JPS62139921A - Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor - Google Patents
Fuel collision, reflection, and diffusion type combustion method and internal combustion engine thereforInfo
- Publication number
- JPS62139921A JPS62139921A JP60280533A JP28053385A JPS62139921A JP S62139921 A JPS62139921 A JP S62139921A JP 60280533 A JP60280533 A JP 60280533A JP 28053385 A JP28053385 A JP 28053385A JP S62139921 A JPS62139921 A JP S62139921A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- collision
- cavity
- jet
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 66
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 38
- 238000009792 diffusion process Methods 0.000 title claims abstract description 18
- 238000009841 combustion method Methods 0.000 title claims description 4
- 230000000694 effects Effects 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 238000009834 vaporization Methods 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 238000004904 shortening Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 19
- 239000007924 injection Substances 0.000 abstract description 19
- 239000002245 particle Substances 0.000 abstract description 9
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000007921 spray Substances 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000000779 smoke Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0672—Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0618—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
- F02B23/0621—Squish flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0645—Details related to the fuel injector or the fuel spray
- F02B23/0648—Means or methods to improve the spray dispersion, evaporation or ignition
- F02B23/0651—Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0645—Details related to the fuel injector or the fuel spray
- F02B23/0666—Details related to the fuel injector or the fuel spray having a single fuel spray jet per injector nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F2001/244—Arrangement of valve stems in cylinder heads
- F02F2001/247—Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
燃料経済性で有利な直噴ディーゼル機関の小型高速化は
現時点において未解決であり、その原因は燃料噴射ノヅ
ル(多孔針弁躯)の小型化が困鑞なことと、多孔ホール
ノヅルは熱に対して敏感であるため、最適燃焼条件を得
るには一スワールとの整合が必要であり、現方式では燃
焼に制約をう仇高速化、小型化が至難であり、又M燃焼
方式等ではノヅルに問題はなくとも燃料のキャビティ壁
面蒸発を混合気生成の主要素としているため、これも燃
焼の高速化が計れない問題点を有している。[Detailed Description of the Invention] At present, it has not been possible to make a direct injection diesel engine smaller and faster, which is advantageous in terms of fuel economy, and the reason for this is that it is difficult to miniaturize the fuel injection nozzle (multi-hole needle valve body). Since the porous hole nozzle is sensitive to heat, it is necessary to match it with a single swirl in order to obtain the optimum combustion conditions, and with the current method, it is extremely difficult to speed up and downsize due to the constraints on combustion. Although there is no problem with the nozzle in the M combustion system, since the evaporation of the fuel on the cavity wall is the main element for generating the air-fuel mixture, this also has the problem that it is not possible to increase the speed of combustion.
本発明は自己清浄性を有する単孔ノヅルを用い燃料噴流
の衝突反射作用によって拡散脅蒸発・予混合の合成燃焼
を意図的に行なわしめることによって直噴ディーゼル機
関の小塵化と高速化を可能としたディーゼル燃焼系の技
術と燃料噴射式多種燃料機関の燃焼技術並びに層状給気
予混合機関の技術に関するものである。The present invention uses a single-hole nozzle with self-cleaning properties to intentionally perform synthetic combustion of diffusion threat evaporation and premixing through the collision and reflection effect of fuel jets, thereby making it possible to reduce dust and increase speed of direct injection diesel engines. This paper relates to diesel combustion system technology, combustion technology for fuel-injected multi-fuel engines, and technology for stratified air premixing engines.
直噴方式に最も多く用いられている針弁型多孔ホールノ
ヅルの大きな欠点は熱の影響によって噴r4状態の変化
が大なることである。A major drawback of the needle valve type multi-hole nozzle, which is most commonly used in direct injection systems, is that the state of the injection r4 changes significantly due to the influence of heat.
例えばノヅル先端温度が比較的低い場合には燃料の貫刺
性が大であり、噴霧先端はキャビテイ壁面に衝突し局部
的な冷却作用が大となり、これが原因で過濃域を作り白
煙・?Wが発生する。又、ノヅル先端温度が高くなると
極端に霧化拡散が進行し貫刺性が弱まるため、ノヅル近
傍で過度の拡散燃焼が起生ずるため適応するスワールが
必要であり、構造上燃焼室に突出するノヅyの温度管理
が難事であることは現在でも未解決な問題であ4又、燃
料の拡散、霧化を図るための孔数・孔径・加熱等の条件
はいづれも燃料中の高分子質の重合によるホールの目づ
まりを促進することにもなり、噴霧の偏向等によって空
気利用率が低下し、黒煙を発生し燃費は悪化する。これ
らの問題点は機関の小型化にともないますます深刻とな
り、熱効率で有利である直噴ディーゼル機関の小型化と
高速化の大きなS壁となっている。For example, when the nozzle tip temperature is relatively low, the penetration of the fuel is large, and the spray tip collides with the cavity wall, resulting in a large local cooling effect, which causes an over-concentrated area and white smoke. W occurs. In addition, when the nozzle tip temperature increases, the atomization diffusion progresses to an extreme degree and the penetration becomes weaker. This causes excessive diffusion combustion near the nozzle, so an appropriate swirl is required. It is still an unresolved problem to control the temperature of y, and the conditions such as the number of pores, pore diameter, heating, etc. for fuel diffusion and atomization are all dependent on the polymer content in the fuel. It also promotes clogging of the holes due to polymerization, and the air utilization rate decreases due to the deflection of the spray, generating black smoke and worsening fuel efficiency. These problems have become more and more serious as engines become smaller, and have become a major barrier to the miniaturization and higher speed of direct injection diesel engines, which are advantageous in terms of thermal efficiency.
直噴方式の他の型式、例えばM燃焼方式においてはノヅ
ルは単孔弁の使用が可能であるが、混合気生成の主な手
段をピストン凹部壁面での蒸発に依存するものであり、
この方法では機関の高速化が期待できなく、又、こnと
は逆に渦巻噴射弁を用いて大噴霧角、低噴霧貫徹力を特
徴とし、拡散燃焼を主とした燃焼系の研究が発表されて
いるが、未だ高速化を満足するものではなく、この燃焼
系ではピストンキャビティを深く形成する必要があり、
ピストンピンより上部構造が高くなりエンジン本体41
造が大きくなる等、機関の軽蝕・小型化に不都合な条件
が生ずる。In other types of direct injection systems, such as the M combustion system, it is possible to use a single hole valve for the nozzle, but the main means of generating air-fuel mixture relies on evaporation on the wall surface of the piston recess.
This method cannot be expected to increase the speed of the engine, and on the other hand, studies have been published on combustion systems that use swirl injection valves, which are characterized by large spray angles and low spray penetration, and are mainly based on diffusive combustion. However, this combustion system still does not satisfy high speed, and the piston cavity must be formed deep in this combustion system.
The upper structure is higher than the piston pin and the engine body 41
This creates conditions that are inconvenient for light corrosion and miniaturization of the engine, such as the structure becoming larger.
本発明は既述の諸問題を解決する手段として、ノヅルは
自己清浄作用を有し熱に対して安定性の高いピントル又
はスロットル等の単孔ノヅルを用い、燃料噴流をキャビ
ティ内又はピストン面に衝突せしめて燃料噴流の衝突反
射作用によって燃料粒子の細分化と微粒化をキャビティ
内に立体的に行なわしめることと、異なる粒子の貫刺性
を利用し比較的大なる燃料粒子による攪面蒸発子混合燃
焼と微細粒子による拡散燃焼との合成燃焼をキャビティ
内において多点的に且つ短時間に行なわしめることによ
り燃焼反応の高速化と空気利用率を高め、スワール依存
度を低減した燃焼を達成するものであり、これによって
熱効率で有利な直接噴射ディーゼル機関の小を化と高速
化を計ることを目的とするものである@
又、別の目的は単孔ノヅルよりの燃料噴流・を対向する
ピストン頂面部に衝突させ衝突による又射作用を利用し
て燃料の微粒化と拡散を計り、燃焼室全域にわたり予混
合気の形成を確実に行なうことによって多種燃料の使用
に効果的な予混合気形成技術を提示することを目的とし
ている。The present invention, as a means to solve the above-mentioned problems, uses a single-hole nozzle such as a pintle or throttle, which has a self-cleaning effect and is highly stable against heat, and directs the fuel jet into the cavity or onto the piston surface. By colliding and reflecting the fuel jet, the fuel particles are subdivided and atomized three-dimensionally within the cavity, and by utilizing the penetrating properties of different particles, a stirred surface evaporator with relatively large fuel particles is created. By performing synthetic combustion of mixed combustion and diffusion combustion using fine particles at multiple points within the cavity in a short time, the combustion reaction speed is increased, the air utilization rate is increased, and combustion with reduced swirl dependence is achieved. The purpose of this is to reduce the size and speed of direct injection diesel engines, which are advantageous in thermal efficiency. Another purpose is to reduce the size and speed of direct injection diesel engines, which are advantageous in thermal efficiency. The fuel is atomized and diffused by colliding it with the top surface and utilizing the injection effect caused by the collision, and by ensuring the formation of a premixture throughout the entire combustion chamber, it is possible to form a premixture that is effective when using a variety of fuels. The purpose is to present the technology.
本発明の更に別の目的は単孔ノヅルの貫刺性を利用し、
ノヅルに対するピストン面の四部に燃料を噴射供給し凹
部内を火花点火による着火可能な混合比域とし、気筒全
体としては希薄な層状給気による層状燃焼を行なわしめ
ることにある。Still another object of the present invention is to utilize the penetrating property of a single hole nozzle,
The purpose is to inject and supply fuel to four parts of the piston surface relative to the nozzle to create a mixture ratio range within the recess where ignition is possible by spark ignition, and to perform stratified combustion using lean stratified air supply in the cylinder as a whole.
本発明になる燃焼系の実施例を図について説明すると次
の如くである。An embodiment of the combustion system according to the present invention will be described below with reference to the drawings.
圧縮着火方式においては図1・図2に示す如くキャビテ
ィ形状は機関を小型化しつる設計面より可及的浅型の構
造が有利であり、燃料噴射ノヅル(1)よりの噴流(力
が衝突反射によって拡散(3)され、燃料粒子がスキッ
シュ流(4)によってキャビティ全域に到達し、且つ有
効に周域空気を利用すべくキャビティ上部口(5)に主
流を分布せしめ、又噴流衝突域のキャビティ中心部は熱
ピンチ策に有効な容積を減じた底高形状(6)とし、噴
流衝突部(刀は欠球状凹面あるいはキャビティ周域に立
体的な噴霧の拡散とスキッシュ流れに対向的な噴霧の拡
散との両作用を効果的に行なわしめるため、衝突部の欠
球状凹面を図3・図4に例を示す如く球Rの異なる多角
面状に形成するものであり、こnによって周域に拡散す
る燃料粒子をキャビティ内全域に立体的に拡散させる作
用を行なうものであり、貫刺性が大きく周壁にまで達す
る燃料粒子をも多点的に分数することにより、蒸発によ
る予混合を短時間に行なわしめるものである。しかして
従来燃焼方式と較べ全周域に立体的に且つ多点に火炎核
の生成を促進するものであり、気筒全体での反応時間の
短縮が行なわれる。In the compression ignition system, as shown in Figures 1 and 2, it is advantageous for the cavity shape to be as shallow as possible from the design point of view of downsizing the engine. The fuel particles are diffused (3) by the squish flow (4) and reach the entire cavity area, and the main flow is distributed to the cavity upper opening (5) in order to effectively utilize the surrounding air, and the cavity in the jet impingement area is The center part has a high-bottom shape (6) with a reduced volume that is effective for thermal pinch measures, and the jet collision part (the sword is a truncated concave surface or a three-dimensional spray dispersion around the cavity and a spray opposite to the squish flow). In order to effectively perform both the diffusion and diffusion effects, the truncated concave surface of the collision part is formed into a polygonal shape with different spherical radii as shown in FIGS. 3 and 4. It has the effect of three-dimensionally dispersing the diffusing fuel particles throughout the cavity, and by fractionating fuel particles that are highly penetrating and reach the peripheral wall at multiple points, premixing due to evaporation can be reduced in a short time. Compared to conventional combustion methods, the generation of flame kernels is promoted three-dimensionally and at multiple points throughout the circumference, and the reaction time for the entire cylinder is shortened.
これらによって当然スワール依存度が低減することは明
らかである。It is obvious that the degree of swirl dependence is naturally reduced by these measures.
従来直噴エンジンの主流である多孔ホールタイプにおい
てはスワールが重要条件であり、これの生成のために吸
気路形状を工夫し、ダイレクショナル、ヘリカル等の手
法によって給気流れのスワール化が計らnているが、こ
れらはいづれもが給気系抵抗を増加するものであり、機
関!&廃山力や発煙限界が制約をうける方向にあり、又
弁に案内壁を取り付ける等(シュラウド弁)も同様であ
る。Swirl is an important condition for the multi-hole type, which is the mainstream of conventional direct injection engines.To generate this, the shape of the intake passage has been devised, and the swirl of the air supply flow has been created using methods such as directional and helical. However, all of these increase the resistance of the air supply system, and the engine! & The pile abandonment force and smoke generation limits are becoming more restricted, and the same applies to the installation of guide walls on valves (shroud valves).
本発明によるこのような燃焼系においてはスキッシュ流
れに対向的に燃料の拡散を図り、キャビティ内での多角
度な立体的燃料分布と周壁全体での授熱蒸発作用とによ
り、空気との混合を行なうものであり、燃料噴霧のうち
微粒子分はg&速に拡散燃焼反応に移行し、比較的粒子
の大きなものは貫刺性の大なる条件によって周域に拡散
し、その一部は壁面到着前に反応し、又壁面にまで達す
る燃料もホールタイプと比較して多点的で且つ広範囲に
分散して到達するため、各到達点において蒸発は急速に
進行される。多孔ホール、ノヅルを用いた従来の燃焼方
法では燃料噴霧の壁面到達箇所はホール数とその孔方向
によって定められた特定の箇所に集中するため、この域
は局所的冷却による熱歪みの発生や過濃混合気域となる
ことが避けられず、適度のスワール運動が必要なことは
周知である。そして近時はスワールの強度がMoxの発
生を促進していることが解り、スワールのコントロール
がディーゼル機関の性能改善上での重要な課題ともなっ
ている。In such a combustion system according to the present invention, fuel is diffused in opposition to the squish flow, and mixing with air is achieved by multi-angular three-dimensional fuel distribution within the cavity and heat transfer and evaporation action across the peripheral wall. The fine particulates in the fuel spray shift to a diffusion combustion reaction at g & speed, and the relatively large particles diffuse into the surrounding area due to the condition of high penetration, and some of them are absorbed before reaching the wall surface. In addition, the fuel that reacts to the wall surface and reaches the wall surface is dispersed at multiple points and over a wide range compared to the hole type, so evaporation progresses rapidly at each reaching point. In conventional combustion methods using multi-holes and nozzles, the fuel spray reaches the wall surface and concentrates in a specific location determined by the number of holes and the direction of the holes. It is well known that a rich air-fuel mixture region is unavoidable and that appropriate swirling motion is required. Recently, it has been found that the intensity of swirl promotes the generation of Mox, and control of swirl has become an important issue in improving the performance of diesel engines.
本発明では熱ピンチのうけやすいキャビティ中心域にお
いてはノヅルよりの噴流を拡散すること少なくエネルギ
を温存して剛体的にキャビティ衝突部に到達せしめるも
のであり、この衝突部を起点として燃料の反射拡散分布
が行なわnるものであり、噴霧角の少ないピントル、ス
ロットル等単孔ノヅルによって目的を達するので、従来
多く発生していたノヅル原因によるトラブルが明確に解
消することは本発明の大きな効果である。In the present invention, the jet flow from the nozzle is not diffused in the center region of the cavity, which is susceptible to thermal pinch, and the energy is conserved so that it reaches the cavity collision part in a rigid body, and the fuel is reflected and diffused from this collision part as a starting point. Since the purpose is achieved by single-hole nozzles such as pintles and throttles with small spray angles, it is a great effect of the present invention that the troubles caused by nozzles, which have often occurred in the past, are clearly resolved. .
又、この剛体的でキャビティ内の突起部に衝突する燃料
噴流は流動エネルギを温存しており、衝突反射によって
噴流を分裂し、順次に外側域に有効に分散させ確実な全
周域への燃料分布条件を達成せしめるため、衝突部温度
を一定の範囲とすることが効果的であるが、この点はピ
ストンキャビティ又はピストン頂面に設置する衝突部の
温度コント彎−ルもピストン底面よりの冷却によって容
易に行ないうるものである。In addition, the fuel jet that collides with this rigid protrusion in the cavity conserves its flow energy, and the jet is split by collision reflection and effectively dispersed to the outer area in order to ensure that the fuel is distributed to the entire circumference area. In order to achieve the distribution conditions, it is effective to keep the temperature of the collision part within a certain range, but in this respect, the temperature control of the collision part installed in the piston cavity or the top surface of the piston is also effective because cooling from the bottom surface of the piston is not effective. This can be easily done by
又、本方式はディーゼル方式のみならずガソリン、ケロ
シン、メタノール等ディーゼル燃料以外の液体燃料を用
いる予混合火花点火燃焼方式においても噴射時期を早め
ること等によって容易に空気との予混合を確実に行ない
空気利用率をスワールに依存少なく高めうるので、多種
燃料機関としての有利性を有するものである。In addition, this method can easily ensure premixing with air by advancing the injection timing not only in diesel systems but also in premixed spark ignition combustion systems that use liquid fuels other than diesel fuel such as gasoline, kerosene, and methanol. Since the air utilization rate can be increased with less dependence on swirl, it is advantageous as a multi-fuel engine.
このように、噴霧角が小さくキャビティ内部において噴
流を衝突反射によって分散・拡散等を行なわしめキャビ
ティ内での立体的な混合気生成を行なわしめることによ
り、ディーゼル方式においては燃焼を短時間に多点的に
行なわしめ、又火花点火多M4燃料機関としても予混合
気の生成に裕度があり、充分な気化と予混合を行ないう
ることが本発明の特長であり、こnによって従来の直噴
デーゼルや噴射式多種燃料機関あるいは火花点火式予混
合機関と較べ次の如く多くの効果・利点を有するもので
ある。In this way, in the diesel system, the spray angle is small and the jet is dispersed and diffused by collision and reflection inside the cavity, creating a three-dimensional mixture inside the cavity. The feature of the present invention is that even as a spark ignition multi-M4 fuel engine, there is a margin in the generation of premixture, and sufficient vaporization and premixing can be performed. Compared to a diesel engine, an injection type multi-fuel engine, or a spark ignition type premix engine, it has many effects and advantages as follows.
即ち、
■ 立体的・多角的な多点着火燃焼方式により、燃焼時
間が短縮され、それによって機関の高速化が可能となり
、燃費が向上し、NOxの発生が少ない。That is: (1) The three-dimensional, multi-directional, multi-point ignition combustion system shortens the combustion time, thereby making it possible to increase the speed of the engine, improving fuel efficiency, and generating less NOx.
■ ピントル、スロットル等の自己清浄作用の大なる単
孔ノヅルを用いることにより、ノヅルトラブルが解消し
、噴霧の偏向・目づまり等による黒煙の発生、燃費の低
下、出力の低下がなくなる〇
■ スワール依存度が少ないので、給気路にスワール生
成のための流れ回路、シェラウド弁等を必要としないた
め、抵抗の少ない簡単な給気路で給気効率が向上し、出
力と発煙限界が向上するO
■ ノヅルの耐久性が向上し、メンテナンスと機関全体
の信頼性が向上するり
■ 機関の小型化が可能となった。■ By using single-hole nozzles with a large self-cleaning effect on pintles, throttles, etc., nozzle troubles are eliminated, and no black smoke is generated due to mist deflection or clogging, and there is no reduction in fuel efficiency or output. ■ Since there is little dependence on swirl, there is no need for flow circuits or shroud valves for swirl generation in the air supply path, so air supply efficiency is improved with a simple air supply path with low resistance, and output and smoke generation limits are reduced. Improved ■ Durability of the nozzle has been improved, maintenance and reliability of the engine as a whole have improved, and ■ It has become possible to downsize the engine.
図1は本発明をディーゼル機関に適用した場合の実施例
を示す縦断面図である。
図2はキャビティ内での衝突による燃料の拡散状態を示
すRIJR面図である。
図3・図4は具なる球R面を有する燃料衝突反射凹面の
例を示す立体図と断面図であり、図5は燃料噴射式多種
燃料火花点火機関に適用した例を示す縦断面図である。
図6の(N・(B)・(0)・(功は各々燃料衝突部の
形状例を示す縦断面図である。
図7は燃料噴射衝突拡散による層状給気機関の例を示す
縦断面図であり、図8は衝突反射拡散による燃料分布状
態を示す断面図である。
図中、(1)−・・燃料噴射ノヅル、(2)・・・燃料
噴流、(5)・・・拡散する燃料部、(4) ・・・ス
キッシユ流れ、(5)−・・キャビティ口、(6)・・
・燃料衝突反射面基部、(7′)・・・噴流衝突部又は
面、(8)、−・・ピストン、(9)・・・給気弁、(
10)・・・排気弁、(11)・・・点火栓。
図1FIG. 1 is a longitudinal sectional view showing an embodiment in which the present invention is applied to a diesel engine. FIG. 2 is an RIJR plane view showing the state of fuel diffusion due to collision within the cavity. 3 and 4 are a three-dimensional view and a sectional view showing an example of a fuel collision reflecting concave surface having a spherical R surface, and FIG. 5 is a longitudinal sectional view showing an example applied to a fuel injection multi-fuel spark ignition engine. be. (N, (B), (0), and () in FIG. 6 are vertical cross-sectional views showing examples of the shapes of fuel collision parts, respectively. Figure 7 is a vertical cross-sectional view showing an example of a stratified air supply engine using fuel injection collision diffusion. 8 is a cross-sectional view showing the state of fuel distribution due to collision reflection and diffusion. In the figure, (1)...Fuel injection nozzle, (2)...Fuel jet, (5)...Diffusion fuel section, (4)...squish flow, (5)--cavity mouth, (6)...
-Fuel collision reflecting surface base, (7')...Jet flow collision part or surface, (8), -...Piston, (9)...Air supply valve, (
10)...Exhaust valve, (11)...Spark plug. Figure 1
Claims (6)
ャビティ内に噴射衝突させ、衝突面での反射拡散作用に
より衝突部を起点としてキヤビテイ全域に燃料の拡散分
布と混合を計り、スワールに依存すること少なく主にス
キツシユ流れによつて空気利用率を高め、燃焼期間の短
縮を計りたることを特徴としたデイーゼル機関の衝突反
射拡散燃焼方式。(1) The fuel jet from the nozzle is injected and collided with the piston surface or inside the cavity, and by the reflection and diffusion effect on the collision surface, the fuel is diffused and mixed throughout the cavity starting from the collision part, reducing dependence on swirl. A collision-reflection diffusion combustion method for diesel engines, which is characterized by increasing air utilization efficiency and shortening the combustion period mainly by means of a squishy flow.
い、ピストン頂面あるいはキヤビテイ内に設けられた凸
部凹面に対し燃料噴流を衝突させ、燃焼室内に衝突反作
用による立体的な燃料の拡散を計り、空気流動エネルギ
に依存すること少なく燃料の混合気化を促進することを
特徴とした火花点火式多種燃料内燃機関。(2) Using a pintle, throttle, or needle-valve single-hole nozzle, a fuel jet is caused to collide with the top surface of the piston or a convex or concave surface provided in the cavity, and three-dimensional fuel diffusion is achieved by the collision reaction within the combustion chamber. , a spark-ignition multi-fuel internal combustion engine characterized by promoting fuel mixture vaporization without relying on air flow energy.
せしめるための燃料衝突反射面を有する凸状部を形成し
、衝突面形状を凹面状に形成したことを特徴とする前記
特許請求の範囲(1)記載のデイーゼル機関。(3) Claim 1 characterized in that a convex portion having a fuel collision reflection surface for causing the fuel jet from the nozzle to collide with the bottom of the cavity is formed, and the collision surface shape is formed in a concave shape. ) Diesel engines listed.
合気を形成することを特徴とする前記特許請求の範囲(
2)記載の火花点火式予混合燃焼内燃機関。(4) The scope of the above-mentioned claim (
2) The spark-ignition premix combustion internal combustion engine described above.
けた凹部に衝突させ、衝突拡散によつて凹部に火花点火
による着火可能な混合気域を形成した層状給気により気
筒全体として希薄な層状燃焼を行なわしめることを特徴
とする火花点火方式層状給気内燃機関。(5) The fuel jet from the nozzle collides with the recess provided in the opposing piston, and due to collision diffusion, a mixture region where spark ignition can ignite is formed in the recess.The stratified air supply creates a lean stratified combustion throughout the cylinder. A spark ignition stratified air supply internal combustion engine characterized by:
、分布するための衝突部をセラミツク等耐熱・耐磨耗性
材料で形成し、これをピストン頂面又はキヤビテイ内に
装着したことを特徴とした前記特許請求の範囲(1)及
び(2)に記載の内燃機関。(6) The collision part for diffusing and distributing the fuel jet from the nozzle by collision reflection is formed of a heat-resistant and wear-resistant material such as ceramic, and is mounted on the top surface of the piston or inside the cavity. An internal combustion engine according to claims (1) and (2) above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280533A JPS62139921A (en) | 1985-12-13 | 1985-12-13 | Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280533A JPS62139921A (en) | 1985-12-13 | 1985-12-13 | Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62139921A true JPS62139921A (en) | 1987-06-23 |
Family
ID=17626415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60280533A Pending JPS62139921A (en) | 1985-12-13 | 1985-12-13 | Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62139921A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01111135U (en) * | 1988-01-19 | 1989-07-26 | ||
US4974565A (en) * | 1988-02-26 | 1990-12-04 | Toyota Jidosha Kabushiki Kaisha | Fuel swirl generation type fuel injection valve and direct fuel injection type spark ignition internal combustion engine mounted with the fuel injection valve |
US5058549A (en) * | 1988-02-26 | 1991-10-22 | Toyota Jidosha Kabushiki Kaisha | Fuel swirl generation type fuel injection valve and direct fuel injection type spark ignition internal combustion engine |
JP2002327633A (en) * | 2001-02-23 | 2002-11-15 | Clean Air Partners Inc | Gas-fueled compression ignition engine with maximized pilot ignition intensity and pilot fuel injection method |
US11293374B2 (en) * | 2020-07-31 | 2022-04-05 | Fev Gmbh | Piston bowl geometries for internal combustion engines |
-
1985
- 1985-12-13 JP JP60280533A patent/JPS62139921A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01111135U (en) * | 1988-01-19 | 1989-07-26 | ||
US4974565A (en) * | 1988-02-26 | 1990-12-04 | Toyota Jidosha Kabushiki Kaisha | Fuel swirl generation type fuel injection valve and direct fuel injection type spark ignition internal combustion engine mounted with the fuel injection valve |
US5058549A (en) * | 1988-02-26 | 1991-10-22 | Toyota Jidosha Kabushiki Kaisha | Fuel swirl generation type fuel injection valve and direct fuel injection type spark ignition internal combustion engine |
JP2002327633A (en) * | 2001-02-23 | 2002-11-15 | Clean Air Partners Inc | Gas-fueled compression ignition engine with maximized pilot ignition intensity and pilot fuel injection method |
US11293374B2 (en) * | 2020-07-31 | 2022-04-05 | Fev Gmbh | Piston bowl geometries for internal combustion engines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3163906B2 (en) | In-cylinder injection spark ignition engine | |
Zhao et al. | Automotive spark-ignited direct-injection gasoline engines | |
US5915353A (en) | Cylinder direct injection spark-ignition engine | |
US4641617A (en) | Direct injection type internal combustion engine | |
JP3804879B2 (en) | Combustion method of direct injection diesel engine | |
US6098588A (en) | Injection device and combustion process for an internal combustion engine | |
JPS62113822A (en) | Combustion system for internal combustion engine | |
JPS62139921A (en) | Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor | |
JPH0218407B2 (en) | ||
JP2006510844A (en) | Self-igniting internal combustion engine | |
JPS631710A (en) | Spark ignition fuel injection stratified charge combustion system and various fuels high-compression stratified combustion engine | |
CN1997814A (en) | In-cylinder injection, spark ignited internal combustion engine | |
JP2560337B2 (en) | Direct injection diesel engine | |
JPS603312Y2 (en) | Combustion chamber of direct injection diesel engine | |
JPS63215817A (en) | Combustion chamber structure of engine | |
JPS61200322A (en) | Two-cycle compression ignition type internal-combustion engine | |
JP2785634B2 (en) | Fuel injection valve | |
JPS603311Y2 (en) | Combustion chamber of direct injection diesel engine | |
JPH0712668Y2 (en) | Spark ignition direct injection engine | |
JPS6329016A (en) | Subchamber type diesel combustion chamber | |
KR100303979B1 (en) | 3-valve gasoline engine | |
JP2522799Y2 (en) | Combustion chamber of direct injection diesel engine | |
JP2874245B2 (en) | Sub-chamber diesel engine | |
JPH0436018A (en) | Fuel collision-diffusion type engine | |
JPH0755295Y2 (en) | Combustion chamber of internal combustion engine |