[go: up one dir, main page]

JPS62140420A - Position detector of surface - Google Patents

Position detector of surface

Info

Publication number
JPS62140420A
JPS62140420A JP60281126A JP28112685A JPS62140420A JP S62140420 A JPS62140420 A JP S62140420A JP 60281126 A JP60281126 A JP 60281126A JP 28112685 A JP28112685 A JP 28112685A JP S62140420 A JPS62140420 A JP S62140420A
Authority
JP
Japan
Prior art keywords
light
wafer
detection
detecting
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60281126A
Other languages
Japanese (ja)
Other versions
JPH0217929B2 (en
Inventor
Haruna Kawashima
春名 川島
Takahiro Akamatsu
赤松 孝弘
Hiroyoshi Kubo
博義 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60281126A priority Critical patent/JPS62140420A/en
Publication of JPS62140420A publication Critical patent/JPS62140420A/en
Publication of JPH0217929B2 publication Critical patent/JPH0217929B2/ja
Priority to US07/657,950 priority patent/US5162642A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To correct detection by using reference beams, and to enable precise detection with excellent reproducibility by irradiating a reference position on a light-receiving element with reference beams separately from reflected beams and detecting the quantity of displacement from a reference plane on the basis of the irradiation of reference beams. CONSTITUTION:A plurality of luminous flux having different wavelengths are projected, thus equalizing the interference action of detecting beams reflected by a surface to be detected and sections (the surface of resist and the surface of a semiconductor wafer 2 in the wafer 2 on which the photo-resist is applied) in the vicinity of the surface to be detected, then reducing a detection error due to the interference action of detecting beams. A detection output from a light-receiving element for detecting a position is corrected by using predetermined reference beams. A reference light source 20 generates reference beams for detecting the drift of the light source 20. Accordingly, the drift of the light- receiving element for detecting the position of detecting beams is detected and corrected by employing reference beams, thus accurately detecting the position of the surface of the wafer 2, etc. with excellent reproducibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、物体表面の基準面からの隔りを検知する面位
置検知装置に関する。このような面位置検知装置は、例
えば半導体製造の分野において、半導体ウェハ表面にレ
チクルパターンを繰返し縮小投影露光するステッパと呼
ばれる露光装置の自動焦点制御装置用として上記ウェハ
表面とレチクルパターン結像面とのずれを検知するため
に好適に用いられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface position detection device that detects the distance of an object surface from a reference surface. Such a surface position detection device is used, for example, in the field of semiconductor manufacturing, for use in an automatic focus control device of an exposure device called a stepper, which repeatedly exposes a reticle pattern on the surface of a semiconductor wafer by reducing projection. It is suitably used to detect the deviation of the

[従来の技術] 従来の縮少投影露光装置のウェハ面位置検出方法として
は、エアマイクロセンサを用いる方法と、ウェハ面に斜
め方向から光束を入射させ、その反射光の位置ずれ量を
検出する方法(光学方式)とが知られている。
[Prior Art] Conventional methods for detecting the position of a wafer surface in a reduction projection exposure apparatus include a method using an air microsensor, and a method in which a beam of light is incident on the wafer surface from an oblique direction and the amount of positional deviation of the reflected light is detected. method (optical method) is known.

しかしながら、エアマイクロにセンサよる方法では、 ■パターン焼き付は部が直接に測長できない、■応答性
が光学式に比べて遅い、 ■エアマイクロセンサのノズルとウェハ面の間隔を50
〜60μm程度に近接させなければ、高精度の検出がで
きない、 などという問題があった。
However, with the method using air microsensors, ■ pattern printing cannot directly measure the length, ■ response is slower than the optical method, and ■ the distance between the air microsensor nozzle and the wafer surface is 50 mm.
There was a problem in that highly accurate detection could not be achieved unless the distance was approximately 60 μm.

一方、光学方式の場合は、パターン焼き付は部が直接に
測長でき、応答性も早いが、ウェハ上に塗布されたレジ
ストの存在によってレジスト表面で反射した光とウェハ
表面で反射した光とが干渉を起し、検出誤差を生じるた
め高精度の位置検出が困難であるという問題があった。
On the other hand, in the case of the optical method, the length of the pattern can be measured directly and the response is fast, but due to the presence of the resist coated on the wafer, the light reflected on the resist surface and the light reflected on the wafer surface are different. There is a problem in that highly accurate position detection is difficult because interference occurs and detection errors occur.

[発明の目的] 本発明の目的は、上述の従来形における問題点に鑑み、
光学方式の面位置検出装置において、波長の異なる複数
の光束を入射することにより、被検出面およびその近傍
(フォトレジストを塗布した半導体ウェハであればレジ
スト表面およびウェハ表面)で反射した検出光の干渉作
用を平均化させ、検出光の干渉作用による検出誤差を軽
減するとともに、所定の参照光を用いて位置検出用受光
素子の検出出力を補正するという構想に基づき、面位置
検知精度を向上させることにある。
[Object of the invention] The object of the present invention is to solve the problems of the conventional type described above,
In an optical surface position detection device, by inputting multiple light beams with different wavelengths, detection light reflected from the detection surface and its vicinity (for a semiconductor wafer coated with photoresist, the resist surface and wafer surface) is detected. The surface position detection accuracy is improved based on the concept of averaging the interference effect, reducing detection errors due to the interference effect of the detection light, and correcting the detection output of the position detection light receiving element using a predetermined reference light. There is a particular thing.

[実施例の説明] 以下、図面を用いて本発明の詳細な説明する。[Explanation of Examples] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施例に係る縮小投影露光装置用
自動焦点制御装置の構成を示す。同図において、1は縮
小投影レンズであり、その下方にウェハ2が位置してい
る。ウェハ2は上下方向に移動可能なステージ3に乗っ
ている。自動焦点制御装置の光学系は複数の光源4,5
を有している(第1図においては、簡単の為、複数光源
として2つの光源のみ描いである)。光源としては、波
長の異なるレーザあるいはLED等を用いる。この光源
4および5より出た光束(検出光)は、ビームスプリッ
タ(またはハーフミラ−でもよい)6により同一の光路
を形成し、レンズ7を経た俊、ミラー8で反射されウェ
ハ2上の反射点に結像する。
FIG. 1 shows the configuration of an automatic focus control device for a reduction projection exposure apparatus according to an embodiment of the present invention. In the figure, 1 is a reduction projection lens, and a wafer 2 is located below it. The wafer 2 is placed on a stage 3 that is vertically movable. The optical system of the automatic focus control device includes a plurality of light sources 4 and 5.
(In FIG. 1, for simplicity, only two light sources are depicted as a plurality of light sources). As the light source, lasers or LEDs with different wavelengths are used. The light fluxes (detection light) emitted from the light sources 4 and 5 form the same optical path through a beam splitter (or a half mirror) 6, pass through a lens 7, are reflected by a mirror 8, and are reflected at a reflection point on the wafer 2. image is formed.

この時、検出光のウェハ面への入射角を80’以上、す
なわちウェハ面と入射光束とのなす角θを10°以下と
し、また、検出光をウェハに対してS偏光となる様にす
ると、レジスト表面からの反射光強度が支配的となりウ
ェハ基板よりの反射光の影響を小さくする事ができる。
At this time, the angle of incidence of the detection light on the wafer surface is set to be 80' or more, that is, the angle θ between the wafer surface and the incident light beam is set to 10° or less, and the detection light is made to be S-polarized with respect to the wafer. , the intensity of the reflected light from the resist surface becomes dominant, and the influence of the reflected light from the wafer substrate can be reduced.

ウェハ2で反射した光束はミラー9で反射され、レンズ
10および偏光板11(または偏光ビームスプリッタ〉
を通り、さらにビームスプリッタ(またはハーフミラ−
)22を通った後、ポジションセンサダイオード12に
入光、結像する。
The light beam reflected by the wafer 2 is reflected by the mirror 9, and then passes through the lens 10 and polarizing plate 11 (or polarizing beam splitter).
and then a beam splitter (or half mirror).
) 22, the light enters the position sensor diode 12 and forms an image.

偏光板11(または偏光ビームスプリッタ)は、ウェハ
で反射した光束中のS偏光成分のみをポジションセンサ
ダイオード12に到達させることにより、検出光中のウ
ェハ基板での反射成分をざらに少なくするためのもので
ある。
The polarizing plate 11 (or polarizing beam splitter) allows only the S-polarized component in the light beam reflected by the wafer to reach the position sensor diode 12, thereby greatly reducing the component reflected by the wafer substrate in the detection light. It is something.

この自動焦点制御装置においては、ウェハ面上の光束の
反射点と受光素子上の入射点を結像関係に保つことによ
り、ウェハの上下方向の位置ずれを受光素子上の光束の
入光位置として検知し、投影レンズの焦点位置の自動制
御を行なうようにしている。
In this automatic focus control device, by maintaining an imaging relationship between the reflection point of the light beam on the wafer surface and the incident point on the light receiving element, vertical positional deviation of the wafer can be used as the incident position of the light beam on the light receiving element. This is detected and the focal position of the projection lens is automatically controlled.

光学方式の焦点位置検知装置における位置ずれ検出誤差
の原因として、ウェハの傾き、およびウェハ上に塗布さ
れた光透過物体であるレジストの存在が考えられるが、
前者のウェハの傾きにより生じる検出誤差は、上述のよ
うに、ウェハ上の反射点と受光素子上の光束の入射点と
を結像関係に保つことにより原理的に除く、ことができ
る。
Possible causes of positional deviation detection errors in optical focus position detection devices include the tilt of the wafer and the presence of a resist, which is a light-transmitting object, coated on the wafer.
The former detection error caused by the tilt of the wafer can be eliminated in principle by maintaining the imaging relationship between the reflection point on the wafer and the incident point of the light beam on the light receiving element, as described above.

一方、後者のレジストの存在は、レジスト表面での反射
光とウェハ表面での反射光との間に干渉が生じることに
より、受光素子上に結像した光束の強度の重心のずれと
なって現われる。すなわち、レジストの厚み、あるいは
検出光として用いる光の波長によって検出される位置が
異なることを意味する。
On the other hand, the presence of the latter resist causes interference between the light reflected from the resist surface and the light reflected from the wafer surface, which appears as a shift in the center of gravity of the intensity of the light beam focused on the photodetector. . This means that the detected position differs depending on the thickness of the resist or the wavelength of the light used as the detection light.

従って、より高精度の位置検出を可能とするためには、
この検出光に対するレジストの干渉効果を除くことがぜ
ひとも必要となる。
Therefore, in order to enable more accurate position detection,
It is absolutely necessary to eliminate the interference effect of the resist on this detection light.

次に、第2図および第3図を用いて検出光に対するレジ
ストの干渉効果による検出誤差の軽減について説明する
Next, the reduction of detection errors due to the interference effect of the resist with respect to the detection light will be explained using FIGS. 2 and 3.

第2図は、レジスト14の塗布されたウェハ2上に、一
定のビーム径をもち、ビーム径内で一様の強度をもつ光
束13が結像した状態で入射し、レジスト14の表面お
よびウェハ2の表面で反射することにより、ビーム径内
で異なった強度の分布を示す光束15を形成する状態を
示した模式図である。
FIG. 2 shows that a light beam 13 having a constant beam diameter and a uniform intensity within the beam diameter is incident on a wafer 2 coated with a resist 14 in an imaged state, and the surface of the resist 14 and the wafer 2 are 2 is a schematic diagram showing a state in which a light beam 15 exhibiting different intensity distributions within the beam diameter is formed by reflection on the surface of the light beam 2. FIG.

また、第3図は、このレジスト14およびウェハ2の表
面で反射し形成された光束15が光学系により受光素子
上に結像された状態での強度の分布を示すグラフである
Further, FIG. 3 is a graph showing the intensity distribution in a state where the light beam 15 reflected and formed by the surfaces of the resist 14 and the wafer 2 is imaged on the light receiving element by the optical system.

第2図において、一定のビーム径をもちビーム径内で一
様の強度の分布を示す光束13がレジスト14の塗布さ
れたウェハ2上に斜め方向から入射する。この時、光束
13は、レジスト14の表面で反射する成分と、レジス
ト14を透過してウェハ2の表面とレジスト14の表面
との間で多重反射を繰り返した後、再びレジスト14外
に出て行く成分とに分けられる。この様にレジスト14
表面で反射された成分とウェハ2表面で反射された成分
とは合成され、第3図に示すようにビーム径内で異なっ
た強度分布を示す光束15が形成されることになる。こ
の光束15は、第1図のミラー9、レンズ10、偏光板
11およびビームスプリッタ22を通って受光素子12
上に結像される。
In FIG. 2, a light beam 13 having a constant beam diameter and exhibiting a uniform intensity distribution within the beam diameter is incident on a wafer 2 coated with a resist 14 from an oblique direction. At this time, the light beam 13 undergoes multiple reflections between the component reflected by the surface of the resist 14 and the component transmitted through the resist 14 between the surface of the wafer 2 and the surface of the resist 14, and then exits outside the resist 14 again. It is divided into components that go. Resist 14 like this
The components reflected on the surface of the wafer 2 and the components reflected on the surface of the wafer 2 are combined to form a light beam 15 having different intensity distributions within the beam diameter, as shown in FIG. This light beam 15 passes through the mirror 9, lens 10, polarizing plate 11 and beam splitter 22 shown in FIG.
imaged on top.

第3図において、グラフ■はある波長λ1を検出光とし
て用いた場合の受光素子上の光強度分布を示す。また、
グラフ■および■は各々異なった波長λ2.λ3を検出
光として用いた場合の受光素子上での光強度分布を示す
。ざらに、グラフ■は複数の波長λ1〜λnを検出光と
して用いた場合の受光素子上での光強度分布を示す。
In FIG. 3, the graph (■) shows the light intensity distribution on the light receiving element when a certain wavelength λ1 is used as detection light. Also,
Graphs ■ and ■ are for different wavelengths λ2. The light intensity distribution on the light receiving element is shown when λ3 is used as detection light. Roughly speaking, graph (2) shows the light intensity distribution on the light receiving element when a plurality of wavelengths λ1 to λn are used as detection light.

検出光として、単色(または準単色)の光源を用いた場
合の受光素子上での検出光の強度分布は、グラフ■、■
、■に示される様に、レジスト14の表面で反射した成
分とウェハ2表面で反射した成分の干渉のために複雑な
強度分布を示す。また、この強度の分布状態は検出光の
波長およびレジスト14の厚みによって異なる。また、
受光素子によって検出光の強度分布の重心16.17.
18が位置信号として出力されるわけであるが、検出光
の波長またはレジスト14の厚みが変わると干渉状態が
変化し、重心16.17.18の位置も変化し、検出誤
差となって現われる。
The intensity distribution of the detected light on the light receiving element when a monochromatic (or quasi-monochromatic) light source is used as the detection light is shown in the graphs ■ and ■.
, ■, a complicated intensity distribution is exhibited due to interference between the component reflected from the surface of the resist 14 and the component reflected from the surface of the wafer 2. Further, the distribution state of this intensity differs depending on the wavelength of the detection light and the thickness of the resist 14. Also,
Center of gravity of the intensity distribution of light detected by the light receiving element 16.17.
18 is output as a position signal, but if the wavelength of the detection light or the thickness of the resist 14 changes, the interference state changes, and the positions of the centers of gravity 16, 17, and 18 also change, resulting in detection errors.

ところで、これは本発明者等が種々検討の末、知見した
ことであるが、複数の単色(または準単色)の光源を検
出光として用いた場合の受光素子上での検出光の強度分
布は、グラフ■に示される様に、多波長の光源を用いる
ことによりレジストの存在に伴う干渉効果が平均化され
、検出光の強度分布の重心19もレジストの膜厚にかか
わらず安定した値を示す。それ故、このような多波長の
光源を用いて光学方式のウェハ表面位置を検出すればレ
ジストの存在に伴う位置の検出誤差を除くことが可能と
なる。
By the way, this is what the inventors found after various studies, but when multiple monochromatic (or quasi-monochromatic) light sources are used as detection light, the intensity distribution of the detection light on the light receiving element is As shown in the graph ■, by using a multi-wavelength light source, the interference effect due to the presence of the resist is averaged out, and the center of gravity 19 of the intensity distribution of the detected light also shows a stable value regardless of the resist film thickness. . Therefore, by optically detecting the wafer surface position using such a multi-wavelength light source, it is possible to eliminate position detection errors caused by the presence of resist.

また、第1図に示した様に波長の異なる複数の光源を用
いるとともに、ウェハへの入射光がウェハとなす角θを
10”以下にすること、および検出光としてウェハに対
するS(2光を用いることにより、ウェハ表面での反射
光が減少し、本発明の効果を、さらに大ならしめること
ができる。
In addition, as shown in Figure 1, in addition to using multiple light sources with different wavelengths, the angle θ that the incident light makes with the wafer should be 10" or less, and the detection light should be S (two lights) with respect to the wafer. By using this, reflected light on the wafer surface is reduced, and the effects of the present invention can be further enhanced.

さらに、受光素子にポジションセンサディテク夕を用い
る場合の位置信号の検出誤差の要因として、ポジション
センサディテクタにおける基準点の時間変化(ドリフト
)がある。基準光源20は、このドリフ1−を検出する
ための参照光を発生するためのものである。
Furthermore, when a position sensor detector is used as a light-receiving element, a time change (drift) of a reference point in the position sensor detector is a factor that causes a detection error in a position signal. The reference light source 20 is for generating reference light for detecting this drift 1-.

次に、第1図の装置におけるポジションセンサディテク
タ12のドリフト補正について説明する。
Next, the drift correction of the position sensor detector 12 in the apparatus shown in FIG. 1 will be explained.

同図の装置において、光学系の光軸およびポジションセ
ンサディテクタ12の基準点は、基準光源20および複
数の光源4.5より得られるポジションセンサディテク
タ12の位置信号がゼロとなるように、本装置を組み立
て調整する際に調整しておくものとする。
In the apparatus shown in the figure, the optical axis of the optical system and the reference point of the position sensor detector 12 are set such that the position signal of the position sensor detector 12 obtained from the reference light source 20 and the plurality of light sources 4.5 is zero. shall be adjusted when assembling and adjusting.

実際にウェハ2を投影レンズ1の焦点面に位置合せする
場合は、ウェハ2に対する検出光を検出する前に、先ず
、基準光源20を発光させる。すると、基準光源20よ
り発せられた光束は、レンズ21を経てビームスプリッ
タ22により方向を変えられた後、ポジションセンサデ
ィテクタ12の基準点上に結像する。その位置信号を検
出することにより、ポジションセンサディテクタ12の
基準点を示す電気信号(以下、基準点信号という)の経
時変化Δを計測することができる。
When actually aligning the wafer 2 with the focal plane of the projection lens 1, the reference light source 20 is first turned on to emit light before detecting the detection light for the wafer 2. Then, the light beam emitted from the reference light source 20 passes through the lens 21 and has its direction changed by the beam splitter 22, and then forms an image on the reference point of the position sensor detector 12. By detecting the position signal, it is possible to measure a change Δ over time in an electric signal (hereinafter referred to as a reference point signal) indicating the reference point of the position sensor detector 12.

次に、ウェハ2に対する検出光の位置信号Sを検出する
。この時、基準点信号の経時変化Δと位置信号Sを測定
する時間間隔は、ポジションセンサディテクタ12の基
準点信号の経時変化が生じない程の小なる時間内で行な
うものとする。この位置信号Sはポジションセンサディ
テクタ12の基準点信号の経時変化Δを含むものである
ので、上記基準光源20を発光させた時の位置信号Δを
引いてやることにより、高精度の位置検出が可能となる
Next, a position signal S of the detection light relative to the wafer 2 is detected. At this time, the time interval for measuring the temporal change Δ of the reference point signal and the position signal S is so small that no temporal change of the reference point signal of the position sensor detector 12 occurs. Since this position signal S includes the temporal change Δ of the reference point signal of the position sensor detector 12, by subtracting the position signal Δ when the reference light source 20 is emitted, highly accurate position detection is possible. Become.

すなわち(S−Δ)なる位置信号を用いて、焦点位置検
出装置の制御を行なってやれば、ポジションセンサディ
テクタ120基準点の経時変化による影響を含まない高
精度の位置合せが可能となる。
That is, if the focal position detection device is controlled using the position signal (S-Δ), highly accurate positioning that does not include the influence of changes in the reference point of the position sensor detector 120 over time becomes possible.

また、との時、検出側のレンズ系10の受光素子側主点
より、レンズ系10の焦点距離だけ受光素子側にずらし
た位置にストッパ23を設けることにより、パターンの
あるウェハ上のレジスト表面より反射される反射光の高
次の回折光成分をカットするものとする。このことによ
り、パターンのあるウェハに対して位置検出を行う際に
も、高次の回折光成分による検出光の光重心の変化をう
けないで済む。すなわち、パターンのあるウェハに対し
ても高精度の位置検出が可能となる。
In addition, by providing the stopper 23 at a position shifted toward the light receiving element by the focal length of the lens system 10 from the principal point of the detection side lens system 10 on the light receiving element side, the resist surface on the patterned wafer can be It is assumed that the higher-order diffracted light components of the reflected light that are reflected more are cut. As a result, even when performing position detection on a wafer with a pattern, the optical center of gravity of the detection light does not change due to higher-order diffracted light components. In other words, highly accurate position detection is possible even for wafers with patterns.

なお、上記干渉効果の平均化は、上記複数波長の光を混
合してウェハ上に同時に照射し、その反射光を検出する
ことによっても達成されるが、これらの8光を、例えば
時分割で照射する等により、個々独立に検出し、得られ
た複数個の検出信号を演算処理することにより行なって
もよい。特に、後者の方式によると、調整誤差等による
8光ごとの照射光路のずれまでも含めて処理することが
できる。これは、例えば予めレジストを塗布しない基準
ウェハを用いて8光ごとに受光位置を測定し、実際のウ
ェハ表面位置測定に際しては演算処理によりこれらの受
光位置のずれ分を補正すればよい。
Note that the above-mentioned averaging of the interference effect can also be achieved by mixing the above-mentioned lights of multiple wavelengths, irradiating the same onto the wafer at the same time, and detecting the reflected light. The detection may be performed by individually detecting the signals by irradiating them, etc., and then calculating and processing the obtained plurality of detection signals. In particular, according to the latter method, it is possible to process even the deviation of the irradiation optical path for every eight lights due to adjustment errors and the like. This can be done, for example, by measuring the light-receiving position every 8 lights using a reference wafer to which no resist is applied in advance, and then correcting the deviation of these light-receiving positions by arithmetic processing when actually measuring the wafer surface position.

[発明の効果コ 以上説明したように本発明によれば、波長の異なる複数
個の光を用いるようにしているため、レジストを塗布し
たウェハ面の様に検出光束に対する反射面が複数面ある
場合の検出光の干渉による検出誤差が軽減し、かつこの
検出光の位置を検出するための受光素子のドリフトを、
参照光を用いて検出し補正するようにしたため、面位置
を正確にしかも再現性良くウェハ等の面位置を検出する
ことができる。
[Effects of the Invention] As explained above, according to the present invention, multiple lights of different wavelengths are used, so when there are multiple reflective surfaces for the detection light beam, such as a wafer surface coated with resist, The detection error due to the interference of the detected light is reduced, and the drift of the light receiving element for detecting the position of this detected light is reduced.
Since the reference light is used for detection and correction, the surface position of a wafer or the like can be detected accurately and with good reproducibility.

また、本発明の装置は、特に高精度の焦点検出の要求さ
れる縮小投影露光装置の縮小投影レンズの焦点合せに有
効である。この場合、高精度の焦点検出が出来ため、高
解像のパターンが形成可能になり、より集積度の高い回
路を作成できるという効果がある。
Further, the apparatus of the present invention is particularly effective for focusing a reduction projection lens of a reduction projection exposure apparatus that requires highly accurate focus detection. In this case, since highly accurate focus detection is possible, a pattern with high resolution can be formed, and a circuit with a higher degree of integration can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る自動焦点制御装置を
示す構成図、 第2図は、レジストを塗布したウェハ上に低角度で光束
を入射、結像させた場合のレジスト表面およびウェハ表
面での光束の反射状態を示す断面図、 第3図は、レジストを塗布したウェハ上で反射された光
束が受光素子上に入光し結像した状態での検出光の強度
の分布を示すグラフである。 1・・・縮小投影レンズ、2・・・ウェハ、3・・・ス
テージ、4,5.20・・・レーザ(またはLED)、
6・・・ビームスプリッタ(またはハーフミラ−)、7
、10.21・・・レンズ系、8.9・・・ミラー、1
1゜22・・・偏光板(または偏光ビームスプリッタ)
、12・・・ポジションセンサダイオード(または分割
センサーダイオードもしくはC0D)、13・・・光束
(入射光束)、14・・・レジスト、15・・・光束(
反射光束) 、16.17.18.19・・・強度分布
の重心、23・・・ストッパ。
FIG. 1 is a configuration diagram showing an automatic focus control device according to an embodiment of the present invention. FIG. 2 shows the resist surface and the image formed when a light beam is incident at a low angle on a wafer coated with resist. Figure 3, a cross-sectional view showing the state of reflection of a light beam on the wafer surface, shows the intensity distribution of the detected light when the light beam reflected on the wafer coated with resist enters the light receiving element and forms an image. This is a graph showing. 1... Reduction projection lens, 2... Wafer, 3... Stage, 4,5.20... Laser (or LED),
6... Beam splitter (or half mirror), 7
, 10.21... Lens system, 8.9... Mirror, 1
1゜22...Polarizing plate (or polarizing beam splitter)
, 12... Position sensor diode (or split sensor diode or C0D), 13... Luminous flux (incident luminous flux), 14... Resist, 15... Luminous flux (
reflected light flux), 16.17.18.19... center of gravity of intensity distribution, 23... stopper.

Claims (1)

【特許請求の範囲】 1、波長の異なる複数個の発光手段を有しこれら各波長
の光を被測定面に斜め方向から投光する手段と、 該被測定面からの反射光を受光してその受光位置に応じ
たアナログ電気信号を出力する受光素子と、 該受光素子上の基準位置へ上記反射光とは別個に参照光
を照射する光源と、 上記受光素子の上記反射光受光時の出力と上記参照光受
光時の出力とに基づいて上記被測定面の基準面からのず
れ量を検知する電気信号処理手段とを具備することを特
徴とする面位置検知装置。 2、前記投光手段が、前記各発光手段の出射光に対し実
質的に同一の光路を形成する第1の光学系を含む特許請
求の範囲第1項記載の面位置検知装置。 3、前記被測定面への入射光をS偏光とし、かつ該入射
光の該被測定面となす角を10°以下とした特許請求の
範囲第1または2項記載の面位置検知装置。 4、前記投光手段が、前記各波長の光を同時に投光する
特許請求の範囲第1、2または3項記載の面位置検知装
置。 5、前記投光手段が、前記各波長の光を時分割で投光す
る特許請求の範囲第1、2または3項記載の面位置検知
装置。 6、前記被測定面と受光素子受光面とを実質的に共役に
する第2の光学系を有する特許請求の範囲第1〜5項の
いずれか1つに記載の面位置検知装置。 7、前記被測定面が、感剤を塗布した基板における感剤
表面または基板表面である特許請求の範囲第1〜6項の
いずれか1つに記載の面位置検知装置。
[Claims] 1. A means having a plurality of light emitting means having different wavelengths and projecting light of each of these wavelengths onto a surface to be measured from an oblique direction; and a means for receiving reflected light from the surface to be measured; A light receiving element that outputs an analog electrical signal according to the light receiving position; a light source that irradiates a reference light to a reference position on the light receiving element separately from the reflected light; and an output of the light receiving element when the reflected light is received. and an electric signal processing means for detecting the amount of deviation of the surface to be measured from the reference surface based on the output when the reference light is received. 2. The surface position detection device according to claim 1, wherein the light projecting means includes a first optical system that forms substantially the same optical path for the light emitted from each of the light emitting means. 3. The surface position detection device according to claim 1 or 2, wherein the incident light on the surface to be measured is S-polarized light, and the angle between the incident light and the surface to be measured is 10 degrees or less. 4. The surface position detection device according to claim 1, 2 or 3, wherein the light projecting means simultaneously projects light of each of the wavelengths. 5. The surface position detection device according to claim 1, 2 or 3, wherein the light projecting means projects the light of each of the wavelengths in a time-division manner. 6. The surface position detection device according to any one of claims 1 to 5, further comprising a second optical system that makes the surface to be measured and the light receiving surface of the light receiving element substantially conjugate. 7. The surface position detection device according to any one of claims 1 to 6, wherein the surface to be measured is a sensitive material surface of a substrate coated with a sensitive material or a substrate surface.
JP60281126A 1985-11-18 1985-12-16 Position detector of surface Granted JPS62140420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60281126A JPS62140420A (en) 1985-12-16 1985-12-16 Position detector of surface
US07/657,950 US5162642A (en) 1985-11-18 1991-02-21 Device for detecting the position of a surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281126A JPS62140420A (en) 1985-12-16 1985-12-16 Position detector of surface

Publications (2)

Publication Number Publication Date
JPS62140420A true JPS62140420A (en) 1987-06-24
JPH0217929B2 JPH0217929B2 (en) 1990-04-24

Family

ID=17634724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281126A Granted JPS62140420A (en) 1985-11-18 1985-12-16 Position detector of surface

Country Status (1)

Country Link
JP (1) JPS62140420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188172A (en) * 1991-03-07 1994-07-08 Philips Gloeilampenfab:Nv Image formation device
JP2016015371A (en) * 2014-07-01 2016-01-28 ウシオ電機株式会社 Thickness measuring apparatus, thickness measuring method, and exposure apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760205A (en) * 1980-09-30 1982-04-12 Jeol Ltd Exposure be electron beam
JPS57139607A (en) * 1981-02-23 1982-08-28 Hitachi Ltd Position measuring equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760205A (en) * 1980-09-30 1982-04-12 Jeol Ltd Exposure be electron beam
JPS57139607A (en) * 1981-02-23 1982-08-28 Hitachi Ltd Position measuring equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188172A (en) * 1991-03-07 1994-07-08 Philips Gloeilampenfab:Nv Image formation device
JP2016015371A (en) * 2014-07-01 2016-01-28 ウシオ電機株式会社 Thickness measuring apparatus, thickness measuring method, and exposure apparatus

Also Published As

Publication number Publication date
JPH0217929B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US5162642A (en) Device for detecting the position of a surface
US5144363A (en) Apparatus for and method of projecting a mask pattern on a substrate
JPH03233925A (en) Automatic focus adjustment and control apparatus
JPH11241908A (en) Position detecting apparatus and manufacture of device employing the same
JP2000081320A (en) Face position detector and fabrication of device employing it
JPH0743245B2 (en) Alignment device
JPH1022213A (en) Position detector and manufacture of device using it
WO2017206755A1 (en) Focusing and leveling measurement device and method
JPS62140418A (en) Position detector of surface
JP2676933B2 (en) Position detection device
JP2003007601A (en) Method of measuring interval between two objects, method of exposing semiconductor using the same, interval measuring instrument, and semiconductor exposure system
JPS6336526A (en) Wafer exposure equipment
JPH04208515A (en) Electron beam lithography device and method, and its sample surface height measuring device
JPS62140420A (en) Position detector of surface
JPH0997758A (en) Aligning method
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JP2626076B2 (en) Position detection device
JPH104055A (en) Automatic focusing device and manufacture of device using it
JPS62140419A (en) Position detector of surface
JPH01303721A (en) Plane inclination detector
JP2698446B2 (en) Interval measuring device
KR20190072419A (en) Measuring apparatus, lithography apparatus, method of manufacturing article, and measuring method
JPS61223604A (en) Gap measuring instrument
JPH01112726A (en) Exposure device
JPH0412523A (en) Position detector