第2主電極領域上の前記絶縁膜をゲー
ト、第2主電極領域の所定の平面形状および寸法
に選択的に残す第3工程と、 前記絶縁膜をマスクとして前記低不純物密度領
域を選択エツチし、第2主電極領域の工程最終拡
散深さより深くゲート領域の工程最終拡散深さよ
り浅い第1凹部と、ゲート領域の工程最終拡散深
さより深い第2凹部とを形成する第4工程と、 ゲート、第2主電極領域上の前記絶縁膜を前記
所定の平面形状および寸法より小さく選択的に残
す第5工程と、 前記絶縁膜をマスクとしてゲート、第2主電極
領域表面および第1、第2凹部の側面と底部とに
選択酸化膜を形成しつつ、ゲート、第2主電極領
域を前記工程最終拡散深さまで形成する第6工程
と、 前記絶縁膜を除去してゲート、第2主電極領域
へのコンタクト用開孔部を形成する第7工程と、 導電膜を堆積、選択エツチしてゲート、第2主
電極領域への配線を形成する第8工程と、 からなる集積回路装置の製造方法。 2 前記低不純物密度領域の結晶面を{100}面
とし、第1と第2凹部を異方性エツチによつて同
時に形成することを特徴とする特許請求の範囲第
1項記載の集積回路装置の製造方法。 3 前記第1不純物の拡散係数が前記第2不純物
の拡散係数より大きいことを特徴とする特許請求
の範囲第1項または第2項記載の集積回路装置の
製造方法。 4 前記第1工程が前記低不純物密度領域の表面
全体に第2主電極領域の第2不純物添加密度より
低い密度で第1不純物を添加したゲート領域の形
成と、第2主電極領域の選択形成よりなり、実質
的にゲート領域と第2主電極領域とを選択形成す
ることを特徴とする特許請求の範囲第3項記載の
集積回路装置の製造方法。 5 前記第1工程においてゲート、第2主電極領
域の少なくとも一方の領域の形成が第1または第
2不純物を添加された多結晶膜からの拡散によつ
てなされ、第3工程において前記絶縁膜の選択エ
ツチに続いて前記多結晶膜も同一形状に選択エツ
チし、さらに少なくとも前記多結晶膜の側面に選
択酸化膜を設けかつ第4工程で選択エツチさるべ
き前記低不純物密度領域表面を露出する工程の
後、第4工程を行うことを特徴とする特許請求の
範囲第1項または第2項記載の集積回路装置の製
造方法。
[Claims] 1. A gate region in which a first impurity of an opposite conductivity type is selectively added shallowly to the surface of a low impurity density single crystal semiconductor region of one conductivity type on a high impurity density semiconductor first main electrode region; a first step of providing a second main electrode region larger than a predetermined area, in which a second impurity of one conductivity type is shallowly selectively added to at least a part of the surface of the low impurity density region other than the region; a second step of depositing an insulating film containing a nitride film on the electrode region; and selectively leaving the insulating film on the gate and second main electrode region in a predetermined planar shape and dimensions of the gate and second main electrode region. a third step, selectively etching the low impurity density region using the insulating film as a mask, forming a first recess deeper than the final diffusion depth of the second main electrode region and shallower than the final diffusion depth of the gate region; a fourth step of forming a second recess deeper than the final diffusion depth; a fifth step of selectively leaving the insulating film on the gate and second main electrode regions smaller than the predetermined planar shape and dimensions; Using the insulating film as a mask, a selective oxide film is formed on the surface of the gate and second main electrode regions and on the sides and bottoms of the first and second recesses, while forming the gate and second main electrode regions to the final diffusion depth of the step. a sixth step; a seventh step of removing the insulating film to form a contact opening to the gate and second main electrode regions; and depositing and selectively etching a conductive film to form the gate and second main electrode regions. An eighth step of forming wiring to the integrated circuit device. 2. The integrated circuit device according to claim 1, wherein the crystal plane of the low impurity density region is a {100} plane, and the first and second recesses are formed simultaneously by anisotropic etching. manufacturing method. 3. The method of manufacturing an integrated circuit device according to claim 1 or 2, wherein the diffusion coefficient of the first impurity is larger than the diffusion coefficient of the second impurity. 4. The first step includes forming a gate region in which the first impurity is added to the entire surface of the low impurity density region at a density lower than the second impurity doping density of the second main electrode region, and selectively forming a second main electrode region. 4. The method of manufacturing an integrated circuit device according to claim 3, wherein substantially the gate region and the second main electrode region are selectively formed. 5. In the first step, at least one of the gate and second main electrode regions is formed by diffusion from the polycrystalline film doped with the first or second impurity, and in the third step, the insulating film is formed. Following the selective etching, the polycrystalline film is also selectively etched into the same shape, and further a selective oxide film is provided on at least the side surfaces of the polycrystalline film, and the surface of the low impurity density region to be selectively etched is exposed in a fourth step. 3. The method of manufacturing an integrated circuit device according to claim 1, wherein a fourth step is performed after the step.
JP11089279A 1979-08-30 1979-08-30 Manufacture of integrated circuit device Granted JPS5635458A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11089279A JPS5635458A (en) 1979-08-30 1979-08-30 Manufacture of integrated circuit device
GB8027685A GB2057760B (en) 1979-08-30 1980-08-27 Integrated circuit device and method of making the same
US06/183,064 US4449284A (en) 1979-08-30 1980-09-02 Method of manufacturing an integrated circuit device having vertical field effect transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11089279A JPS5635458A (en) 1979-08-30 1979-08-30 Manufacture of integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5635458A JPS5635458A (en) 1981-04-08
JPS6214103B2 true JPS6214103B2 (en) 1987-03-31

Family

ID=14547324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11089279A Granted JPS5635458A (en) 1979-08-30 1979-08-30 Manufacture of integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5635458A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714399B2 (en) * 1986-11-27 1995-02-22 政治 村井 Drilling device for implant material implantation groove
JPH07102215B2 (en) * 1987-03-06 1995-11-08 株式会社ニコン Guide device for piercing the jawbone
JPH07102216B2 (en) * 1987-06-19 1995-11-08 株式会社ニコン Guide device for piercing the jawbone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235987A (en) * 1975-09-16 1977-03-18 Hitachi Ltd Semiconductor integrated circuit
JPS5492078A (en) * 1977-12-28 1979-07-20 Seiko Instr & Electronics Ltd Charge injection element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235987A (en) * 1975-09-16 1977-03-18 Hitachi Ltd Semiconductor integrated circuit
JPS5492078A (en) * 1977-12-28 1979-07-20 Seiko Instr & Electronics Ltd Charge injection element

Also Published As

Publication number Publication date
JPS5635458A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
JP2728671B2 (en) Manufacturing method of bipolar transistor
JP3205361B2 (en) Method for manufacturing power MOS transistor with longitudinal current
US4072974A (en) Silicon resistive device for integrated circuits
JP2503460B2 (en) Bipolar transistor and manufacturing method thereof
US4933737A (en) Polysilon contacts to IC mesas
EP0078501A2 (en) Transistor-like semiconductor device and method of producing the same
JPH038343A (en) Bipolar transistor and manufacture thereof
JPH025432A (en) Manufacturing method of semiconductor device
US4407059A (en) Method of producing semiconductor device
JPH0241170B2 (en)
US4379305A (en) Mesh gate V-MOS power FET
US4184172A (en) Dielectric isolation using shallow oxide and polycrystalline silicon
US4352238A (en) Process for fabricating a vertical static induction device
US5447883A (en) Method of manufacturing semiconductor device
JPS6214103B2 (en)
US4449284A (en) Method of manufacturing an integrated circuit device having vertical field effect transistors
EP0036620B1 (en) Semiconductor device and method for fabricating the same
JPS6393150A (en) Semiconductor device and manufacture thereof
JP2915002B2 (en) Bipolar semiconductor integrated circuit device and method of manufacturing the same
US5328856A (en) Method for producing bipolar transistors having polysilicon contacted terminals
JPH02152240A (en) Manufacture of semiconductor device
JPH04287329A (en) Lateral bipolar transistor and its manufacture
JPS6122476B2 (en)
JPS61147575A (en) Manufacturing method of semiconductor device
JPS61201465A (en) Transistor manufacturing method