[go: up one dir, main page]

JPS6213632B2 - - Google Patents

Info

Publication number
JPS6213632B2
JPS6213632B2 JP463078A JP463078A JPS6213632B2 JP S6213632 B2 JPS6213632 B2 JP S6213632B2 JP 463078 A JP463078 A JP 463078A JP 463078 A JP463078 A JP 463078A JP S6213632 B2 JPS6213632 B2 JP S6213632B2
Authority
JP
Japan
Prior art keywords
circuit
time width
vehicle speed
signal
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP463078A
Other languages
Japanese (ja)
Other versions
JPS5497471A (en
Inventor
Ko Honma
Kazuhiro Morizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP463078A priority Critical patent/JPS5497471A/en
Publication of JPS5497471A publication Critical patent/JPS5497471A/en
Publication of JPS6213632B2 publication Critical patent/JPS6213632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、超音波によるドツプラ効果を応用し
た車輛速度計測装置に関するもので特に車輛速度
とドツプラ周波数との関係から、一定のドツプラ
波数毎に車輛速度を算出できるようにしたもので
ある。
[Detailed Description of the Invention] The present invention relates to a vehicle speed measuring device that applies the Doppler effect using ultrasonic waves. In particular, the present invention relates to a vehicle speed measuring device that applies the Doppler effect using ultrasonic waves. In particular, it is possible to calculate the vehicle speed at each fixed Doppler wave number from the relationship between the vehicle speed and the Doppler frequency. This is what I did.

道路上の車輛が進行してくる方向に向けて設置
された超音波送受波器から超音波を発射した場
合、車輛で反射されて受波した反射波の周波数
は、その車輛の速度に応じて偏移する。これはド
ツプラ効果としてよく知られている。
When ultrasonic waves are emitted from an ultrasonic transducer installed in the direction in which a vehicle on the road is moving, the frequency of the reflected waves received after being reflected by the vehicle will vary depending on the speed of the vehicle. deviate. This is well known as the Dotsupura effect.

この反射波と発射波との周波数の差、すなわ
ち、ドツプラ周波数dは一般に次式で表わされ
る。
The difference in frequency between the reflected wave and the emitted wave, ie, the Doppler frequency d , is generally expressed by the following equation.

d=2・V・cosφ/C−V・cosφ・p……
(1) ここで、pは発射波周波数、Cは音速、Vは
車輛速度、φは車輛進行方向と受波される反射波
とのなす角度である。
d = 2・V・cosφ/C−V・cosφ・p ……
(1) Here, p is the emitted wave frequency, C is the speed of sound, V is the vehicle speed, and φ is the angle between the vehicle traveling direction and the received reflected wave.

1式より、車輛速度Vは V=+2・・C/cosφ ……(2) となるが、2式から車輛速度Vを算出するには複
雑な演算回路を必要とするため、従来は1式にお
いてC≫V・cosφと見なし簡略化した算出方法
で車輛速度計測を行なつていた。このときの車輛
速度計測値Vsは Vs/2・・C/cosφ ……(3) となり、ドツプラ周波数dに比例した数値とし
て得られ、簡単に算出できる。ただし、このとき
の車輛速度計測誤差は大気温度25℃のときC=
346m/secであるため車輛真速度V=160Km/
h、cosφ=0.9において約13%となる。
From equation 1, vehicle speed V is as follows: V= d / d + 2・p・C/cosφ (2) However, calculating vehicle speed V from equation 2 requires a complicated arithmetic circuit. Conventionally, vehicle speed has been measured using a simplified calculation method in which C≫V·cosφ is assumed in Equation 1. The vehicle speed measurement value V s at this time is V s = d /2· p ·C/cosφ (3), which is obtained as a value proportional to the Doppler frequency d and can be easily calculated. However, the vehicle speed measurement error at this time is C=
Since it is 346m/sec, the vehicle true speed V=160Km/
When h and cosφ=0.9, it is approximately 13%.

また、マイクロ波のドツプラ効果を利用したマ
イクロ波ドツプラレーダ車輛速度計測装置に於け
る、ドツプラ周波数dmは次式で表わされる。
In addition, the Doppler frequency dm in the microwave Doppler radar vehicle speed measuring device that utilizes the Doppler effect of microwaves is expressed by the following equation.

dm=2・V・cosφ/Cm−V・cosφ・pn
……(4) ここで、pnはマイクロ波発振周波数、Cmは
マイクロ波伝播速度で、Cm=3×108(m/
sec)であるためCm≫V・cosφと見なすことが
でき車輛速度Vは V=dn/2・pn・Cm/cosφ ……(5) となり、3式と同様の算出方式で車輛速度を求め
ることができる。このマイクロ波レーダ車輛速度
計測装置の車輛速度演算方式は多くの実用例があ
り、これらの方式を用いて3式の演算を行なうこ
とができる。以下その従来方式の例を第1図、第
2図を用いて説明する。
dm=2・V・cosφ/Cm−V・cosφ・pn
...(4) Here, pn is the microwave oscillation frequency, Cm is the microwave propagation speed, and Cm=3×10 8 (m/
sec), so it can be considered that Cm≫V・cosφ, and the vehicle speed V is V= dn /2・pn・Cm/cosφ...(5), and the vehicle speed can be calculated using the same calculation method as Equation 3. I can do it. There are many practical examples of vehicle speed calculation methods of this microwave radar vehicle speed measuring device, and three types of calculations can be performed using these methods. An example of the conventional method will be described below with reference to FIGS. 1 and 2.

第1図の例は、定時法と呼ばれており、一定時
間内に計数されるドツプラ波数に比例して速度を
算出する方式である。ドツプラ信号はシユミツト
回路1で波形整形され、そのパルス波形から連続
検出回路2で連続したドツプラ信号パルスのみを
出力する。このドツプラ信号パルスを計数時間発
生回路4の出力するゲート時間巾Tsの間、カウ
ンタ3が計数する。このゲート時間巾Tsを Ts=C/2・・cosφ ……(6) とすることにより、カウンタ3の計数値はそのま
ま車輛速度Vsとなる。たとえば、p=20kHz、
cosφ=0.9、C=346m/secとすれば、ゲート時
間巾Ts=34.6m secで計数値がVs(Km/h)と
なる。
The example shown in FIG. 1 is called the fixed time method, and is a method in which the speed is calculated in proportion to the Doppler wave number counted within a certain period of time. The Doppler signal is waveform-shaped by a Schmitt circuit 1, and based on the pulse waveform, a continuous detection circuit 2 outputs only continuous Doppler signal pulses. The counter 3 counts these Doppler signal pulses during the gate time width T s that the counting time generating circuit 4 outputs. By setting this gate time width T s to T s =C/2· p ·cosφ (6), the count value of the counter 3 becomes the vehicle speed V s as it is. For example, p = 20kHz,
If cosφ=0.9 and C=346 m/sec, the gate time width T s =34.6 m sec and the count value becomes V s (Km/h).

第2図の例は、定波法と呼ばれており、一定の
ドツプラ波数を計数するために要する時間を測定
して、その逆数を求める方式である。ドツプラ信
号はシユミツト回路5で波形整形され、そのパル
ス波形をn波連続検出回路6で連続したドツプラ
信号パルスn波の時間巾パルスn/として出力す る。カウンタ8ではクロツク発生回路7より出力
されたクロツクcをゲート時間〓の間計数し、
その計数値はn/cとなる。定数発生回路10 は、 K=n・/2・・C/cosφ ……(7) とあらわされる定数Kは送出する。ただし、p
は発射波周波数、Cは音速、φは車輛速度であ
る。
The example shown in FIG. 2 is called the constant wave method, and is a method in which the time required to count a constant Doppler wave number is measured and the reciprocal thereof is determined. The Doppler signal is waveform-shaped by a Schmitt circuit 5, and the pulse waveform thereof is outputted by an n-wave continuous detection circuit 6 as a time width pulse n/ d of n consecutive Doppler signal pulses. The counter 8 counts the clock c output from the clock generation circuit 7 during the gate time 〓.
The counted value is n/ dc . The constant generation circuit 10 sends out a constant K expressed as K= n.c / 2.p.C /cosφ (7). However, p
is the emitted wave frequency, C is the speed of sound, and φ is the vehicle speed.

割算回路9は定数発生回路10の定数Kをカウ
ンタ8の信号n/cで割算して、その結果、出 力Dを送出する。すなわち、 となる。さらに9式の分母、分子に(2・p
d)をかけて簡単化すると、 D=/2・・C/cosφ ……(10) となり、10式は3式とまつたく同じになり、車輛
速度Vsが得られる。
The division circuit 9 divides the constant K of the constant generation circuit 10 by the signal n/ d · c of the counter 8, and sends out an output D as a result. That is, becomes. Furthermore, the denominator and numerator of equation 9 are (2・p
d ), D= d /2・p・C/cosφ (10), and Equation 10 is exactly the same as Equation 3, and the vehicle speed Vs can be obtained.

以上2つの従来例では、3式に基づき算出して
いるため、車輛速度計測誤差はまぬがれず、その
誤差は前述のとおりV=160Km/hにおいて約
13%となる。
In the above two conventional examples, since the calculation is based on the three formulas, vehicle speed measurement errors are inevitable, and as mentioned above, the errors are approximately
It will be 13%.

本発明は、より精密な2式より車輛速度を算出
し、高精度の車輛速度計測を行なうことができる
ようにしたものである。第3図は本発明の一実施
例における超音波式車輛速度計測装置のブロツク
図、第4図a〜gは同実施例の信号波形図であ
る。以下、その実施例について、第3図、第4図
a〜gを用いて説明する。ドツプラ信号はシユミ
ツト回路11で波形整形され(第4図a)、その
パルス波形をn波連続検出回路12で連続したド
ツプラ信号パルスn波の時間巾パルスn/として 出力(第4図b)する。タイマ13は時間巾パル
スn/2・を出力(第4図c)する。ゲート時間切 替回路14はまず、n波連続検出回路12の出力
〓を通過させ、その出力n/が終了したときにタ イマ13を起動させて引続きタイマ13の出力
n/2・を通過させるものである。従つて、ゲート 時間切替回路14は(n/+n/2・)の時間
巾パル スを出力(第4図d)する。
The present invention enables highly accurate vehicle speed measurement by calculating vehicle speed using two more precise equations. FIG. 3 is a block diagram of an ultrasonic vehicle speed measuring device according to an embodiment of the present invention, and FIGS. 4a to 4g are signal waveform diagrams of the same embodiment. Examples thereof will be described below using FIG. 3 and FIGS. 4 a to 4 g. The Doppler signal is waveform-shaped by the Schmitts circuit 11 (Fig. 4a), and its pulse waveform is output as a time width pulse n/ d of n consecutive Doppler signal pulses by the n-wave continuous detection circuit 12 (Fig. 4b). do. The timer 13 outputs a time width pulse n/2· p (FIG. 4c). The gate time switching circuit 14 first passes the output 〓 of the n-wave continuous detection circuit 12, and when the output n/ d ends, starts the timer 13 and subsequently passes the output n/2/ p of the timer 13. It is something. Therefore, the gate time switching circuit 14 outputs a pulse with a time width of (n/ d + n/2· p ) (FIG. 4d).

カウンタ16ではクロツク発生回路15より出
力(第4図e)されたクロツクcをゲート時間
(n/+n/2・)の間計数し、その計数値は
(n/+ n/2・)・cとなる。割算回路17は定数発生
回 路18の出力K(第4図)をカウンタ16の出
力で割算し、その出力Qは となる。
The counter 16 counts the clock c output from the clock generation circuit 15 (Fig. 4e) during the gate time (n/ d + n/2· p ), and the counted value is (n/ d + n/2·p). p )・c . The division circuit 17 divides the output K (Fig. 4) of the constant generation circuit 18 by the output of the counter 16, and the output Q is becomes.

ここでKの値を K=n・/2・・C/cosφ ……(12) とすれば さらに、分母、分子に(2・pd)をかける
と Q=+2・・C/cosφ……(14) となり、14式は2式とまつたく同じになり、14式
から、精密な車輛速度V(第4図g)が得られ
る。
Here, if the value of K is K=n・c /2・p・C/cosφ...(12) Furthermore, multiplying the denominator and numerator by (2・pd ) gives Q= d / d + 2・p・C/cosφ... (14), and equation 14 becomes exactly the same as equation 2, and from equation 14 , a precise vehicle speed V (Fig. 4g) can be obtained.

本発明は、上記実施例より明らかなように、ド
ツプラ周波数dからn波連続検出回路によりn/ の信号を求め、ゲート時間切替回路により上記
n/とタイマのn/2の信号を合成して、(n
+ n/2)の信号を作り、カウンタにより上記(n/
+n/2)とクロツク発生回路の信号cを乗じて (n/+n/2)・cを得るとともに、割算
回路で定 数発生回路の信号(K=n/2・C/cosφ
)を上記カ ウンタの信号で除算することにより車輛速度を求
める構成にしたので、比較的簡単な装置により高
精度な車輛速度V=+2・・C/cos
φを求める ことができる効果を有する。
As is clear from the above embodiment, the present invention obtains the n/ d signal from the Doppler frequency d using an n-wave continuous detection circuit, and uses the gate time switching circuit to obtain the n/ d and timer n/ 2p signals. Synthesize (n
/ d + n/2 p ) signal, and use the counter to calculate the above (n/2 p ) signal.
d + n/2 p ) by the clock generation circuit signal c to obtain (n/ d + n/2 p )・c , and the division circuit multiplies the constant generation circuit signal (K=n c /2 p・C /cosφ
) by the signal of the counter, the vehicle speed can be calculated with high precision using a relatively simple device .
This has the effect that φ can be determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の超音波式車輛速度計測
装置のブロツク図、第3図は本発明の一実施例に
おける超音波式車輛速度計測装置のブロツク図、
第4図は同実施例の信号波形図である。 11……シユミツト回路、12……n波連続検
出回路、13……タイマ、14……ゲート時間切
替回路、15……クロツク発生回路、16……カ
ウンタ、17……割算回路、18……定数発生回
路。
1 and 2 are block diagrams of a conventional ultrasonic vehicle speed measuring device, and FIG. 3 is a block diagram of an ultrasonic vehicle speed measuring device according to an embodiment of the present invention.
FIG. 4 is a signal waveform diagram of the same embodiment. 11... Schmitt circuit, 12... N wave continuous detection circuit, 13... Timer, 14... Gate time switching circuit, 15... Clock generation circuit, 16... Counter, 17... Division circuit, 18... Constant generator circuit.

Claims (1)

【特許請求の範囲】 1 移動する物体に向けて発射された超音波の反
射波を入力して、このドツプラ周波数dを矩形
波に変換するシユミツト回路と、このシユミツト
回路の信号を一定個数(n個)計数し、その計数
時間幅n/を送出するn波連続検出回路と、上記 計数時間幅n/の終了時に、収納する発振回路の 発振周波数2pの信号を一定個数(n個)計数
し、その計数時間幅n/2を送出するタイマと、上 記n波連続検出回路の計数時間幅n/および上記 タイマの計数時間幅n/2を加算して合成時間幅 (n/+n/2)を送出するゲート時間切替回
路と、 上記合成時間幅(n/+n/2)だけクロツク
cを 通過させて、(n/+n/2)・cを送出す
るカウン タと、定数K(=n/2・C/cos) (ただしp:発射周波数、C:音速、:車
輛進行方向と受波される反射波となす角) を送出する定数発生回路と、上記定数発生回路の
定数Kを上記カウンタの信号(n/+n/2
c で割算し、車輛速度V=+2・・C/c
osを求め る割算回路とを具備する超音波式車輛速度計測装
置。
[Claims] 1. A Schmitt circuit that inputs the reflected wave of an ultrasonic wave emitted toward a moving object and converts this Doppler frequency d into a rectangular wave, and a Schmitt circuit that converts the signals of this Schmitt circuit into a fixed number (n At the end of the counting time width n/ d , a fixed number (n waves ) of the oscillation frequency 2p signal of the oscillation circuit is stored. ), and the timer that sends out the counting time width n/ 2p , the counting time width n/ d of the n-wave continuous detection circuit, and the counting time width n/ 2p of the above timer are added to obtain a composite time width ( A gate time switching circuit that sends out the signal (n/ d + n/2 p ), and a clock for the above synthetic time width (n/ d + n/2 p ).
A counter that sends out (n/ d + n/2 p )・c by passing c , and a constant K (=n c /2 p・C/cos) (where p : firing frequency, C: sound speed,: vehicle A constant generating circuit that sends out the angle between the traveling direction and the received reflected wave) and the constant K of the constant generating circuit as the signal of the counter (n/ d + n/2 p )
・Divide by c , vehicle speed V= d / d + 2・p・C/c
An ultrasonic vehicle speed measuring device comprising a division circuit for determining os.
JP463078A 1978-01-18 1978-01-18 Ultrasonic type vehicle speed measuring apparatus Granted JPS5497471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP463078A JPS5497471A (en) 1978-01-18 1978-01-18 Ultrasonic type vehicle speed measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP463078A JPS5497471A (en) 1978-01-18 1978-01-18 Ultrasonic type vehicle speed measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5497471A JPS5497471A (en) 1979-08-01
JPS6213632B2 true JPS6213632B2 (en) 1987-03-27

Family

ID=11589332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP463078A Granted JPS5497471A (en) 1978-01-18 1978-01-18 Ultrasonic type vehicle speed measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5497471A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951374A (en) * 1982-09-17 1984-03-24 Furuno Electric Co Ltd Direct reading counter for doppler speed information
US4942558A (en) * 1988-03-31 1990-07-17 Micro-Trak Systems, Inc. Ultrasonic velocity sensor

Also Published As

Publication number Publication date
JPS5497471A (en) 1979-08-01

Similar Documents

Publication Publication Date Title
US5035147A (en) Method and system for digital measurement of acoustic burst travel time in a fluid medium
KR860000544A (en) Level measuring device using microwave
US3653259A (en) Ultrasonic flowmeter systems
US3727454A (en) Ultrasonic systems for carrying out flow measurements in fluids
JP2836989B2 (en) Doppler velocimeter
JPS6213632B2 (en)
US4398275A (en) Linear frequency sweep generator for continuous transmission FM sonar
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method
SU657255A1 (en) Ultrasonic flowmeter
SU451031A1 (en) Ultrasonic range meter
SU1296942A1 (en) Ultrasonic meter of flow velocity
SU573152A1 (en) Device for dlagnosing heart deseases by using ultrasonic vibrations
GB2099146A (en) A phase difference flowmeter
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
SU954873A1 (en) Meter of ultrasound speed in liquid
SU1030656A1 (en) Ultrasonic flowmeter
RU1835528C (en) Method of measurement of land-vehiclesъ actual velocity and apparatus for its embodiment
SU546818A1 (en) Ultrasonic device for automatic measurement of flow rate
SU690310A1 (en) Acoustical dicital level meter
SU794532A1 (en) Ultrasonic liquid rate meter
SU994995A1 (en) Flow speed acoustic meter
SU1608432A1 (en) Device for measuring speed of ultrasound in solid and liquid media
RU2165085C2 (en) Gear measuring flow velocity of substance
JPH067132B2 (en) Ultrasonic velocity measuring device, ultrasonic sonic velocity measuring device and ultrasonic velocity / flow direction / sonic velocity measuring device
SU987393A1 (en) Ultrasonic flow speed meter