JP2698446B2 - Interval measuring device - Google Patents
Interval measuring deviceInfo
- Publication number
- JP2698446B2 JP2698446B2 JP1203059A JP20305989A JP2698446B2 JP 2698446 B2 JP2698446 B2 JP 2698446B2 JP 1203059 A JP1203059 A JP 1203059A JP 20305989 A JP20305989 A JP 20305989A JP 2698446 B2 JP2698446 B2 JP 2698446B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- wafer
- mask
- light receiving
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 9
- 235000012431 wafers Nutrition 0.000 description 56
- 230000003287 optical effect Effects 0.000 description 41
- 238000010586 diagram Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
- G03F9/7023—Aligning or positioning in direction perpendicular to substrate surface
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7049—Technique, e.g. interferometric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は2つの物体間の間隔を高精度に測定する間隔
測定装置に関し、例えば半導体製造装置において、マス
クとウエハとの間隔を測定し、所定の値に制御するとき
に好適なものである。Description: TECHNICAL FIELD The present invention relates to an interval measuring apparatus for measuring an interval between two objects with high accuracy, for example, in a semiconductor manufacturing apparatus, measuring an interval between a mask and a wafer, This is suitable for controlling to a predetermined value.
(従来の技術) 従来より半導体製造装置においては、マスクとウエハ
との間隔を間隔測定装置等で測定し、所定の間隔となる
ように制御した後、マスク面上のパターンをウエハ面上
に露光転写している。これにより高精度な露光転写を行
っている。2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus, the distance between a mask and a wafer is measured by an interval measuring device or the like, and controlled so as to be a predetermined distance, and then the pattern on the mask surface is exposed on the wafer surface. Transcribed. As a result, highly accurate exposure transfer is performed.
第12図は特開昭61−111402号公報で提案されている間
隔測定装置の概略図である。同図においては第1物体と
してのマスクMと第2物体としてのウエハWとを対向配
置し、レンズL1によって光束をマスクMとウエハWとの
間の点PSに集光させている。FIG. 12 is a schematic view of an interval measuring device proposed in Japanese Patent Application Laid-Open No. 61-111402. And is focused on a point P S between the mask M and the wafer W and arranged opposite, the mask M and the wafer W to the light beam by the lens L1 of the second object as the first object in the drawing.
このとき光束はマスクM面上とウエハW面上で各々反
射し、レンズL2を介してスクリーンS面上の点PW,PMに
集束投影されている。マスクMとウエハWとの間隔はス
クリーンS面上の光束の集光点PW,PMとの間隔を検出す
ることにより測定している。In this case the light beam is respectively reflected by the mask M surface and on the wafer W surface, a point P W on the screen S surface through the lens L2, the being focused projected to P M. The distance between the mask M and the wafer W focal point P W of the light beam on the screen S surface is measured by detecting the distance between the P M.
(発明が解決しようとしている問題点) しかしながら、同図に示す装置はマスクMとウエハW
とが平行であれば双方の間隔を正しく測定することがで
きるが一方が傾いて、例えばマスクMが点線で示す如く
傾いて非平行となった場合には、スクリーン面S面での
光束の入射点は点PMより点PNへと変化し、測定誤差の原
因となってくる。(Problems to be Solved by the Invention) However, the apparatus shown in FIG.
Are parallel to each other, the distance between the two can be measured correctly. However, if one of them is inclined, for example, the mask M is inclined as shown by a dotted line and becomes non-parallel, the incidence of the light beam on the screen surface S the point is to change from the point P M to the point P N, it becomes a cause of measurement error.
本願は前述従来例の欠点に鑑み、常に高精度な間隔測
定を可能にする間隔測定装置を提供する事を目的とす
る。The present application has been made in view of the above-mentioned drawbacks of the conventional example, and has as its object to provide an interval measuring apparatus that always enables highly accurate interval measurement.
(問題点を解決する為の手段) 本発明は第1物体と第2物体との間隔変化に応じて、
逆の方向に位置変化をおこす2本の光束を利用して常に
高精度な間隔測定を可能にしている。(Means for Solving the Problems) The present invention provides a method for changing the distance between the first object and the second object.
High precision interval measurement is always possible by using two light beams that change position in the opposite direction.
具体例として後述する実施例に示す様に、マスクとウ
エハに相当する物理光学素子を設けた第1物体と第2物
体とを対向配置し、該第1物体上の物理光学素子に光束
を入射させ、該物理光学素子によって所定方向に偏向し
た光を該第2物体面で反射させた後、受光手段面上に導
光し、該受光手段面上における光の入射位置を検出する
ことにより、第1物体と第2物体との間隔を求める際、
間隔の増減に対応する受光面上の光束位置の移動方向が
互いに反対となる2組の波面変換機能を有する物理光学
素子を用い、該第1物体と第2物体との間隔を求めるよ
うにする。As shown in an embodiment described later as a specific example, a first object and a second object provided with a mask and a physical optical element corresponding to a wafer are arranged to face each other, and a light beam is incident on the physical optical element on the first object. Then, after the light deflected in a predetermined direction by the physical optical element is reflected by the second object surface, the light is guided onto the light receiving means surface, and by detecting the incident position of the light on the light receiving means surface, When calculating the distance between the first object and the second object,
The distance between the first object and the second object is determined using two sets of physical optical elements having a wavefront conversion function in which the directions of movement of the light flux positions on the light receiving surface corresponding to the increase and decrease of the distance are opposite to each other. .
第1の測定系においては、例えば、間隔が増加すれば
検出面上の光束位置が右に移動するとき、第2の測定系
においては、間隔が増減すると検出面上の光束位置が左
に移動するように光学系を設定する。In the first measurement system, for example, when the distance increases, the light beam position on the detection surface moves to the right, and in the second measurement system, when the distance increases or decreases, the light beam position on the detection surface moves to the left. Set the optical system so that
両者の間隔に対する検出面上の移動量の絶対値を同じ
になるように光学系を設定しておけば、第2物体に相当
するウエハが傾いた場合において、傾きに対応する検出
面上の移動量は方向も含めて、同一とすることができ
る。If the optical system is set so that the absolute value of the amount of movement on the detection surface with respect to the interval between them is the same, when the wafer corresponding to the second object is inclined, the movement on the detection surface corresponding to the inclination The amount can be the same, including the direction.
すなわち、間隔に対応する移動量は第1,第2の測定系
で方向が反対で傾きに対応する移動量は同じとなる。そ
こで第1系と第2系の移動量の差をとれば、傾きに対応
する移動量は相殺され、間隔に対応する移動量のみ倍の
感度で測定されることになる。That is, the moving amount corresponding to the interval is opposite in direction in the first and second measurement systems, and the moving amount corresponding to the inclination is the same. Therefore, if the difference between the movement amounts of the first system and the second system is calculated, the movement amount corresponding to the inclination is canceled, and only the movement amount corresponding to the interval is measured with twice the sensitivity.
(実施例) 第1図は本発明を半導体製造装置のマスクとウエハと
の間隔を測定する装置に適用した場合の一実施例の光学
系の概略図、第2図は同物理光学素子周辺の斜視図であ
る。(Embodiment) FIG. 1 is a schematic view of an optical system according to an embodiment when the present invention is applied to an apparatus for measuring the distance between a mask and a wafer in a semiconductor manufacturing apparatus, and FIG. It is a perspective view.
同図において1,1′は例えばHe−Neレーザーや半導体
レーザー等からの光束、2,2′は第1物体で例えばマス
ク、3,3′は第2物体で例えばウエハであり、マスク2
とウエハ3は第2図に示すように間隔d0を隔てて対向配
置されている。4と4′,5と5′は各々マスク2面上の
一部に設けた第1,第2物理光学素子で、これの物理光学
素子4,4′,5,5′は例えば回折格子やゾーンプレート等
から成っている。7,7′は集光レンズであり、その焦点
距離はfsである。In this figure, 1,1 'is a light beam from, for example, a He-Ne laser or a semiconductor laser; 2,2' is a first object, for example, a mask; 3,3 'is a second object, for example, a wafer;
Wafer 3 are opposed to each other at a distance d 0 as shown in Figure 2 and. Reference numerals 4 and 4 ', 5 and 5' denote first and second physical optical elements provided on a part of the surface of the mask 2, respectively. The physical optical elements 4, 4 ', 5, and 5' It consists of a zone plate and the like. Reference numerals 7, 7 'denote condensing lenses, the focal length of which is fs.
8,8′は受光手段で集光レンズ7,7′の焦点位置に配置
されており、ラインセンサーやPSD等から成り、入射光
束のセンサ面内での重心位置を検出している。Numerals 8 and 8 'denote light receiving means, which are arranged at the focal positions of the condenser lenses 7, 7' and are composed of a line sensor, a PSD, etc., and detect the position of the center of gravity of the incident light beam in the sensor plane.
ここで光束の重心とは光束断面内において、断面内各
点のその点からの位置ベクトルにその点の光強度を乗算
したものを断面全面で積分したときに積分値が0ベクト
ルになる点のことであるが、別な例として光強度がピー
クとなる点の位置を検出してもよい。Here, the center of gravity of the luminous flux is a point in the luminous flux cross section at which the integral value becomes a zero vector when the value obtained by multiplying the position vector of each point in the cross section by the light intensity at that point is integrated over the entire cross section. However, as another example, the position of a point where the light intensity reaches a peak may be detected.
9は信号処理回路であり、受光手段8,8′からの信号
を用いて受光手段8,8′面上に入射した光束の重心位置
を求め、後述するようにマスク2とウエハ3との間隔d0
を演算し求めている。Reference numeral 9 denotes a signal processing circuit which determines the center of gravity of the light beam incident on the light receiving means 8, 8 'using the signals from the light receiving means 8, 8', and as described later, the distance between the mask 2 and the wafer 3 d 0
Is calculated.
10は光ピツクアツプであり、集光レンズ7や受光手段
8、そして必要に応じて信号処理回路9を有しており、
マスク2やウエハ3とは相対的に移動可能となってい
る。Reference numeral 10 denotes an optical pickup, which has a condenser lens 7, a light receiving means 8, and a signal processing circuit 9 as required.
The mask 2 and the wafer 3 are relatively movable.
第1図に示す上下2系統の測定系は、紙面上両系の投
光系の光軸から等距離にある直線に関し対称な系を構成
する。構成がほぼ同一なので以下図の下の系をもとに詳
説する。The upper and lower two measurement systems shown in FIG. 1 constitute a system symmetrical with respect to a straight line equidistant from the optical axes of both light projection systems on the paper. Since the configuration is almost the same, a detailed description will be given below based on the system below.
本実施例においては半導体レーザーLDからの光束1
(波長λ=830nm)をマスク2面上の第1フレネルゾー
ンプレート(以下FZPと略記する)4面上の点Aに垂直
に入射させている。そして第1のFZP4からの角度θ1で
回折する所定次数の回折光をウエハ3面上の点B(C)
で反射させている。このうち反射光31はウエハ3がマス
ク2に近い位置P1に位置しているときの反射光、反射光
32はウエハ3が位置P1から距離dGだけ変位した位置P2に
あるときの反射光である。In this embodiment, the light flux 1 from the semiconductor laser LD
(Wavelength λ = 830 nm) is perpendicularly incident on a point A on a first Fresnel zone plate (hereinafter abbreviated as FZP) 4 on the mask 2. Then, a diffracted light of a predetermined order diffracted at an angle θ 1 from the first FZP 4 is converted into a point B (C) on the wafer 3 surface.
Is reflected by Among them, the reflected light 31 is the reflected light and the reflected light when the wafer 3 is located at the position P1 close to the mask 2.
32 is a reflected light when the wafer 3 is from the position P1 at a distance d G only displaced position P2.
次いでウエハ3からの反射光を第1物体2面上の第2
のFZP5面上の点D(位置P2の時はE)に入射させてい
る。Next, the reflected light from the wafer 3 is converted to the second light on the first object 2 surface.
At the point D (E at the position P2) on the FZP5 surface.
尚、第2のFZP5は入射光束の入射位置に応じて出射回
折光の射出角を変化させる光学作用を有している。The second FZP 5 has an optical function of changing the exit angle of the output diffracted light according to the incident position of the incident light beam.
そして第2のFZP5から角度θ2で回折した所定次数の
回折光61(位置P2の時は62)を集光レンズ7を介して受
光手段8面上に導光している。And (62 when the position P2) is guided to the light receiving unit 8 on the surfaces of via the condenser lens 7 to a second predetermined order diffracted light 61 diffracted by an angle theta 2 from FZP5.
そして、このときの受光手段8面上における入射光束
61(位置P2の時は62)の重心位置を用いてマスク2とウ
エハ3との間隔を演算し求めている。Then, the incident light beam on the surface of the light receiving means 8 at this time
The distance between the mask 2 and the wafer 3 is calculated using the barycentric position of 61 (62 for the position P2).
本実施例ではマスク2面上に設けた第1,第2のFZP4,5
は予め設定された既知のピツチで構成されており、それ
らに入射した光束の所定次数(例えば±1次)の回折光
のFZP4における回折角度θ1及びFZP5の所定入射位置に
おける回折角度θ2は予め求められている。In this embodiment, the first and second FZPs 4, 5 provided on the mask 2 surface are provided.
Are constituted by known pitches set in advance, and the diffraction angles θ 1 at FZP4 of the diffracted light of a predetermined order (for example, ± 1st order) of the light beam incident thereon and the diffraction angle θ 2 at the predetermined incident position of FZP5 are It is required in advance.
次に、第3図に示す光路図を用いて、マスク2とウエ
ハ3との間隔を求める方法について説明する。Next, a method for determining the distance between the mask 2 and the wafer 3 will be described with reference to the optical path diagram shown in FIG.
入射光1はマスク2上入射側物理光学素子4に入射
し、A点で−θ1方向へ回折される。今、ウエハ3g0が
マスク2からギヤツプg0の位置にあった時、上記回折光
はC点で反射され、再びマスクメン2上出射側物理光学
素子5上の点Eで回折され、受光系の光軸方向へ進むよ
うに配置する。すなわち、距離fMの点Fを通るようにE
からA点間隔−dを設定する。Incident light 1 is incident on the upper incident side physical optic element 4 mask 2 is diffracted to - [theta] 1 direction at point A. Now, when the wafer 3 g 0 had from the mask 2 to the position of Giyatsupu g 0, the diffraction light is reflected by the point C, is diffracted at a point E on the Masukumen second upper exit side physical optic element 5 again, the light receiving system It is arranged so as to advance in the optical axis direction. That is, E passes through the point F at the distance f M
Is set to the point A interval -d.
又、マスク2,ウエハ3g間のギヤツプが任意のgの時は
B点で反射され、gがどの様な値でも常に物理光学素子
5のD点でFを通る様に回折される光61となる。さら
に、ウエハ3gがB点でβだけ傾いたとして、B点で反射
され物理光学素子5のDβ点で回折されたFβ点を通る
光61βになったとすれば、以下に示す関係式が成立し、
物理光学素子5を出射する光の受光系光軸とのなす角θ
2βはギヤツプg0,g、入射側物理光学素子4の出射角−
θ1、出射側物理光学素子5の焦点距離fM及びウエハ3
βの傾きβで決められる。When the gap between the mask 2 and the wafer 3g is an arbitrary g, the light 61 is reflected at the point B, and diffracted so as to always pass through the F at the point D of the physical optical element 5 regardless of g. Become. Further, the wafer 3g is inclined by beta at point B, if becomes light 61 beta through the F beta point diffracted by the D beta point reflected the physical optic element 5 at point B, the relational expression shown below Holds,
The angle θ between the light emitted from the physical optical element 5 and the optical axis of the light receiving system
2β is the gap g 0 , g, the emission angle of the incident side physical optical element 4 −
θ 1 , the focal length f M of the output-side physical optical element 5 and the wafer 3
It is determined by the slope β of β.
角度及び長さの向きを図のようにとると、 又、傾きによるE点における入出射角の変化は、 2β′=cosθ12β …(3) 一方、d=−2g0tanθ1 よって、 dM2=d+2g tanθ1=2(g−g0)tanθ1 …(4) 以上(1),(2),(3),(4)よりtanθ2βを
求めると、 ここでセンサー面上のスポツトの動きS1を考えると、 但し、β≪1としtan(Cβ)Cβとした。If you take the direction of the angle and length as shown in the figure, The change in the angle of incidence / emission at the point E due to the inclination is: 2β ′ = cos θ 1 2β (3) On the other hand, d = −2g 0 tan θ 1 , and d M2 = d + 2g tan θ 1 = 2 (g−g 0 ) tan θ 1 ... (4) When tan θ 2β is obtained from the above (1), (2), (3), and (4), Now consider the movement S 1 of Supotsuto on the sensor surface, However, β≪1 and tan (Cβ) Cβ.
(6)式から、ウエハの傾きがない場合はスポツトの
動きS1は となり、ギヤツプ変化量Δgに の倍率で受光手段面上を移動することになる。今、fS=
60mm,fM=1mm,tanθ1=1とすれば倍率Q=60となり、
マスク2とウエハ3との間隔1μm当たりの変化に対し
て、受光手段8面上の光束60μm移動することになる。
受光手段8として位置分解能が0.3μmのPSDを用いる
と、原理的には0.005μmの分解能でマスク2とウエハ
3の間隔を測定することが可能となる。From equation (6), if the wafer is not tilted, the spot movement S 1 is And the gap change amount Δg Move on the light receiving means surface at the magnification of. Now, f S =
If 60 mm, f M = 1 mm, tan θ 1 = 1, the magnification Q = 60,
For a change of 1 μm between the mask 2 and the wafer 3 per 1 μm, the luminous flux on the light receiving means 8 moves by 60 μm.
If a PSD having a position resolution of 0.3 μm is used as the light receiving means 8, it is possible in principle to measure the distance between the mask 2 and the wafer 3 with a resolution of 0.005 μm.
具体的には他の間隔検出手段、例えばあらかじめマス
クを通して光学顕微鏡でマスク,ウエハ各々にピントを
合わせて顕微鏡の鏡筒の上げ下げ量を測長するなどして
測られて面間隔gRが既知のマスク,ウエハに対して本装
置で光束を照射し、この時のセンサー面上への光束入射
位置を基準位置として記憶しておき、間隔検出時のスポ
ツト位置の基準位置からのずれを求め、これをS1として
(6)′式に代入して現在のマスク,ウエハ間隔のgRか
らのずれΔgを求める事により間隔が測定される。More specifically, the surface gap g R is known by measuring other distance detecting means, for example, by previously focusing on the mask and the wafer with an optical microscope through a mask and measuring the amount of raising and lowering the lens barrel of the microscope. The mask and the wafer are irradiated with a light beam by this apparatus, and the light beam incident position on the sensor surface at this time is stored as a reference position, and the deviation of the spot position from the reference position at the time of detecting the interval is obtained. the distance by obtaining the deviation Δg from g R of the current mask, the wafer spacing is substituted into the S 1 (6) 'expression is measured.
ここで、ウエハの傾きβに対する影響を考えると、ギ
ヤツプ換算すれば(6)式よりウエハ傾きβにおけるギ
ヤツプ計測誤差量、即ちエラーギヤツプ量εgは プロキシミテイ型の半導体露光装置の場合βは10-4rad
程度が最大と考えられ、又gも100μm以下が通常なの
で、β=10-4rad,g=100μmとすれば、 このような傾きによる誤差は第1図に示すように上下
2系統の光学系を構成し、ウエハ傾きβの影響が互いに
逆向きになるように設定し、それぞれの光束のスポツト
の動き量の差を受光手段8,8′からの信号に基づき信号
処理回路9で検出し、このスポツトの動き量に基づいて
間隔を検出する様にした本発明の実施例によって軽減さ
れる。以下にこれを詳細に述べる。Here, considering the effect on the wafer inclination β, the gap measurement error amount at the wafer inclination β, that is, the error gap amount εg can be obtained from the equation (6) in terms of the gap. Β is 10 -4 rad for proximity type semiconductor exposure equipment
The degree is considered to be the maximum, and since g is usually 100 μm or less, if β = 10 −4 rad, g = 100 μm, As shown in FIG. 1, the error due to such tilt is constituted by two optical systems of upper and lower systems, and the effects of the wafer tilt β are set so as to be opposite to each other. Is detected by the signal processing circuit 9 based on the signals from the light receiving means 8 and 8 ', and the interval is detected based on the amount of movement of the spot. This is described in detail below.
先に求めたのと同様に第1図上の系では、受光手段面
上のスポツトの動きS1′は次のようになる。In the system shown in FIG. 1 as previously obtained, the movement S 1 ′ of the spot on the light receiving means surface is as follows.
ここで、第4図に示すように入射位置をkだけずらして
構成し、下の系のギヤツプg1でβ傾いたとすれば、 ギヤツプの差は、 g1′−g1={g1tan(−θ1)+k−g1′tan(θ1)}tanβ よって、 センサー面上のスポツトの動きの差ΔSを求めると、 第(6)式と第(7)式を比較するとわかるように、
第1図の実施例では2つの測定点の平均ギヤツプが、一
系統と比較し、2倍の感度で評価できる。即ち、ウエハ
の傾きがない場合のスポツトの動きの差は となりギヤツプ変動量に対する受光手段面上でのスポツ
トの変動量の倍率即ち感度θは となる。この場合のΔSには各センサー毎に前述の様に
求めた基準位置からのそれぞれの重心位置のずれ量同士
の差が対入されて間隔が求められる。先ほどと同様にfS
=30mm,fM=1mm,tanθ1=1とすればθ=120倍とな
り、原理的に0.0025μmの分解能でマスク2とウエハ3
の間隔を測定することができる。ウエハの傾きβに対す
る影響(エラーギヤツプ量ε′g)は(7)式より 先ほどと同様にβ=10-4rad,g=100μm,とすると、 k=1000μmとすれば εg′=−0.000008[μm] となり、充分小さく無視してもよいことがわかる。この
様な2系統の光学系によるスポツトの動き量の差はマス
ク,ウエハ間隔の変動に対応し、ウエハの傾きにはほと
んど影響されないので、このスポツトの動き量の差を見
ることで高精度なギヤツプ変動測定が可能になる。 Here, the incident position as shown in FIG. 4 constitutes shifted by k, if tilted β in Giyatsupu g 1 of the system under the difference in Giyatsupu is, g 1 '-g 1 = { g 1 tan (−θ 1 ) + k−g 1 ′ tan (θ 1 )} tanβ Therefore, When the difference ΔS of the movement of the spot on the sensor surface is obtained, As can be seen by comparing Equations (6) and (7),
In the embodiment shown in FIG. 1, the average gap at two measurement points can be evaluated with twice the sensitivity as compared with one system. In other words, when there is no wafer tilt, the difference in spot movement is The magnification of the variation of the spot on the light receiving means surface with respect to the variation of the gap, that is, the sensitivity θ is Becomes In this case, an interval is obtained by subtracting the difference between the amounts of displacement of the respective centers of gravity from the reference position obtained as described above for each sensor into ΔS. F S as before
= 30 mm, f M = 1 mm, tan θ 1 = 1, θ = 120 times, and the mask 2 and the wafer 3 are in principle with a resolution of 0.0025 μm.
Can be measured. The effect on the wafer inclination β (error gap amount ε'g) is obtained from the equation (7). As before, β = 10 -4 rad, g = 100 μm, If k = 1000 μm, εg ′ = − 0.000008 [μm], which is sufficiently small and can be ignored. Since the difference in the amount of movement of the spot by the two optical systems corresponds to the change in the space between the mask and the wafer and is hardly affected by the inclination of the wafer, the difference in the amount of movement of the spot can be determined with high accuracy. Gaps fluctuation measurement becomes possible.
第5図は本発明による第2の実施例で、(a)はマス
ク面上物理光学素子の配置、(b)は光学系の概略配置
を示す図である。2系統の測定系の共有化をはかったも
ので、入射側の物理光学素子(入射マーク)4,4′を隣
接し、同一投光系からの入射光を1、1′とし、入射マ
ーク4、4′へ投光し、出射側の物理光学素子(出射マ
ーク)5,5′からの出射光62P1,62P2,62P1′,62P2′を集
光レンズ7で受光し、受光手段8で検出する。マスク2,
ウエハ3の間のギヤツプ位置P1,P2間を測定する場合
に、本実施例ではギヤツプの測定レンジが最小の位置P1
のとき両系による検出面8上のスポツト位置が一致する
ように設定してある。ギヤツプ変動に伴ないP2の位置で
はスポツト位置がS2,S2′と変化し、両者のスポツト間
隔を測定すれば前記第1の実施例と同様の計測が行え
る。5A and 5B show a second embodiment according to the present invention, wherein FIG. 5A is a view showing the arrangement of physical optical elements on a mask surface, and FIG. 5B is a view showing a schematic arrangement of an optical system. The two measurement systems are shared, and the physical optical elements (incident marks) 4, 4 'on the incident side are adjacent to each other, and the incident light from the same light projecting system is 1, 1'. , 'projecting light and to, physical optic element on the output side (outgoing mark) 5,5' 4 receives light emitted 62 P1 from, 62 P2, 62 P1 ', 62 P2' to a condenser lens 7, light receiving means 8 to detect. Mask 2,
In the present embodiment, when measuring between the gap positions P 1 and P 2 between the wafers 3, the position P 1 where the measurement range of the gap is the minimum is P 1.
At this time, the spot positions on the detection surface 8 by the two systems are set so as to coincide with each other. Supotsuto position at the position of the companion no P 2 is changed as S 2, S 2 'to Giyatsupu fluctuations, it can be performed by measuring both the Supotsuto interval as in the first embodiment the measurement.
具体的には他の間隔検出手段、例えばあらかじめマス
クを通して光学顕微鏡でマスク,ウエハ各々にピントを
合わせて顕微鏡の鏡筒の上げ下げ量を測長するなどして
測られて面間隔gRが既知のマスク,ウエハに対して本装
置で光束を照射し、この時のセンサー面上でのスポツト
間隔を基準間隔として記憶し、間隔測定時にスポツト間
隔を検出してこれの基準間隔からのずれを(7)′式の
ΔSに代入して、マスク,ウエハ間隔のgRからのずれΔ
gを算出する事により間隔測定を行っている。More specifically, the surface gap g R is known by measuring other distance detecting means, for example, by previously focusing on the mask and the wafer with an optical microscope through a mask and measuring the amount of raising and lowering the lens barrel of the microscope. The apparatus irradiates a light beam to the mask and the wafer, stores the spot interval on the sensor surface at this time as a reference interval, detects the spot interval when measuring the interval, and determines the deviation from the reference interval by (7). ) 'is substituted into equation [Delta] S, the mask, the deviation from g R of the wafer spacing Δ
The interval measurement is performed by calculating g.
第6図は本発明による第3の実施例で(a)はマスク
面上アライメントマーク配置図、(b)は光路の概略を
示す図である。6A and 6B show a third embodiment according to the present invention, wherein FIG. 6A is a view showing the arrangement of alignment marks on a mask surface, and FIG. 6B is a view schematically showing an optical path.
2系統のマークをギヤツプ変動によってビームが移動
する方向と直交方向に隣接して配置したものである。計
測系、及び計測感度等は前述実施例と同様である。The two systems of marks are arranged adjacent to each other in the direction orthogonal to the direction in which the beam moves due to the gap variation. The measurement system, measurement sensitivity, and the like are the same as in the above-described embodiment.
第7図は本発明による第4の実施例で2系統のマーク
を重ねて配置したものである。FIG. 7 shows a fourth embodiment according to the present invention in which two systems of marks are superposed.
第8図は本発明による第5の実施例で入射側のマーク
4,4′のみ重ねて配置したものである。FIG. 8 shows a mark on the incident side according to a fifth embodiment of the present invention.
Only 4, 4 'are arranged in an overlapping manner.
第9図は本発明による第6の実施例で入射側のマーク
4は入射面と平行な直線格子から構成され、±1次回折
光がそれぞれ入射面に関し対称な方向へ回折し、それぞ
れ出射マーク5,5′へ向う配置をとっている。(a)に
入射面内射影光路、(b)にマスクと平行な面射影光
路、(c)にマーク配置図を示す。FIG. 9 shows a sixth embodiment according to the present invention, in which the mark 4 on the incident side is formed of a linear lattice parallel to the incident surface, and the ± 1st-order diffracted lights are diffracted in directions symmetrical with respect to the incident surface, and the output marks 5 , 5 '. (A) shows a projection optical path in the plane of incidence, (b) shows a plane projection optical path parallel to the mask, and (c) shows a mark arrangement diagram.
第10図は本発明による第7の実施例で、(a)にマー
ク配置図、(b)に光路図の概略を示す。本実施例は入
射マーク4によって入射光1が回折されウエハ3で反射
されたのち、マスク2上出射マーク5,5″により2つの
回折光62,62″に分割されたものを受光レンズ7で集光
し、センサ8でそのスポツト光の位置ずれの下S1−S1″
からマスク2,ウエハ3間のギヤツプを測定するものであ
る。このとき、出射マーク5は前記説明と同様に出射光
束中心はマスク2から受光系へfMの距離の点Fを通るよ
うに設計されているが、出射マーク5″は出射光束中心
マスク2からウエハ側に同距離の点F″を起点として発
散する形になるように設計されている。FIG. 10 shows a seventh embodiment of the present invention, in which (a) shows a mark arrangement diagram and (b) shows an outline of an optical path diagram. In this embodiment, after the incident light 1 is diffracted by the incident mark 4 and reflected by the wafer 3, the light is split into two diffracted lights 62, 62 ″ by the output marks 5, 5 ″ on the mask 2, and is received by the light receiving lens 7. The light is condensed, and the position of the spot light is shifted by the sensor 8 below S 1 -S 1 ″.
Is used to measure the gap between the mask 2 and the wafer 3. In this case, the exit mark 5 the description as well as the outgoing beam center is designed to pass through the point F of the distance f M to the light receiving system from the mask 2, but from the output marks 5 "emitted light beam center mask 2 It is designed to diverge from a point F ″ at the same distance on the wafer side as a starting point.
後者系におけるマスク2,ウエハ3間のギヤツプと受光
手段面上のスポツト光の動きについて、ウエハの傾きを
含めて第11図で説明する。The gap between the mask 2 and the wafer 3 and the movement of the spot light on the light receiving means surface in the latter system will be described with reference to FIG. 11, including the inclination of the wafer.
入射光1はマスク2上入射側物理光学素子4に入射
し、A点で−θ1方向へ回折される。今、ウエハ3g0が
ギヤツプg0の位置にあった時、上記回折光はC点で反射
され、再びマスク面2上出射側物理光学素子5′上の点
Eで回折され、受光系の光軸方向へ進む配置をとる。Incident light 1 is incident on the upper incident side physical optic element 4 mask 2 is diffracted to - [theta] 1 direction at point A. Now, when the wafer 3g 0 is at the position of the gap g 0 , the diffracted light is reflected at the point C, is diffracted again at the point E on the exit side physical optical element 5 ′ on the mask surface 2, and is reflected by the light receiving system. An arrangement that proceeds in the axial direction is adopted.
ギヤツプgにウエハ3が移動した場合の出射側物理光
学素子5″上の回折点をD″とすれば、受光系光軸上の
点F″を通る直線の方向(光軸と−θ2″傾いた方向)
へ回折させることになる。If the diffraction point on the emission-side physical optical element 5 ″ when the wafer 3 moves to the gap g is D ″, the direction of a straight line passing through the point F ″ on the optical axis of the light receiving system (the optical axis and −θ 2 ″). (Tilted direction)
Will be diffracted.
ここでウエハ面3gがβだけ傾いたとすれば、出射側物
理光学素子5″上の回折点はDβ″となり、Fβ″を通
る直線の方向(光軸と−θ2β″傾いた方向)へ回折さ
れる。Here, if the wafer surface 3g is inclined by beta, exit side physical optic element 5 "diffraction points on the D beta", and the "direction of the straight line passing through the (optical axis and - [theta] 2.beta" F beta inclined direction) Diffracted to
第11図に示すパラメータでこれらの関係を式で示すと
以下のようになる。These relationships are expressed by the following equations using the parameters shown in FIG.
又、ウエハ傾きによるE点における入射角の変化は、 2β″=cosθ12β …(13) 一方向 d=−2g0tanθ1 よって、 dM2=d+2g tanθ1=2(g−g0)tanθ1…(14) 以上(11)〜(14)式よりtanθ2β″を求めると、 ここでセンサー面上のスポツトの動きS1″を考えると、 と仮定すれば、 ここでfM″=−fMとなるように2つの系を設定すれば、 以上より受光系のセンサー面上の移動量の差S1−S1″を
求めると、(6)式,(17)式より ウエハ傾きβがない場合は(18)式は、 となりギヤツプ変化量Δgに対し、 の倍率でセンサー面上を移動することになる。これは単
独の系の2倍の感度があることになる。 The change in the angle of incidence at point E due to the inclination of the wafer is as follows: 2β ″ = cos θ 1 2β (13) Since d = −2 g 0 tan θ 1 in one direction, dM 2 = d + 2 g tan θ 1 = 2 (g−g 0 ) tan θ 1 (14) When tan θ 2β ″ is obtained from the above equations (11) to (14), Considering the spot movement S 1 ″ on the sensor surface, Assuming that Here, if two systems are set so that f M ″ = −f M , From the above, the difference S 1 −S 1 ″ of the amount of movement on the sensor surface of the light receiving system is obtained from the equations (6) and (17). If there is no wafer tilt β, equation (18) is And the gap change amount Δg, Will move on the sensor surface at the magnification of. This would be twice as sensitive as a single system.
次にウエハの傾きβに対する影響を考える。(18)式
のβによる誤差εβ″をギヤツプ換算すれば β=10-4rad,g=100μm,tanθ1=1とすれば、 εβ″=10-4×100×2=0.02[μm] となり、充分小さく無視できる。Next, the effect on the inclination β of the wafer will be considered. (18) If Giyatsupu converted error ε β "by the β of the formula β = 10 -4 rad, g = 100μm, if tanθ 1 = 1, ε β " = 10 -4 × 100 × 2 = 0.02 [μm] , and the negligible sufficiently small.
以上説明したように間隔の増減に対応する受光面上の
光束位置の移動方向が互いに反対となる2組の光束を用
いる事でウエハの傾き量を補正し、かつ、間隔測定感度
を増加することができ、高精度の間隔測定を行うことが
可能となった。As described above, the tilt amount of the wafer is corrected and the interval measurement sensitivity is increased by using two sets of light beams in which the moving directions of the light beam positions on the light receiving surface corresponding to the increase and decrease of the interval are opposite to each other. And high-precision interval measurement can be performed.
【図面の簡単な説明】 第1図は本発明による第1の実施例の光学系の概略図。 第2図は第1図のマスクとウエハに入射する光束の説明
図。 第3図,第4図は第1図の間隔計測量算出用詳細光路
図。 第5図は本発明による第2の実施例概略図。 第6図は本発明による第3の実施例のマーク近傍光路図
及びマーク配置。 第7図,第8図は本発明による第4,第5の実施例のマー
ク配置図。 第9図は本発明による第6の実施例のマーク近傍光路図
及びマーク配置図。 第10図は本発明による第7の実施例の概略図。 第11図は第10図の間隔計測量算出用詳細光路図。 第12図は従来例。 1……投光光束、2……マスク 3……ウエハ、4……入射マーク 5……出射マーク、7……受光レンズ 8……センサー、9……信号処理回路 10……光ピツクアツプ、61,62……出射光束BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an optical system according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram of a light beam incident on the mask and the wafer in FIG. FIG. 3 and FIG. 4 are detailed optical path diagrams for calculating an interval measurement amount in FIG. FIG. 5 is a schematic view of a second embodiment according to the present invention. FIG. 6 is an optical path diagram near a mark and mark arrangement of a third embodiment according to the present invention. 7 and 8 are mark arrangement diagrams of the fourth and fifth embodiments according to the present invention. FIG. 9 is an optical path diagram near a mark and a mark arrangement diagram of a sixth embodiment according to the present invention. FIG. 10 is a schematic view of a seventh embodiment according to the present invention. FIG. 11 is a detailed optical path diagram for calculating an interval measurement amount in FIG. FIG. 12 shows a conventional example. DESCRIPTION OF SYMBOLS 1 ... Projected light beam 2 ... Mask 3 ... Wafer 4 ... Incident mark 5 ... Outgoing mark 7 ... Light receiving lens 8 ... Sensor 9 ... Signal processing circuit 10 ... Optical pickup 61 , 62 …… Emission beam
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−74815(JP,A) 特開 平2−167412(JP,A) 特開 昭63−159705(JP,A) 特開 昭63−184004(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-74815 (JP, A) JP-A-2-167412 (JP, A) JP-A-63-159705 (JP, A) JP-A-63-159705 184004 (JP, A)
Claims (1)
置で、 第一物体あるいは第二物体の方向に光を出射する光源手
段と、 第一受光面を有し、前記光源手段より出射され第一物体
および第二物体によって偏向されて前記第一受光面へ入
射してかつ第一物体と第二物体との間隔の変化に応じて
前記入射位置がある方向に変化する第一光束の前記第一
受光面への入射位置を検出する第1検出手段と、 第二受光面を有し、前記光源手段より出射され第一物体
および第二物体によって偏向されて前記第二受光面へ入
射してかつ第一物体と第二物体との間隔の変化に応じて
前記入射位置が前記第一光束と逆の方向に変化する第二
光束の前記第二受光面への入射位置を検出する第二検出
手段と、 前記第一検出手段と第二検出手段の検出結果に基づき第
一物体と第二物体との間隔を測定する手段とを有し、該
検出により第一物体と第二物体との傾き変動の影響を受
けない間隔測定が成されることを特徴とする間隔測定装
置。An apparatus for detecting a distance between a first object and a second object, comprising: light source means for emitting light in the direction of the first object or the second object; and a first light receiving surface; First, the light is deflected by the first object and the second object, is incident on the first light receiving surface, and changes in a certain direction in accordance with a change in the distance between the first object and the second object. A first detector for detecting a position of the light beam incident on the first light receiving surface; and a second light receiving surface, the second light receiving surface being emitted from the light source means and deflected by a first object and a second object. And the incident position on the second light receiving surface of the second light beam whose incident position changes in a direction opposite to the first light beam according to a change in the distance between the first object and the second object is detected. Based on the detection results of the first detection means and the second detection means, Means for measuring the distance between one object and the second object, wherein the detection performs an interval measurement that is not affected by a tilt change between the first object and the second object. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1203059A JP2698446B2 (en) | 1988-09-09 | 1989-08-04 | Interval measuring device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22600788 | 1988-09-09 | ||
JP63-226007 | 1988-09-09 | ||
JP1203059A JP2698446B2 (en) | 1988-09-09 | 1989-08-04 | Interval measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02167413A JPH02167413A (en) | 1990-06-27 |
JP2698446B2 true JP2698446B2 (en) | 1998-01-19 |
Family
ID=26513725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1203059A Expired - Fee Related JP2698446B2 (en) | 1988-09-09 | 1989-08-04 | Interval measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2698446B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05243124A (en) * | 1992-03-02 | 1993-09-21 | Matsushita Electric Ind Co Ltd | Detecting method for inclination of plane |
JP3428705B2 (en) * | 1993-10-20 | 2003-07-22 | キヤノン株式会社 | Position detecting device and method of manufacturing semiconductor device using the same |
JP4109736B2 (en) | 1997-11-14 | 2008-07-02 | キヤノン株式会社 | Misalignment detection method |
-
1989
- 1989-08-04 JP JP1203059A patent/JP2698446B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02167413A (en) | 1990-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2546350B2 (en) | Alignment device | |
US5162642A (en) | Device for detecting the position of a surface | |
US5196711A (en) | Deviation measuring device including a mask having a grating pattern and a zone plate pattern | |
JP3548275B2 (en) | Displacement information measuring device | |
JPH0652170B2 (en) | Optical imaging type non-contact position measuring device | |
JP2676933B2 (en) | Position detection device | |
JP3921004B2 (en) | Displacement tilt measuring device | |
JP2698446B2 (en) | Interval measuring device | |
JP2556126B2 (en) | Interval measuring device and interval measuring method | |
JPS62140418A (en) | Position detector of surface | |
JP2796347B2 (en) | Projection exposure method and apparatus | |
JP2513300B2 (en) | Position detection device | |
JP2827251B2 (en) | Position detection device | |
JP2556559B2 (en) | Interval measuring device | |
JP2698388B2 (en) | Position detection device | |
JP2827250B2 (en) | Position detection device | |
JP2778231B2 (en) | Position detection device | |
JP2765003B2 (en) | Interval measuring device | |
JP2513281B2 (en) | Alignment device | |
JP2626077B2 (en) | Interval measurement method | |
JPH0412523A (en) | Position detector | |
JP2643270B2 (en) | Interval measuring device | |
JP2698389B2 (en) | Position detection device | |
JPS60180118A (en) | Positioning apparatus with diffraction grating | |
JP2903842B2 (en) | Interval detection method and semiconductor device manufacturing method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |