JPS62120454A - Amorphous alloy - Google Patents
Amorphous alloyInfo
- Publication number
- JPS62120454A JPS62120454A JP60258753A JP25875385A JPS62120454A JP S62120454 A JPS62120454 A JP S62120454A JP 60258753 A JP60258753 A JP 60258753A JP 25875385 A JP25875385 A JP 25875385A JP S62120454 A JPS62120454 A JP S62120454A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- amorphous
- alloy
- amorphous alloy
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000011162 core material Substances 0.000 abstract description 23
- 229910045601 alloy Inorganic materials 0.000 abstract description 12
- 239000000956 alloy Substances 0.000 abstract description 12
- 238000002425 crystallisation Methods 0.000 abstract description 6
- 230000008025 crystallization Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 5
- 229910020018 Nb Zr Inorganic materials 0.000 abstract description 4
- 238000004544 sputter deposition Methods 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000011888 foil Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052752 metalloid Inorganic materials 0.000 description 4
- 150000002738 metalloids Chemical class 0.000 description 4
- 229910000521 B alloy Inorganic materials 0.000 description 3
- 238000005280 amorphization Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 101100230509 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) hat-1 gene Proteins 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15316—Amorphous metallic alloys, e.g. glassy metals based on Co
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は非晶質合金に関し、特に誘導型磁気ヘッドの磁
気コア材料に用いられる非晶質合金に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amorphous alloy, and particularly to an amorphous alloy used as a magnetic core material of an inductive magnetic head.
し従来の技術]
従来、誘導型磁気ヘッドの磁気コア材料として薄帯状に
形成して用いられる高透磁率の非晶質合金は多種にわた
っている。これらを大別すると金属−非金属の組み合わ
せからなるものと、金属−金属の組み合わせからなるも
のとがある。BACKGROUND ART Conventionally, there are various types of amorphous alloys with high magnetic permeability that are formed into thin strips and used as magnetic core materials for inductive magnetic heads. These can be roughly divided into those consisting of a metal-nonmetal combination and those consisting of a metal-metal combination.
前者の例としてはFe−N1−P−B合金(特開昭49
−910号)やFe−Co−5N −B合金(特開昭5
1−73920号)等が知られている。An example of the former is Fe-N1-P-B alloy (Japanese Unexamined Patent Publication No. 49
-910) and Fe-Co-5N-B alloy (JP-A No. 5
No. 1-73920), etc. are known.
また後者の例としては特開昭55−138049号によ
るZr6oCu4o +Zr7aco221Nb
Nix 、Zr NiX、Coqo−81(10−
X too−xZr×
、x*ylz (xはFe、Co、Niから成り、Yは
Cr 、 M O、W 、 T i 、 V 、 N
b 。Further, as an example of the latter, Zr6oCu4o +Zr7aco221Nb according to Japanese Patent Application Laid-Open No. 55-138049
Nix, Zr NiX, Coqo-81 (10-
X too-xZr×
, x*ylz (x consists of Fe, Co, Ni, Y is Cr, MO, W, Ti, V, N
b.
T a 、 M n 、 Cu 、 B e 、 B
、 A −(1、S i 。Ta, Mn, Cu, Be, B
, A-(1, S i .
In、G、Ge、Sn、N、P、As、Sb、ランタン
族元素から成り、ZはZrから成る)等の成分組成のも
のの他多数が知られている。In, G, Ge, Sn, N, P, As, Sb, lanthanum group elements (Z is composed of Zr), and many other compositions are known.
[発明が解決しようとする問題点]
ところで磁気コア材料に要求される性質としては、飽和
磁束密度が高いこと、使用周波数帯域において実効透磁
率が大きいこと、保磁力の小さいこと、キューリ一点が
高いこと、電気抵抗が大きいこと、磁気ひずみが小さい
こと、硬度が高い(#摩耗性が良い)こと、脆性が小さ
いこと、耐食性が良いこと等があげら′れる。[Problems to be solved by the invention] By the way, the properties required of the magnetic core material are high saturation magnetic flux density, high effective permeability in the frequency band used, low coercive force, and high Curie point. The properties include high electrical resistance, low magnetostriction, high hardness (good wear resistance), low brittleness, and good corrosion resistance.
これに対して上述した非晶質合金は規則的な原子配列構
造を持たないため、保磁力が小さく、硬度が大きく、電
気抵抗が大きく、実効透磁率が大きく、耐食性が良い等
の優れた点を有している。On the other hand, since the amorphous alloys mentioned above do not have a regular atomic arrangement structure, they have advantages such as low coercive force, high hardness, high electrical resistance, high effective magnetic permeability, and good corrosion resistance. have.
しかしながら、上述した内で前者の鉄族金属と半金属と
の組み合わせによるものは、構造の不安定からくる特性
の経年変化が著しい。また、耐熱性に問題があり、結晶
化温度以上では勿論、結晶化温度以下でも脆化がおきる
。これらの現象は、非晶質化に寄与する元素としての半
金属の原子半径が鉄族元素のそれと比べ小さく、原子の
拡散が容易であるためと考えられている。However, among the above-mentioned materials, the former combination of an iron group metal and a metalloid exhibits significant changes in properties over time due to structural instability. In addition, there is a problem with heat resistance, and embrittlement occurs not only above the crystallization temperature but also below the crystallization temperature. These phenomena are thought to be due to the fact that the atomic radius of metalloids, which are elements that contribute to amorphization, is smaller than that of iron group elements, and atoms can easily diffuse.
一方、−上述した内で後者の金属−金属の組み合わせよ
る非晶質合金は、原子半径の小さな元素を多く含まない
ため、結晶化温度以下での脆化は生じにくい。On the other hand, the amorphous alloy made of the latter metal-metal combination mentioned above does not contain many elements with small atomic radii, so it is difficult to cause embrittlement at temperatures below the crystallization temperature.
しかし、金属−金属の組み合わせによる非晶質合金は極
めて高価なIVa、Vb族元素(Ti。However, amorphous alloys made of metal-metal combinations contain extremely expensive IVa and Vb group elements (Ti).
Zr、V、Nb、Ta)を多量に含むため原材料費が極
めて高価になる。また、融点が高く溶湯が非常に酸化さ
れ易いため、製造が極めて困難であり、薄帯状にはなる
ものの、非晶質化しにくい。Since it contains a large amount of Zr, V, Nb, Ta), the raw material cost is extremely high. Furthermore, since the melting point is high and the molten metal is very easily oxidized, it is extremely difficult to manufacture, and although it can be formed into a ribbon shape, it is difficult to become amorphous.
また、Go−Zr系でGoの添加量を多くした組成にお
いても液体急冷法では、非晶質化する範囲が非常に狭く
、急冷条件が制限されるため、製造しにくい欠点があっ
た。Further, even in the case of a Go-Zr-based composition in which a large amount of Go is added, the liquid quenching method has the drawback that the range of amorphization is very narrow and the quenching conditions are limited, making it difficult to manufacture.
[問題点を解決するだめの手段]
上述した問題点を解決するため1本発明による非晶質合
金にあっては、
(a+b+c+d)原子%=100原子%としてCOo
、ZrbNbcBLi
の式で示される成分組成とした。[Means for Solving the Problems] In order to solve the above-mentioned problems, in the amorphous alloy according to the present invention, (a+b+c+d) atomic %=100 atomic %, COo
, ZrbNbcBLi.
[作 用]
磁気コア材料として優れた特性を有するものの金属−金
属系であって非晶質化の条件が限られ製造しにくいCo
−Nb−Zr合金に対して、半金属であって結晶化温度
を上昇させ非晶質形性能を向上させる作用を有するBを
適量添加することにより非晶質化が容易となり、製造が
容易となる。[Function] Although Co has excellent properties as a magnetic core material, it is a metal-metal system and difficult to manufacture due to limited conditions for amorphization.
- By adding an appropriate amount of B, which is a metalloid and has the effect of raising the crystallization temperature and improving the amorphous form performance, to the Nb-Zr alloy, it becomes easier to make it amorphous and manufacture it. Become.
[実施例]
以下、添付した図を参照して本発明の実施例の詳細を説
明する。[Embodiments] Hereinafter, details of embodiments of the present invention will be described with reference to the attached drawings.
磁気コア材料として薄帯に製造することが容易で、しか
も磁気特性、耐熱性、耐摩耗性に優れた非晶質合金を得
るために、本発明者は従来知られている高透磁率合金の
内でも特に磁気コア材料に適していると思われる金属−
金属系のCo−Nb−Zr合金について組成を変化させ
て検討してみた。In order to obtain an amorphous alloy that can be easily manufactured into a thin strip as a magnetic core material and has excellent magnetic properties, heat resistance, and wear resistance, the present inventors developed a method using conventionally known high permeability alloys. Metals that are considered particularly suitable for magnetic core materials.
We investigated a metallic Co-Nb-Zr alloy by changing its composition.
なお、この場合に非晶質合金の薄帯を製造する方法とし
ては、いわゆる単ロール法を用いた。すなわち第1図に
示すように石英管からなるノズル4から高周波コイルで
加熱して溶融した溶融合金1をArガスにより噴出させ
、高速回転する冷却用の銅ロール3上で超急冷して、非
晶質合金の薄帯2を得た。冷却速度は104〜106°
に7秒である。In this case, a so-called single roll method was used to produce the amorphous alloy ribbon. That is, as shown in FIG. 1, a molten alloy 1 heated and melted by a high-frequency coil is ejected from a nozzle 4 made of a quartz tube using Ar gas, and super-quenched on a cooling copper roll 3 that rotates at high speed. A thin ribbon 2 of crystalline alloy was obtained. Cooling rate is 104~106°
7 seconds.
しかしながら、このCo−Nb−Zr合金は金属−金属
系であるので前述したように非晶質化の条件が限られて
おり、非晶質化が困難であった。However, since this Co--Nb--Zr alloy is a metal-metal system, the conditions for making it amorphous are limited as described above, and it is difficult to make it amorphous.
そこでこのGo−Nb−Zrという成分に半金属である
Bを添加してみたところ結晶化温度が1−昇し、非晶質
化が容易になることが判った。そしてこのGo−Nb−
Zr−B合金の磁気コア材料に適した組成を検討したと
ころ以ドのことが判った。When B, a metalloid, was added to this Go-Nb-Zr component, it was found that the crystallization temperature rose by 1-1, making it easier to form an amorphous state. And this Go-Nb-
After studying the composition suitable for the magnetic core material of Zr--B alloy, we found the following.
まずBの添加量については、それが5原子%を超えると
得られる薄帯の非晶質合金が構造的に不安定となり、磁
気余効(デイスアコモデーション)を生じてしまう。ま
たBの添加量が0.5原子%以下では非晶質形成能を上
げる効果が小さくなってしまう。従ってBの添加量は0
.5〜5原子%の範囲が適当である。First, regarding the amount of B added, if it exceeds 5 atomic %, the obtained ribbon amorphous alloy becomes structurally unstable and magnetic aftereffects (deaccommodation) occur. Furthermore, if the amount of B added is less than 0.5 atomic %, the effect of increasing the ability to form an amorphous state becomes small. Therefore, the amount of B added is 0
.. A range of 5 to 5 atom % is suitable.
またNbの添加量については、それが7原子%より少な
いとNbの有する耐食性を上げる効果が少なくなってし
まう。また20原子%より多くすると残りの成分のうち
でCOの添加量が減ってしまい、飽和磁束密度が低下し
てしまう。従ってNbの添加量7〜20原子%が適当で
ある。Regarding the amount of Nb added, if it is less than 7 atomic %, the effect of increasing corrosion resistance that Nb has will be reduced. Furthermore, if the amount is more than 20 atomic %, the amount of CO added among the remaining components will decrease, resulting in a decrease in the saturation magnetic flux density. Therefore, an appropriate addition amount of Nb is 7 to 20 at %.
またZrについては最低1原子%以上添加する必要があ
る。これは磁気コア材料には、磁気ひずみがなるたけO
に近いものが適していることに関係しており、COに対
してNb 、Bがともに磁気ひずみを負にする作用があ
るのに対してZrは磁気ひずみを正にする作用があるた
めである。またZrの添加量を4.5原子%より多くす
ると。Furthermore, it is necessary to add Zr in an amount of at least 1 atomic % or more. This means that the magnetic core material has a large amount of magnetostriction.
This is related to the fact that a material close to that of CO is suitable, and while both Nb and B have the effect of making the magnetostriction negative with respect to CO, Zr has the effect of making the magnetostriction positive. . Further, when the amount of Zr added is greater than 4.5 at%.
NbとZrの合計添加量が11.5原子%を超えてしま
い、その場合非晶質合金の脆性が増大し、非常にもろく
、割れ易くなり、使用が困難となってしまう。従ってZ
rの添加量は1〜4.5原子%が適当である。If the total amount of Nb and Zr added exceeds 11.5 atomic %, the brittleness of the amorphous alloy increases, making it extremely brittle and easily cracked, making it difficult to use. Therefore Z
The appropriate amount of r added is 1 to 4.5 atomic %.
またCoの添加量については全体の100原子%から一
上述したB、Nb、Zrの合計添加量を差し引いたもの
になる。Further, the amount of Co added is calculated by subtracting the total amount of B, Nb, and Zr mentioned above from 100 atomic % of the total.
これらをまとめれば、それぞれの添加量(原子%)をC
Oはa、Zrはす、Nbはc、Bはdとして以下の(イ
)〜(ニ)の式で規定される組成が適当である。Putting these together, the amount of each addition (atomic %) is C
Suitable compositions are those defined by the following formulas (a) to (d), where O is a, Zr is su, Nb is c, and B is d.
(イ)…1≦b≦4.5
(ロ)…7≦C≦20
(ハ)…0.5≦d≦5
(二) =−a = 100− (b+e+d)次に上
記条件から得た代表的な組成とこれから製造した薄帯の
磁気特性を下記の表に2例示す。(B)...1≦b≦4.5 (B)...7≦C≦20 (C)...0.5≦d≦5 (2) =-a = 100- (b+e+d) Next, obtained from the above conditions Two examples of typical compositions and magnetic properties of ribbons produced from them are shown in the table below.
なお、この特性は各試料に対して磁界0.3KOe 。Note that this characteristic requires a magnetic field of 0.3 KOe for each sample.
回転数80Or、p、mの回転磁界中において温度45
0℃で20分間熱処理を施した後のものである。Temperature 45 in a rotating magnetic field with a rotation speed of 80 Orr, p, m
This is after heat treatment at 0°C for 20 minutes.
また、これらの各試料の磁気特性は熱に対して極めて安
定であり、例えば試料Aを上記の熱処理後に100°C
で1000分間加熱し、しかる後に保磁力を測定したと
ころ60m0eを示し、殆ど変化が見られなかった。こ
れは磁気コア材料に使用する場合に経時変化が問題であ
った従来の非晶質合金に対し、極めて優れている。In addition, the magnetic properties of each of these samples are extremely stable against heat; for example, sample A was heated at 100°C after the above heat treatment.
When the coercive force was measured after heating for 1000 minutes, it was found to be 60 m0e, with almost no change observed. This is extremely superior to conventional amorphous alloys, which have problems with aging when used as magnetic core materials.
また耐摩耗性を調べるため、上記試料Aの薄帯と、従来
の比較試料として成分組成がCO7□Fe3Si5B2
oの非晶質合金からなる薄帯から、それぞれ同様のオー
ディオヘッド用の磁気コアを作製し、それぞれのコアに
ついて気温40″C9湿度73%の雰囲気中において、
γFe2O3を塗布した磁気テープを4.75em/秒
のテープスピードで摺動させ、摺動時間による摩耗量を
測定した。In addition, in order to investigate the wear resistance, we used the thin ribbon of sample A and a conventional comparison sample with the composition of CO7□Fe3Si5B2.
Magnetic cores for similar audio heads were made from ribbons made of an amorphous alloy of o, and each core was placed in an atmosphere with a temperature of 40" C9 and a humidity of 73%.
The magnetic tape coated with γFe2O3 was slid at a tape speed of 4.75 em/sec, and the amount of wear depending on the sliding time was measured.
その結果を第2図に示す。第2図において曲線Cが試料
Aによるコアの摺動時間と摩耗量の関係そ示し、曲線り
が従来試料によるコアの関係を示す。The results are shown in FIG. In FIG. 2, the curve C shows the relationship between the sliding time and the wear amount of the core of sample A, and the curve shows the relationship of the core of the conventional sample.
第2図から明らかなように試料Aのコアの摩耗量の方が
従来試料のコアに比べて著しく少なく、例えば200時
間の搏動時間において約177であった。As is clear from FIG. 2, the amount of wear of the core of sample A is significantly smaller than that of the core of the conventional sample, for example, about 177 at a stirring time of 200 hours.
また第3図は上述の試料A及び試料Bの実効透磁率の周
波数特性を示す図である。図より明らかな様にこれらの
試料A、Bは数MHzの帯域に至るまで実効透磁率が高
いことが判る。Moreover, FIG. 3 is a diagram showing the frequency characteristics of the effective magnetic permeability of the above-mentioned samples A and B. As is clear from the figure, these samples A and B have high effective magnetic permeability up to several MHz band.
次にCoe2Nbx3Zr2B3という組成でターゲッ
トを形成し、フェライト上にスパッタリングにより上記
組成の磁性膜を被着し、この非晶質磁性合金膜の被着さ
れたフェライトを用いて第4図及び第5図にて示す如き
構造の磁気さラドを試作した。第4図はこの試作した磁
気ヘッドコアの斜視図、第5図は該コアの媒体摺動面側
より見た要部拡大図である0図中11.12は夫々フェ
ライトブロック、13.13′は夫々非晶質磁性合金膜
、14は5i02よりなる磁気ギャップ、15.15′
は夫々コアブロック11.12の固定用の非磁性材であ
る。Next, a target was formed with a composition of Coe2Nbx3Zr2B3, and a magnetic film with the above composition was deposited on the ferrite by sputtering. We prototyped a magnetic rad with the structure shown below. FIG. 4 is a perspective view of this prototype magnetic head core, and FIG. 5 is an enlarged view of the main parts of the core as seen from the medium sliding surface side. In FIG. Each amorphous magnetic alloy film, 14 is a magnetic gap made of 5i02, 15.15'
are non-magnetic materials for fixing the core blocks 11 and 12, respectively.
L述の如き構造の磁気へラドコアの耐摩耗特性を第6図
にて示す。図中aはCoB2Nb13Z r 2 B
3 l bはC072Fe3Sf5B2o(7)組成の
ターゲットを夫々用い、スパッタリングにて磁性膜を成
膜して得た磁気ヘッドの耐摩耗特性を示している0図よ
り明らかな如く本発明の非晶質磁性合金を用いて製造し
た磁気ヘッドの摩耗量は従来の同タイプのヘッドの摩耗
量に対し 172以下になっていることが判る。The wear resistance characteristics of the magnetic helad core having the structure as described above are shown in FIG. In the figure, a is CoB2Nb13Z r 2 B
3 l b shows the abrasion resistance characteristics of a magnetic head obtained by forming a magnetic film by sputtering using a target having a composition of C072Fe3Sf5B2o (7).As is clear from Figure 0, the amorphous magnetic material of the present invention It can be seen that the amount of wear of the magnetic head manufactured using the alloy is 172 or less compared to the amount of wear of a conventional head of the same type.
上述の如く本発明の非晶質合金は上記のCo。As mentioned above, the amorphous alloy of the present invention is Co.
Zr、Nb及びBの各成分を所定の割合で混合した後溶
融し、これを例えば液体急冷法もしくはスパッタリング
法等により非晶質合金化することにより容易に製造でき
るものである。また、必要に応じて熱処理を施すことに
より磁気ヘッドに用いて良好な特性が得られるものであ
る。It can be easily manufactured by mixing Zr, Nb, and B components in predetermined proportions, melting the mixture, and forming the mixture into an amorphous alloy by, for example, a liquid quenching method or a sputtering method. Further, by applying heat treatment as necessary, good characteristics can be obtained when used in a magnetic head.
[発明の効果]
以五の説明から明らかなように、本発明の非晶質合金は
、
(a+b+e+d)原子%= 100 U子%としてC
oO,Zrb Nbc BJ
の式で示される成分組成からなるので、磁気コア材料等
として薄帯に製造が容易であり、組成を適当に選択すれ
ば優れた磁気特性、耐熱性及び耐摩耗性が得られるとい
う優れた効果を得られる。[Effects of the Invention] As is clear from the following explanation, the amorphous alloy of the present invention has C
Since it has a component composition expressed by the formula oO, Zrb Nbc BJ, it can be easily manufactured into a thin strip as a magnetic core material, etc., and if the composition is appropriately selected, excellent magnetic properties, heat resistance, and wear resistance can be obtained. You can get the excellent effect of being
第1図は本発明の実施例による非晶質合金薄帯の製造方
法の説明図、第2図は実施例試料と従来の比較試料につ
いて行なった耐摩耗性試験におけるテープ摺動時間と摩
耗量の関係を示す線図、第3図は今回作製した試料の実
効透磁率の周波数特性を示す線図、第4図は本発明の非
晶質合金を用いて試作したヘッドの斜視図、第5図は第
4図に示すヘッドの媒体摺接面の安部拡大図、第6図は
第4図に示す構造の磁気へラドコアの耐摩耗特性を示す
線図である。
1…溶融合金 ?…薄帯3…銅ロール 4
…ノズル11.12…フェライトコアブロック13…磁
性H* 14…磁気ギャップ15…非磁性材1
5・・・非磁性材
特許出願人 キャノン電子株式会社((q + 8 )
絆J’a’f4は邊帯n唄乱刹式−$←帽第1図
躍動時帽崎閏)
よ1;電ne今171 と組tl のraイ糸1斤11
糸■第2図Figure 1 is an explanatory diagram of the method for manufacturing an amorphous alloy ribbon according to an example of the present invention, and Figure 2 is a tape sliding time and amount of wear in a wear resistance test conducted on an example sample and a conventional comparison sample. Figure 3 is a diagram showing the frequency characteristics of the effective permeability of the sample prepared this time, Figure 4 is a perspective view of a head prototype manufactured using the amorphous alloy of the present invention, and Figure 5 is a diagram showing the relationship between This figure is an enlarged view of the lower part of the medium sliding contact surface of the head shown in FIG. 4, and FIG. 6 is a diagram showing the wear resistance characteristics of the magnetic helad core having the structure shown in FIG. 4. 1... Molten alloy? ...Thin strip 3...Copper roll 4
...Nozzle 11.12...Ferrite core block 13...Magnetic H* 14...Magnetic gap 15...Nonmagnetic material 1
5...Non-magnetic material patent applicant Canon Electronics Co., Ltd. ((q + 8)
Kizuna J'a'f4 is byband n Uta Ran Sekishiki - $ ← Hat 1 Figure Yukyouki Hatazaki Ran) Yo 1; Denne now 171 and group tl's RA Ito 1 catty 11
Thread■Figure 2
Claims (1)
Co_aZr_bNb_cB_d の式で示される成分組成からなることを特徴とする非晶
質合金。 2)前記原子%の値a、b、c、d、のそれぞれが下記
の(イ)〜(ニ)の条件、すなわち (イ)…1≦b≦4.5 (ロ)…7≦c≦20 (ハ)…0.5≦d≦5 (ニ)…a=100−(b+c+d) を満たすものであることを特徴とする特許請求の範囲第
1項に記載の非晶質合金。[Claims] 1) (a+b+c+d) atomic %=100 atomic %,
An amorphous alloy characterized by having a composition represented by the formula Co_aZr_bNb_cB_d. 2) Each of the above atomic % values a, b, c, and d meets the following conditions (a) to (d), that is, (a)...1≦b≦4.5 (b)...7≦c≦ 20 (c)...0.5≦d≦5 (d)...a=100-(b+c+d) The amorphous alloy according to claim 1, wherein the amorphous alloy satisfies the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60258753A JPS62120454A (en) | 1985-11-20 | 1985-11-20 | Amorphous alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60258753A JPS62120454A (en) | 1985-11-20 | 1985-11-20 | Amorphous alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62120454A true JPS62120454A (en) | 1987-06-01 |
Family
ID=17324610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60258753A Pending JPS62120454A (en) | 1985-11-20 | 1985-11-20 | Amorphous alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62120454A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0426326A2 (en) * | 1989-10-20 | 1991-05-08 | Seagate Technology International | Magnetic read/write head and method of making such a head |
JPH04156898A (en) * | 1990-10-19 | 1992-05-29 | Matsushita Electric Ind Co Ltd | Control device for air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855557A (en) * | 1981-09-29 | 1983-04-01 | Takeshi Masumoto | Ferrous amorphous alloy containing fine crystal particle |
JPS5884957A (en) * | 1981-11-14 | 1983-05-21 | Matsushita Electric Ind Co Ltd | Amorphous magnetic alloy |
JPS6075563A (en) * | 1983-09-30 | 1985-04-27 | Toshiba Corp | Heat treatment of amorphous magnetic alloy |
JPS6235506A (en) * | 1985-08-08 | 1987-02-16 | Nec Corp | Magnetically soft amorphous material |
-
1985
- 1985-11-20 JP JP60258753A patent/JPS62120454A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855557A (en) * | 1981-09-29 | 1983-04-01 | Takeshi Masumoto | Ferrous amorphous alloy containing fine crystal particle |
JPS5884957A (en) * | 1981-11-14 | 1983-05-21 | Matsushita Electric Ind Co Ltd | Amorphous magnetic alloy |
JPS6075563A (en) * | 1983-09-30 | 1985-04-27 | Toshiba Corp | Heat treatment of amorphous magnetic alloy |
JPS6235506A (en) * | 1985-08-08 | 1987-02-16 | Nec Corp | Magnetically soft amorphous material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0426326A2 (en) * | 1989-10-20 | 1991-05-08 | Seagate Technology International | Magnetic read/write head and method of making such a head |
JPH04156898A (en) * | 1990-10-19 | 1992-05-29 | Matsushita Electric Ind Co Ltd | Control device for air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5935347A (en) | FE-base soft magnetic alloy and laminated magnetic core by using the same | |
JPH07268566A (en) | Fe-based soft magnetic alloy and method for manufacturing laminated magnetic core using the same | |
JP3877893B2 (en) | High permeability metal glass alloy for high frequency | |
JP2778719B2 (en) | Iron-based amorphous magnetic alloy containing cobalt | |
JPS6212296B2 (en) | ||
JPS62120454A (en) | Amorphous alloy | |
US4743313A (en) | Amorphous alloy for use in magnetic heads | |
JPS642658B2 (en) | ||
JPH11131199A (en) | Soft magnetic glass alloy | |
JP2621151B2 (en) | Magnetic material and method of manufacturing the same | |
JP3749801B2 (en) | Soft magnetic metallic glass alloy | |
JPH0413420B2 (en) | ||
JP2621150B2 (en) | Magnetic material and method of manufacturing the same | |
JPH02153036A (en) | Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing head | |
JPS6242981B2 (en) | ||
JP2812572B2 (en) | Magnetic head | |
JPH04272159A (en) | Ferrous magnetic alloy | |
JPS6122023B2 (en) | ||
JPH0368107B2 (en) | ||
JPS6274050A (en) | Corrosion-resistant iron-base amorphous magnetic alloy | |
JPH0525947B2 (en) | ||
JPS61284546A (en) | Amorphous alloy for magnetic head | |
JPS6239226B2 (en) | ||
JPH02153052A (en) | Manufacturing method of wear-resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head | |
JPS6358901B2 (en) |