JPH02153036A - Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing head - Google Patents
Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing headInfo
- Publication number
- JPH02153036A JPH02153036A JP1262699A JP26269989A JPH02153036A JP H02153036 A JPH02153036 A JP H02153036A JP 1262699 A JP1262699 A JP 1262699A JP 26269989 A JP26269989 A JP 26269989A JP H02153036 A JPH02153036 A JP H02153036A
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- total
- temperature
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Magnetic Heads (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は交流磁界における磁気特性および耐摩耗性がす
ぐれ、鍛造加工が容易で磁気記録再生ヘッドに好適な高
透磁率合金の製造法ならびに磁気記録再生ヘッドに関す
るものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a high permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge, and is suitable for magnetic recording/reproducing heads, and This relates to a recording/reproducing head.
(従来の技術)
テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が高いことが必
要とされ、また磁気テープが接触して摺動するため耐摩
耗性が良好であることが望まれている。現在、耐摩耗性
にすぐれた磁気ヘッド用磁性合金としてはセンダスト(
Fe−Si−Af系合金)およびフェライト(MnO−
ZnOFe203)がある。(Prior Art) Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein are required to have high effective magnetic permeability in high-frequency magnetic fields. It is desired that the wear resistance is good because it slides on the surface. Currently, Sendust (
Fe-Si-Af alloy) and ferrite (MnO-
ZnOFe203).
(発明が解決しようとする問題点)
しかしながら、これらの合金は非常に硬く脆いため、鍛
造、圧延加工が不可能で、ヘッドコアの製造には研削、
研磨の方法が用いられており、従ってその成品は高価で
ある。またセンダストは飽和磁束密度は大きいが薄板に
できないので高周波磁界における実効透磁率が比較的小
さい。またフェライトは実効透磁率は大きいが、飽和磁
束密度が5ooo c以下で小さいのが欠点である。他
方パーマロイ(Ni−Fe系合金)は鍛造、圧延加工お
よび打抜きは容易で量産性にすぐれているが、軟く摩耗
しやすいのが大きな欠点である。(Problems to be Solved by the Invention) However, these alloys are extremely hard and brittle, making it impossible to forge or roll them.
Polishing methods are used and the products are therefore expensive. Sendust has a high saturation magnetic flux density, but since it cannot be made into a thin plate, its effective magnetic permeability in a high frequency magnetic field is relatively low. Further, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at 500 c or less. On the other hand, permalloy (Ni--Fe alloy) is easy to forge, roll, and punch and has excellent mass productivity, but its major drawback is that it is soft and easily abraded.
本発明者らはNi−Fe系合金の磁気特性および耐摩耗
性の改善について幾多研究を行った結果、Nt−Fe系
合金にnb族元素の亜鉛およびカドミウムの1種または
2種の合計0.001〜5%を添加することにより目的
を達成したのである。The present inventors have conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and have found that Nt-Fe alloys contain a total of one or two of the NB group elements zinc and cadmium. The objective was achieved by adding 0.001 to 5%.
(問題点を解決するための手段) 本発明の特徴とする所は下記の通りである。(Means for solving problems) The features of the present invention are as follows.
第1発明
重量比にてニッケル30〜90%、亜鉛およびカドミウ
ムの1種または2種の合計0.001〜5%、少量の不
純物と残部鉄からなる合金を主成分とし、副成分として
銅30%以下、タングステン、タンタルのそれぞれ20
%以下、ニオブ、マンガン、クロムのそれぞれ15%以
下、モリブデン、バナジウム。First Invention The main component is an alloy consisting of 30 to 90% nickel, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities, and the balance iron, and the subcomponent is 30% copper. % or less, 20 each for tungsten and tantalum
% or less, 15% or less each of niobium, manganese, and chromium, molybdenum, and vanadium.
金、コバルトのそれぞれ10%以下、チタン、ケイ素、
ゲルマニウム、ガリウム、インジウム、タリウム、スト
ロンチウム、バリウム、白金族元素のそれぞれ5%以下
、アルミニウム、ジルコニウム。Less than 10% each of gold and cobalt, titanium, silicon,
Less than 5% each of germanium, gallium, indium, thallium, strontium, barium, platinum group elements, aluminum, zirconium.
ハフニウム、St希土類元素、ベリリウム、錫。Hafnium, St rare earth elements, beryllium, tin.
アンチモンのそれぞれ3%以下、ホウ素、リンのそれぞ
れ2%以下の1種または2種以上の合計0.01〜30
%を含有してなる合金を600℃以上融点以下の温度で
非酸化性雰囲気あるいは真空中において、少くとも1分
間以上100時間以下の組成に対応した適当時間加熱し
た後、600℃以上の温度から100℃/秒〜1℃/時
の組成に対応した適当な速度で常温まで冷却することを
特徴とする磁気記録再生ヘッド用耐摩耗性高透磁率合金
の製造法。3% or less each of antimony, 2% or less each of boron, phosphorus, one or more types, total 0.01 to 30
% in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and lower than the melting point for at least 1 minute or more and 100 hours or less, and then heated from a temperature of 600°C or higher to a temperature of 600°C or higher A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises cooling to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour.
第2発明
重量比にてニッケル30〜90%、亜鉛およびカドミウ
ムの1種または2種の合計0.001〜5%、少量の不
純物と残部鉄からなる合金を主成分とし、副成分として
銅30%以下、タングステン、タンタルのそれぞれ20
%以下、ニオブ、マンガン、クロムのそれぞれ15%以
下、モリブデン、バナジウム。Second Invention The main component is an alloy consisting of 30 to 90% nickel, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% copper as a subcomponent. % or less, 20 each for tungsten and tantalum
% or less, 15% or less each of niobium, manganese, and chromium, molybdenum, and vanadium.
金、コバルトのそれぞれ10%以下、チタン、ケイ素、
ゲルマニウム、ガリウム、インジウム、タリウム、スト
ロンチウム、バリウム、白金族元素のそれぞれ5%以下
、アルミニウム、ジルコニウム。Less than 10% each of gold and cobalt, titanium, silicon,
Less than 5% each of germanium, gallium, indium, thallium, strontium, barium, platinum group elements, aluminum, zirconium.
ハフニウム、vA、希土類元素、ベリリウム、錫。Hafnium, vA, rare earth elements, beryllium, tin.
アンチモンのそれぞれ3%以下、ホウ素、リンのそれぞ
れ2%以下の1種または2種以上の合計0.01〜30
%を含有してなる合金を600 ℃以上融点以下の温度
で非酸化性雰囲気あるいは真空中において、少くとも1
分間以上100時間以下の組成に対応した適当時間加熱
した後、600 ”C以上の温度から100℃/秒〜1
℃/時の組成に対応した適当な速度で常温まで冷却し、
これをさらに600℃以下の温度で非酸化性雰囲気ある
いは真空中において1分間以上100時間以下の組成に
対応した適当時間加熱し、冷却することを特徴とする磁
気記録再生ヘッド用耐摩耗性高透磁率合金の製造法。3% or less each of antimony, 2% or less each of boron, phosphorus, one or more types, total 0.01 to 30
% in a non-oxidizing atmosphere or in vacuum at a temperature of 600 °C or higher and lower than the melting point.
After heating for an appropriate time corresponding to the composition for more than a minute and less than 100 hours, from a temperature of 600"C or more to 100℃/second to 1
Cool to room temperature at an appropriate rate corresponding to the composition in °C/hour,
This is further heated in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or less for an appropriate time corresponding to the composition for 1 minute or more and 100 hours or less, and then cooled. Method of manufacturing magnetic alloys.
第3発明
重量比にてニッケル30〜90%、亜鉛およびカドミウ
ムの1種または2種の合計0.001〜5%、少量の不
純物と残部鉄からなる合金を主成分とし、副成分として
w430%以下1、タングステン、タンタルのそれぞれ
20%以下、ニオブ、マンガン、クロムのそれぞれ15
%以下、モリブデン、バナジウム。Third Invention The main ingredients are an alloy consisting of 30-90% nickel, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 430% w as a sub-component. Below 1, 20% or less each of tungsten and tantalum, 15% each of niobium, manganese, and chromium
% or less, molybdenum, vanadium.
金、コバルトのそれぞれ10%以下、チタン、ケイ素、
ゲルマニウム、ガリウム、インジウム、タリウム、スト
ロンチウム、バリウム3 白金族元素のそれぞれ5%以
下、アルミニウム、ジルコニウム。Less than 10% each of gold and cobalt, titanium, silicon,
Germanium, gallium, indium, thallium, strontium, barium 3 5% or less each of platinum group elements, aluminum, zirconium.
ハフニウム、銀、希土類元素、ベリリウム、錫。Hafnium, silver, rare earth elements, beryllium, tin.
アンチモンのそれぞれ3%以下、ホウ素、リンのそれぞ
れ2%以下の1種または2種以上の合計0.01〜30
%を含有してなる合金を用いた磁気記録再生ヘッド。3% or less each of antimony, 2% or less each of boron, phosphorus, one or more types, total 0.01 to 30
A magnetic recording/reproducing head using an alloy containing %.
(作 用)
本発明の合金は飽和磁束密度50000以上を有し、耐
摩耗性および実効透磁率がすぐれ、磁気記録再生ヘッド
等に使用し得る高透磁率磁性合金を提供するにある。(Function) The alloy of the present invention has a saturation magnetic flux density of 50,000 or more, has excellent wear resistance and effective magnetic permeability, and provides a high permeability magnetic alloy that can be used for magnetic recording/reproducing heads and the like.
さらに本発明は上記の高透磁率合金をケースおよびコア
などに用いて製造した耐摩耗性にすぐれた磁気記録再生
ヘッドに係る。Furthermore, the present invention relates to a magnetic recording/reproducing head with excellent wear resistance manufactured using the above-mentioned high magnetic permeability alloy for the case, core, etc.
本発明の合金を造るには、まず主成分のニッケル30〜
90%、亜鉛およびカドミウムの1種または2種の合計
0.001〜5%および残部鉄の適当量を非酸化性雰囲
気中あるいは真空中において適当な溶解炉を用いて溶解
した後、適当な脱酸剤、脱硫剤を少量添加してできるだ
け不純物を取り除き、更にこれに銅30%以下、タング
ステン、タンクルのそれぞれ20%以下、ニオブ、マン
ガン、クロムのそれぞれ15%以下、モリブデン、バナ
ジウム。To make the alloy of the present invention, first the main component nickel 30~
90%, a total of 0.001 to 5% of one or both of zinc and cadmium, and an appropriate amount of the balance iron in a non-oxidizing atmosphere or in a vacuum using an appropriate melting furnace, and then A small amount of an acid agent and a desulfurizing agent are added to remove impurities as much as possible, and in addition, 30% or less of copper, 20% or less of each of tungsten and tankur, 15% or less of each of niobium, manganese, and chromium, molybdenum, and vanadium.
金、コバルトのそれぞれ10%以下、チタン、ケイ素、
ゲルマニウム、ガリウム、インジウム、タリウム、スト
ロンチウム、バリウム2白金族元素のそれぞれ5%以下
、アルミニウム、ジルコニウム。Less than 10% each of gold and cobalt, titanium, silicon,
Less than 5% each of germanium, gallium, indium, thallium, strontium, barium diplatinum group elements, aluminum, zirconium.
ハフニウム、希土類元素、ヘリリウム、錫、アンチモン
のそれぞれ3%以下、ホウ素、リンのそれぞれ2%以下
の1種または2種以上の合計0.01〜30%の定量を
添加して充分に撹拌し、組成的に均一な溶融合金を造る
。次にこれを適当な形および大きさの鋳型に注入して健
全な鋳塊を得、さらにこれを高温において鍛造熱間圧延
および冷間圧延の成形加工を施して目的の形状のもの、
例えば厚さ0.1a+wの薄板を造る。Add one or more of hafnium, rare earth elements, helium, tin, antimony at 3% or less each, boron, phosphorus at 2% or less each in a total amount of 0.01 to 30%, and stir thoroughly; Create a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forging, hot rolling, and cold rolling at high temperatures to form the desired shape.
For example, a thin plate with a thickness of 0.1a+w is made.
次にその薄板から目的の形状、寸法のものを打抜き、こ
れを適当な非酸化性雰囲気(水素、アルゴンガス、窒素
など)中あるいは真空中で再結晶温度以上、すなわち約
600 ℃以上、特に800℃以上融点以下の温度に1
分間以上加熱し、ついで組成に対応した適当な速度、例
えば100”C/秒〜1℃/時で冷却する。合金の組成
によってはこれをさらに約600℃以下の温度(規則格
子−不規則格子変態点以下の温度)、特に200〜60
0℃に1分間以上100時間以下加熱し、冷却すること
により飽和磁束密度50000以上を有し、耐摩耗性に
すぐれた高透磁率磁性合金を得ることができる。Next, a piece of the desired shape and size is punched out from the thin plate and heated in a suitable non-oxidizing atmosphere (hydrogen, argon gas, nitrogen, etc.) or in vacuum at a temperature higher than the recrystallization temperature, that is, approximately 600 °C or higher, especially 800 °C. 1 at temperatures above ℃ and below the melting point
Heating is performed for at least 1 minute and then cooled at an appropriate rate depending on the composition, e.g. 100"C/sec to 1°C/hour. temperature below the transformation point), especially 200 to 60
By heating to 0° C. for 1 minute to 100 hours and cooling, a high permeability magnetic alloy having a saturation magnetic flux density of 50,000 or more and excellent wear resistance can be obtained.
上記の溶体化温度から規則−不規則格子変態点(約60
0℃)以上の温度までの冷却は、急冷しても徐冷しても
得られる磁性には大した変りはないが、この変態点以下
の冷却速度は磁性に大きな影響を及ぼす。すなわちこの
変態点以上の温度より100℃/秒〜ビC/時の組成に
対応した適当な速度で常温迄冷却することにより、地の
規則度が適度に調整され、すぐれた磁性が得られる。そ
して上記の冷却速度の内100℃/秒に近い速度で急冷
すると、規則度が小さくなり、これ以上速く冷却すると
規則化が進まず、規則度はさらに小さくなり磁性は劣化
する。しかしその規則度の小さい合金をその変態点以下
の200℃〜600 ”Cに再加熱し冷却すると、規則
化が進んで適度な規則度となり磁性は向上する。他方、
上記の変態点以上の温度から、例えばl’c/時以下時
速下で徐冷すると、規則化は進みすぎ、磁性は低下する
。From the above solution temperature to the regular-disordered lattice transformation point (approximately 60
When cooling to a temperature of 0° C. or higher, there is no significant difference in the magnetism obtained whether the material is rapidly cooled or slowly cooled, but the cooling rate below this transformation point has a large effect on the magnetism. That is, by cooling from a temperature above this transformation point to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to BiC/hour, the degree of regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./sec among the above cooling rates, the degree of order decreases, and if it is cooled faster than this, the degree of order does not proceed, and the degree of order decreases further and the magnetism deteriorates. However, when an alloy with a low degree of order is reheated to 200 to 600 ''C, below its transformation point, and cooled, ordering progresses and the degree of order becomes moderate, improving magnetism.On the other hand,
If it is slowly cooled from a temperature above the above-mentioned transformation point at a speed of, for example, 1'c/hour or less, ordering will proceed too much and the magnetism will decrease.
(実施例) 次に本発明の実施例について述べる。(Example) Next, examples of the present invention will be described.
]l土
合金番号66(組成Ni−79,0%、Zn−0,7%
。] Soil alloy number 66 (composition Ni-79.0%, Zn-0.7%
.
Cd−1,2%、Nb−7,0%、残部Fe)試料を造
るには上記組成の合金材料の全重量800gをアルミナ
坩堝に入れ、真空中で高周波誘導電気炉によって溶かし
た後よく撹拌して溶融合金とした。To make a sample (Cd-1.2%, Nb-7.0%, balance Fe), put the total weight of 800 g of the alloy material with the above composition into an alumina crucible, melt it in a high-frequency induction electric furnace in vacuum, and then stir well. It was made into a molten alloy.
ついでこれを直径25mn1.高さ170 mmの孔を
もつ鋳型に注入し、得られた鋳塊を約1100℃で鍛造
して厚さ約7ms+の板とした。さらに約600〜90
0℃の間で厚さ1mmまで熱間圧延し、ついで常温で冷
間圧延を施して0.1mmの薄板とし、それから外径4
5mm、内径33mmの環状板および磁気ヘッドのコア
を打ち抜いた。つぎにこれらに第1表に示す種々な熱処
理を施し、環状板で磁気特性を、またコアを用いて磁気
ヘッドを製造し、表面粗さ計で磁気テープ(CrO□)
による200時間時間後の摩耗量を測定して第1表のよ
うな結果を得た。Next, this was made into a diameter of 25mmn1. The ingot was poured into a mold with a hole of 170 mm in height, and the resulting ingot was forged at about 1100°C to form a plate with a thickness of about 7 ms+. About 600 to 90 more
Hot rolled at 0°C to a thickness of 1mm, then cold rolled at room temperature to form a thin plate of 0.1mm, and then rolled to a thickness of 4mm.
An annular plate with a diameter of 5 mm and an inner diameter of 33 mm and a magnetic head core were punched out. Next, these were subjected to various heat treatments shown in Table 1, the annular plate was used to test the magnetic properties, the core was used to manufacture a magnetic head, and a surface roughness meter was used to test the magnetic tape (CrO□).
The amount of wear after 200 hours was measured and the results shown in Table 1 were obtained.
つぎに第2表には1150℃の真空中で2時間加熱した
後、600℃から種々な速度で常温まで冷却するか、あ
るいはこれをさらに600℃以下の温度で再加熱して、
常温で測定された代表的な合金の緒特性が示しである。Next, Table 2 shows that after heating in a vacuum at 1150°C for 2 hours, cooling from 600°C to room temperature at various rates, or further heating at a temperature below 600°C,
The properties of typical alloys measured at room temperature are shown.
つぎに本発明合金の亜鉛およびカドミウムの添加効果に
ついて図面によって詳細に述べる。第1図には78.5
%Ni−Fe−Zn合金についてZn添加量と実効透磁
率、飽和磁束密度および摩耗量との関係を示し、第2図
には79%Ni−Fe−7%Nb−Zn合金についてZ
ni加量と実効透磁率、飽和磁束密度および摩耗量との
関係を示した、第3図には78.5%Ni−Fe−Cd
合金についてCd添加量と実効透磁率、飽和磁束密度お
よび摩耗量との関係を示し7、第4図には79%Ni−
Fe−7%Nb−Cd合金についてCd添加量と実効透
磁率、飽和磁束密度および摩耗量との関係を示した。Next, the effect of adding zinc and cadmium to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 78.5
%Ni-Fe-Zn alloy, the relationship between Zn addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount is shown in Figure 2.
Figure 3 shows the relationship between Ni loading, effective magnetic permeability, saturation magnetic flux density, and wear amount.
The relationship between the amount of Cd added and the effective magnetic permeability, saturation magnetic flux density, and amount of wear for the alloy is shown in Figure 4.
The relationship between the amount of Cd added, effective magnetic permeability, saturation magnetic flux density, and amount of wear is shown for Fe-7%Nb-Cd alloy.
第5図はは79.0%Ni Fe 1.0%Zn−
1,0%Cd合金にCu 、W、Ta 、N’bあるい
はMnを添加した場合の各元素の添加量と実効透磁率、
飽和磁束密度および摩耗量との関係を示す。Figure 5 shows 79.0%NiFe 1.0%Zn-
Addition amount and effective magnetic permeability of each element when Cu, W, Ta, N'b or Mn is added to 1.0% Cd alloy,
The relationship between saturation magnetic flux density and amount of wear is shown.
第6図は79.0%r’Ji−Fe−1.0%Zn−1
,0%Cd合金にCr 、Mo 、V、AuあるいはC
。Figure 6 shows 79.0%r'Ji-Fe-1.0%Zn-1
,0%Cd alloy with Cr, Mo, V, Au or C
.
を添加した場合の各元素の添加量と実効透磁率、飽和磁
束密度および摩耗量との関係を示す。The relationship between the amount of each element added and the effective magnetic permeability, saturation magnetic flux density, and amount of wear is shown below.
第7図は79.0%Ni−Fe−1,0%Zn−1,0
%Cd合金にTi 、St 、Ge、Ga、In。Figure 7 shows 79.0%Ni-Fe-1,0%Zn-1,0
%Cd alloy with Ti, St, Ge, Ga, In.
Tffi、 Sr 、 Ba 、 Ptあるいは
Afを添加した場合の各元素の添加量と実効透磁率、飽
和磁束密度および摩耗量との関係を示す。The relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when Tffi, Sr, Ba, Pt, or Af is added is shown.
第8図は79.0%N’i−F’s 1.0%Zn−
1,0%Cd合金にZr、Hf 、Ag、Ce、Be。Figure 8 shows 79.0%N'i-F's 1.0%Zn-
1.0% Cd alloy with Zr, Hf, Ag, Ce, Be.
Sn、Sb、BあるいはPを添加した場合の各元素の添
加量と実効透磁率、飽和磁束密度および摩耗量との関係
を示す。The relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when Sn, Sb, B, or P is added is shown.
一般に亜鉛又はカドミウムの添加量の増加とともに実効
透磁率は著しく増大し、摩耗量は減少する。しかし亜鉛
およびカドミウムが5%以上では加工が困難になり好ま
しくない。Generally, as the amount of zinc or cadmium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the zinc and cadmium content exceeds 5%, processing becomes difficult, which is not preferable.
本発明のこのような磁気特性の向上は溶解時における亜
鉛およびカドミウムの脱酸、脱硫効果によって不純物が
除去され、合金組織を清浄にするとともに、亜鉛および
カドミウムの添加によって飽和磁歪および結晶磁気異方
性エネルギーが小さ(なり、磁化し易い状態に成るもの
と考えられる。The improvement in magnetic properties of the present invention is due to the deoxidation and desulfurization effects of zinc and cadmium during melting, which remove impurities and purify the alloy structure. It is thought that the magnetic energy becomes small (and becomes easily magnetized).
さらにNi−Zn系、Fe−Zn系、Ni−Cd系およ
びFe−Cd系金属間化合物が微細に析出して磁区を分
割し磁壁を増加させるので、交流磁界における磁壁の移
動速度を相対的に減少させ、そのため渦電流損失が小さ
くなり、大きな実効透磁率が得られるものと考えられる
。また本発明合金の耐摩耗性の向上は、亜鉛又はカドミ
ウムを添加すると、Ni−Fe合金の地が固溶体硬化す
るとともに、強固な金属間化合物が地に微細に析出し、
さらに耐食性が向上すことによるものと考えられる。Furthermore, since Ni-Zn, Fe-Zn, Ni-Cd, and Fe-Cd intermetallic compounds precipitate finely, dividing the magnetic domain and increasing the domain wall, the relative movement speed of the domain wall in an alternating magnetic field is It is believed that this reduces the eddy current loss and provides a large effective magnetic permeability. The improvement in wear resistance of the alloy of the present invention is due to the fact that when zinc or cadmium is added, the base of the Ni-Fe alloy is solid solution hardened, and strong intermetallic compounds are finely precipitated on the base.
This is thought to be due to further improvement in corrosion resistance.
さらに副成分として添加するCu 、W、Nb 。Furthermore, Cu, W, and Nb are added as subcomponents.
Ta、Mn、Mo、V、Au、Co、Cr、Ti 。Ta, Mn, Mo, V, Au, Co, Cr, Ti.
Ge、Ga、In、Ti、Sr、Ba、Af。Ge, Ga, In, Ti, Sr, Ba, Af.
Si、Zr、Hf、Ag、希土類元素、白金族元素、B
e、Sn、Sb、BおよびP等は第5図ないし第8図に
示すように本発明合金の実効透磁率を高める効果があり
、またCOは特に飽和磁束密度を高めるのに有効である
。さらにCu、W。Si, Zr, Hf, Ag, rare earth elements, platinum group elements, B
E, Sn, Sb, B, P, etc. have the effect of increasing the effective magnetic permeability of the alloy of the present invention, as shown in FIGS. 5 to 8, and CO is particularly effective in increasing the saturation magnetic flux density. Furthermore, Cu, W.
Nb、Ta、V、Au、Ti 、Ge、Ga、 I
n。Nb, Ta, V, Au, Ti, Ge, Ga, I
n.
Tl、 Sr、 Ba、A/!、 Si 、
Zr、 Hf 。Tl, Sr, Ba, A/! , Si,
Zr, Hf.
Ag 、希土類元素、白金族元素、Be、Sn。Ag, rare earth elements, platinum group elements, Be, Sn.
Sb、BおよびP等は第5図ないし第8図に示すように
本発明合金の耐摩耗性を改善する効果が大きく、さらに
Sr、Ba、Nb、Ta、Mn。As shown in FIGS. 5 to 8, Sb, B, and P have a large effect on improving the wear resistance of the alloy of the present invention, and Sr, Ba, Nb, Ta, and Mn.
Ti、Si、希土類元素は鍛造加工性を改善する効果が
大きい。Ti, Si, and rare earth elements have a great effect on improving forging workability.
次に本発明において合金の組織をニッケル30〜90%
、亜鉛又はカドミウムの1種または2種の合計0.00
1〜5%および残部鉄と限定し、またこれに添加する元
素をw430%以下、タングステン、タンタルのそれぞ
れ20%以下、ニオブ、マンガン。Next, in the present invention, the structure of the alloy is 30 to 90% nickel.
, a total of one or two of zinc or cadmium 0.00
1 to 5% and the balance is limited to iron, and the elements added to this are w430% or less, tungsten and tantalum each 20% or less, niobium, and manganese.
クロムのそれぞれ15%以下、モリブデン、バナジウム
、金、コバルトのそれぞれ10%以下、チタン。15% or less of each of chromium, 10% or less of each of molybdenum, vanadium, gold, and cobalt, and titanium.
ケイ素、ゲルマニウム、ガリウム、インジウム。Silicon, germanium, gallium, indium.
タリウム、ストロンチウム、バリウム、白金族元素のそ
れぞれ5%以下、アルミニウム、ジルコニウム、ハフニ
ウム、恨、希土類元素、ベリリウム。Thallium, strontium, barium, 5% or less of each of platinum group elements, aluminum, zirconium, hafnium, rare earth elements, beryllium.
錫、アンチモンのそれぞれ3%以下、ホウ素、リンのそ
れぞれ2%以下の1種または2種以上の合計0.01〜
30%と限定した理由は、実施例、第2表および第5図
ないし第8図から明らかなように、その組成範囲の飽和
磁束密度は50000以上で、実効透磁率および耐摩耗
性にすぐれ、且つ加工性も良好であるが、組成がこの範
囲をはずれると飽和磁束密度が5000 G以下となり
、実効透磁率が低下し、摩耗が大きくなり、且つ加工が
困難となり、磁気記録再生ヘッドの材料として不適当と
なるからである。すなわち、亜鉛およびカドミウムが0
.001%未満では添加効果が小さく、5%を越えると
鍛造加工が困難となる。そしてこれに副成分として銅3
0%以下、タングステン20%、ニオブ15%、タンタ
ル20%、マンガン15%、クロム15%、モリブデン
10%、バナジウム10%、金10%、チタン5%、ゲ
ルマニウム5%、ガリウム5%、インジウム5%、タリ
ウム5%、ストロンチウム5%、バリウム5%、白金族
元素5%のそれぞれを越え添加すると飽和磁束密度が5
000 c以下となるからであり、ジルコニウム3%、
1艮3%、ケイ素5%、アルミニウム3%、ハフニウム
3%、希土類元素3%、ベリリウム3%、錫3%、アン
チモン3%、ホウ素2%、リン2%のそれぞれを越えて
添加すると鍛造あるいは加工が困難となるからであり、
Coを10%を越え添加すると実効透磁率が小さくなる
からである。3% or less each of tin and antimony, and 2% or less each of boron and phosphorus, total of 0.01 or more of one or more types
The reason why it is limited to 30% is that, as is clear from Examples, Table 2, and Figures 5 to 8, the saturation magnetic flux density in that composition range is 50,000 or more, and it has excellent effective magnetic permeability and wear resistance. It also has good workability, but if the composition is outside this range, the saturation magnetic flux density will be less than 5000 G, the effective magnetic permeability will decrease, wear will increase, and processing will be difficult, making it difficult to use as a material for magnetic recording/reproducing heads. This is because it would be inappropriate. That is, zinc and cadmium are 0
.. If it is less than 0.001%, the effect of addition is small, and if it exceeds 5%, forging becomes difficult. And copper 3 is added to this as a subcomponent.
0% or less, tungsten 20%, niobium 15%, tantalum 20%, manganese 15%, chromium 15%, molybdenum 10%, vanadium 10%, gold 10%, titanium 5%, germanium 5%, gallium 5%, indium 5 %, 5% thallium, 5% strontium, 5% barium, and 5% platinum group elements, the saturation magnetic flux density increases by 5%.
000 c or less, and zirconium 3%,
Forging or This is because processing becomes difficult.
This is because if Co exceeds 10%, the effective magnetic permeability decreases.
なお、第2表より明らかなように、Ni−Fe系合金に
副成分の何れかを入れると実効透磁率は更に太き(なり
、また、硬度も高くなり、耐摩耗性が改善されるのでこ
れらの副成分の添加は同一効果であり、同効成分と見做
し得る。また、希土類元素はスカンジウム、インドリウ
ムおよびランタン系元素からなるものであるが、その副
成分添加効果は全く同一であり、白金族元素は白金、イ
リジウム、ルテニウム、ロジウム、パラジウム。Furthermore, as is clear from Table 2, when any of the subcomponents is added to the Ni-Fe alloy, the effective magnetic permeability increases, the hardness also increases, and the wear resistance is improved. The addition of these subcomponents has the same effect and can be considered as the same effective ingredient.Furthermore, rare earth elements consist of scandium, indolium, and lanthanum-based elements, but the effects of adding these subcomponents are completely the same. Yes, and the platinum group elements are platinum, iridium, ruthenium, rhodium, and palladium.
オスミウムからなるが、その効果も全く同一である。Although it is made of osmium, its effects are exactly the same.
尚、炭素、窒素、酸素および硫黄は耐摩耗性を改善し、
Te、Se、Bi 、CaおよびPhは快削性を改善す
るので、磁気特性を損わない程度の各々0.1%以下な
らは有効であり、本発明合金に不純物として含有されて
も差支えない。In addition, carbon, nitrogen, oxygen and sulfur improve wear resistance,
Since Te, Se, Bi, Ca, and Ph improve free machinability, they are effective if each is contained in an amount of 0.1% or less without impairing magnetic properties, and there is no problem even if they are contained as impurities in the alloy of the present invention. .
(発明の効果)
要するに本発明合金は飽和磁束密度が50000以上で
実効透磁率が高く、耐摩耗性がすぐれ、且つ加工性が良
好なので磁気録音再生ヘッド用磁性合金として好適であ
るばかりでなく、VTRおよび電子計算機の磁気記録再
生−・ラドならびに普通の電気N器などに用いる磁性材
料としても非常に好適である。(Effects of the Invention) In short, the alloy of the present invention has a saturation magnetic flux density of 50,000 or more, high effective permeability, excellent wear resistance, and good workability, so it is not only suitable as a magnetic alloy for magnetic recording/reproducing heads, but also It is also very suitable as a magnetic material for use in magnetic recording/reproducing devices for VTRs and electronic computers, as well as ordinary electric appliances.
第1図は78.5%Ni−Fe−Zn合金の亜鉛量と実
効透磁率、飽和磁束密度および摩耗量との関係を示す特
性図、
第2図は79%Ni−Fe−7%Nb−Zn合金の亜鉛
量と実効透磁率、飽和磁束密度および摩耗量との関係を
示す特性図、
第3図は78.5%Ni−Fe−Cd合金のカドミウム
量と実効透磁率、飽和磁束密度および摩耗量との関係を
示す特性図、
第4図は79%Nt−Fe−7%Nb−Cd合金のカド
ミウム量と実効透磁率、飽和磁束密度および摩耗量との
関係を示す特性図、
第5図は79.0%Ni−Fe−1,0%Zn−1,0
%Cd合金にCu 、W、Ta 、NbあるいはMnを
添加した場合の各元素の添加量と実効透磁率、飽和磁束
密度および摩耗量との関係を示す特性図、第6図は79
.0%Ni−Fe−10%Zn−1,0%Cd合金にC
r 、Mo 、V、AuあるいはCoを添加した場合の
各元素の添加量と実効透磁率、飽和磁束密度および摩耗
量との関係を示す特性図、第7図は79.0%Ni−F
e−1,0%Zn−1,0%Cd合金にTi、St、G
a、Ga、In、Tl。
Sr、Ba、PtあるいはAffiを添加した場合の各
元素の添加量と実効透磁率、飽和磁束密度および摩耗量
との関係を示す特性図、
第8図は79.0%Ni−Fe−1,0%Zn −1,
0%Cd合金にZr、Hf、Ag、Ce、Be、Sn。
Sb、BあるいはPを添加した場合の各元素の添加量と
実効透磁率、飽和磁束密度および摩耗量との関係を示す
特性図である。
xfO’
第1図
同Figure 1 is a characteristic diagram showing the relationship between zinc content, effective magnetic permeability, saturation magnetic flux density, and wear amount for 78.5%Ni-Fe-Zn alloy. A characteristic diagram showing the relationship between zinc content and effective magnetic permeability, saturation magnetic flux density, and wear amount of Zn alloy. Figure 3 shows the relationship between cadmium content and effective magnetic permeability, saturation magnetic flux density, and Figure 4 is a characteristic diagram showing the relationship between the amount of wear and the amount of cadmium in the 79%Nt-Fe-7%Nb-Cd alloy, effective magnetic permeability, saturation magnetic flux density, and amount of wear. The figure shows 79.0%Ni-Fe-1,0%Zn-1,0
A characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when Cu, W, Ta, Nb, or Mn is added to a %Cd alloy.
.. C in 0%Ni-Fe-10%Zn-1,0%Cd alloy
A characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when r, Mo, V, Au, or Co is added. Figure 7 shows the relationship between 79.0%Ni-F
e-1,0%Zn-1,0%Cd alloy with Ti, St, and G
a, Ga, In, Tl. A characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when Sr, Ba, Pt, or Affi is added. 0%Zn-1,
Zr, Hf, Ag, Ce, Be, Sn in 0% Cd alloy. FIG. 3 is a characteristic diagram showing the relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and amount of wear when Sb, B, or P is added. xfO' Same as Figure 1
Claims (3)
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン,タンタルのそれぞれ
20%以下、ニオブ,マンガン,クロムのそれぞれ15
%以下、モリブデン,バナジウム,金,コバルトのそれ
ぞれ10%以下、チタン,ケイ素,ゲルマニウム,ガリ
ウム,インジウム,タリウム,ストロンチウム,バリウ
ム,白金族元素のそれぞれ5%以下、アルミニウム,ジ
ルコニウム,ハフニウム,銀,希土類元素,ベリリウム
,錫,アンチモンのそれぞれ3%以下、ホウ素,リンの
それぞれ2%以下の1種または2種以上の合計0.01
〜30%を含有してなる合金を600℃以上融点以下の
温度で非酸化性雰囲気あるいは真空中において、少くと
も1分間以上100時間以下の組成に対応した適当時間
加熱した後、600℃以上の温度から100℃/秒〜1
℃/時の組成に対応した適当な速度で常温まで冷却する
ことを特徴とする磁気記録再生ヘッド用耐摩耗性高透磁
率合金の製造法。1. The main component is an alloy consisting of 30-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% or less copper as a secondary component. 20% or less each of tungsten and tantalum, 15% each of niobium, manganese, and chromium
% or less, 10% or less each of molybdenum, vanadium, gold, and cobalt, 5% or less each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, hafnium, silver, and rare earths. Total of 0.01 of one or more elements: 3% or less each of beryllium, tin, and antimony, and 2% or less each of boron and phosphorus.
After heating an alloy containing ~30% in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and lower than the melting point for at least 1 minute or more and 100 hours or less for an appropriate time corresponding to the composition, Temperature to 100℃/sec~1
A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, characterized by cooling to room temperature at an appropriate rate corresponding to the composition in °C/hour.
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン,タンタルのそれぞれ
20%以下、ニオブ,マンガン,クロムのそれぞれ15
%以下、モリブデン,バナジウム,金,コバルトのそれ
ぞれ10%以下、チタン,ケイ素,ゲルマニウム,ガリ
ウム,インジウム,タリウム,ストロンチウム,バリウ
ム,白金族元素のそれぞれ5%以下、アルミニウム,ジ
ルコニウム,ハフニウム,銀,希土類元素,ベリリウム
,錫,アンチモンのそれぞれ3%以下、ホウ素,リンの
それぞれ2%以下の1種または2種以上の合計0.01
〜30%を含有してなる合金を600℃以上融点以下の
温度で非酸化性雰囲気あるいは真空中において、少くと
も1分間以上100時間以下の組成に対応した適当時間
加熱した後、600℃以上の温度から100℃/秒〜1
℃/時の組成に対応した適当な速度で常温まで冷却し、
これをさらに600℃以下の温度で非酸化性雰囲気ある
いは真空中において1分間以上100時間以下の組成に
対応した適当時間加熱し、冷却することを特徴とする磁
気記録再生ヘッド用耐摩耗性高透磁率合金の製造法。2. The main component is an alloy consisting of 30-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% or less copper as a secondary component. 20% or less each of tungsten and tantalum, 15% each of niobium, manganese, and chromium
% or less, 10% or less each of molybdenum, vanadium, gold, and cobalt, 5% or less each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, hafnium, silver, and rare earths. A total of 0.01 of one or more of the elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorous, each of 2% or less
After heating an alloy containing ~30% at a temperature of 600°C or higher and lower than the melting point in a non-oxidizing atmosphere or in vacuum for an appropriate time corresponding to the composition for at least 1 minute and 100 hours, Temperature to 100℃/sec~1
Cool to room temperature at an appropriate rate corresponding to the composition in °C/hour,
This is further heated in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or less for an appropriate time corresponding to the composition for 1 minute or more and 100 hours or less, and then cooled. Method of manufacturing magnetic alloys.
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン,タンタルのそれぞれ
20%以下、ニオブ,マンガン,クロムのそれぞれ15
%以下、モリブデン,バナジウム,金,コバルトのそれ
ぞれ10%以下、チタン,ケイ素,ゲルマニウム,ガリ
ウム,インジウム,タリウム,ストロンチウム,バリウ
ム,白金族元素のそれぞれ5%以下、アルミニウム,ジ
ルコニウム,ハフニウム,銀,希土類元素,ベリリウム
,錫,アンチモンのそれぞれ3%以下、ホウ素,リンの
それぞれ2%以下の1種または2種以上の合計0.01
〜30%を含有してなる合金を用いた磁気記録再生ヘッ
ド。3. The main component is an alloy consisting of 30-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% or less copper as a secondary component. 20% or less each of tungsten and tantalum, 15% each of niobium, manganese, and chromium
% or less, 10% or less each of molybdenum, vanadium, gold, and cobalt, 5% or less each of titanium, silicon, germanium, gallium, indium, thallium, strontium, barium, and platinum group elements, aluminum, zirconium, hafnium, silver, and rare earths. A total of 0.01 of one or more of the elements, beryllium, tin, antimony, each of 3% or less, boron, phosphorous, each of 2% or less
A magnetic recording/reproducing head using an alloy containing ~30%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1262699A JPH02153036A (en) | 1989-10-07 | 1989-10-07 | Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1262699A JPH02153036A (en) | 1989-10-07 | 1989-10-07 | Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing head |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15278384A Division JPS6134160A (en) | 1984-07-25 | 1984-07-25 | Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02153036A true JPH02153036A (en) | 1990-06-12 |
Family
ID=17379368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1262699A Pending JPH02153036A (en) | 1989-10-07 | 1989-10-07 | Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02153036A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106024258A (en) * | 2016-06-29 | 2016-10-12 | 无锡康柏斯机械科技有限公司 | Penholder-like iron core for automobile ignition coil |
CN106205928A (en) * | 2016-06-29 | 2016-12-07 | 无锡康柏斯机械科技有限公司 | A kind of soft magnet core based on automobile ignition coil |
CN109680203A (en) * | 2019-01-24 | 2019-04-26 | 安徽省安工机械制造有限公司 | A kind of rare earth high-chromium wear-resistant alloy material |
CN111455218A (en) * | 2020-04-02 | 2020-07-28 | 江苏远航精密合金科技股份有限公司 | Nickel-based conductor material for new energy automobile power battery and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134160A (en) * | 1984-07-25 | 1986-02-18 | Res Inst Electric Magnetic Alloys | Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head |
-
1989
- 1989-10-07 JP JP1262699A patent/JPH02153036A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134160A (en) * | 1984-07-25 | 1986-02-18 | Res Inst Electric Magnetic Alloys | Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106024258A (en) * | 2016-06-29 | 2016-10-12 | 无锡康柏斯机械科技有限公司 | Penholder-like iron core for automobile ignition coil |
CN106205928A (en) * | 2016-06-29 | 2016-12-07 | 无锡康柏斯机械科技有限公司 | A kind of soft magnet core based on automobile ignition coil |
CN106024258B (en) * | 2016-06-29 | 2019-04-19 | 无锡康柏斯机械科技有限公司 | A kind of pen type iron core of automobile ignition coil |
CN109680203A (en) * | 2019-01-24 | 2019-04-26 | 安徽省安工机械制造有限公司 | A kind of rare earth high-chromium wear-resistant alloy material |
CN111455218A (en) * | 2020-04-02 | 2020-07-28 | 江苏远航精密合金科技股份有限公司 | Nickel-based conductor material for new energy automobile power battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910002868B1 (en) | High permeability wear alloy and its manufacturing method | |
US5547520A (en) | Wear-resistant high permeability magnetic alloy and method of manufacturing the same | |
JPS6133900B2 (en) | ||
JPS625972B2 (en) | ||
KR100405929B1 (en) | Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head | |
JPS6212296B2 (en) | ||
JPH02153036A (en) | Wear-resistant high permeability alloy for magnetic recording/reproducing head, manufacturing method thereof, and magnetic recording/reproducing head | |
JPS5947017B2 (en) | Magnetic alloy for magnetic recording and playback heads and its manufacturing method | |
JPH0368107B2 (en) | ||
JPS58150119A (en) | Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head | |
JPS5947018B2 (en) | Magnetic alloy for magnetic recording and playback heads and its manufacturing method | |
JPH02153052A (en) | Manufacturing method of wear-resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head | |
JPH0645847B2 (en) | Manufacturing method of wear resistant high permeability alloy. | |
JPH032216B2 (en) | ||
JPH0310699B2 (en) | ||
JPS6218619B2 (en) | ||
JPH0645849B2 (en) | Manufacturing method of wear resistant high permeability alloy. | |
JPH10259439A (en) | Wear-resistant high permeability alloy and magnetic recording / reproducing head | |
JPH0310700B2 (en) | ||
JPH0377644B2 (en) | ||
JPH0645846B2 (en) | Manufacturing method of wear resistant high permeability alloy. | |
JPH0525947B2 (en) | ||
JPS5857499B2 (en) | Ni-Fe-Nb wear-resistant high permeability alloy and magnetic recording/reproducing head | |
JPH0645839B2 (en) | Abrasion resistance high magnetic permeability magnetic recording / reproducing head | |
JPS6155583B2 (en) |