[go: up one dir, main page]

JPS62120041A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62120041A
JPS62120041A JP26025885A JP26025885A JPS62120041A JP S62120041 A JPS62120041 A JP S62120041A JP 26025885 A JP26025885 A JP 26025885A JP 26025885 A JP26025885 A JP 26025885A JP S62120041 A JPS62120041 A JP S62120041A
Authority
JP
Japan
Prior art keywords
substrate
gas
groove
etching
shaped groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26025885A
Other languages
Japanese (ja)
Inventor
Shinichirou Ikemasu
慎一郎 池増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26025885A priority Critical patent/JPS62120041A/en
Publication of JPS62120041A publication Critical patent/JPS62120041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form a U-shaped groove and to form an impurity region on the entire surface of the U-shaped groove by anisotropically etching a semiconductor substrate with etching gas including an impurity diffusing source gas while holding the substrate at a predetermined high temperature state. CONSTITUTION:CF4+O2 gas 7 and BF3 gas 8 fed into a chamber 3 becomes a plasma state by a high frequency power source 6, and are emitted to a wafer 5 by applying a voltage to an electrode 4. Thus, the ionized boron ions are first adhered to a silicon substrate 1. Then, since the substrate 1 is heated by a heater 9 to a high temperature, the adhered boron ions are diffused in the substrate to form a P-type region. The activated radical F generated by the ionization of the CF4 gas anisotropically etches the substrate 1 tom form a U-shaped groove. The substrate 1 is simultaneously etched with the adherence and diffusion of the boron ions and the radical F.

Description

【発明の詳細な説明】 〔a要〕 半導体装置の製造方法であって、エツチング用のガスに
不純物拡散用のソースガスを混入することにより、溝の
側壁を含む全表面に不純物を拡散しなからU溝の形成を
可面とする。
[Detailed Description of the Invention] [Required] A method for manufacturing a semiconductor device, which includes mixing an etching gas with a source gas for impurity diffusion to diffuse impurities over the entire surface including the sidewalls of a trench. The U-groove can be formed easily.

〔産業上の利用分野〕[Industrial application field]

未発1月は゛ト導体装置の製造方法に関するものであり
、特にドライエツチングによりU溝を形成する゛ト導体
装置の製造方法に関するものである。
This article relates to a method of manufacturing a conductor device, and in particular to a method of manufacturing a conductor device in which a U-groove is formed by dry etching.

〔従来の技術〕[Conventional technology]

従来、素子分離技術の一つとしてU溝素子分離法がある
が、その1i1提としてシリコン基板にU溝を形成する
必要がある。第3図は従来例のU溝を形成する方法を説
明する図であり、lはシリコン基板、2は基板をエツチ
ングする際にマスクとして使用する絶縁膜である1図に
おいて、CF4+02ガスはエツチング用のガスであり
、プラズマによって生成する活性化ラジカルFによって
シリコン基板1はエツチングされる。このときエツチン
グを異方性とすればU溝が形成される。
Conventionally, there is a U-groove element isolation method as one of the element isolation techniques, but one of its requirements is that it is necessary to form a U-groove in a silicon substrate. FIG. 3 is a diagram explaining a conventional method of forming a U-groove, in which 1 is a silicon substrate, 2 is an insulating film used as a mask when etching the substrate, and CF4+02 gas is used for etching. The silicon substrate 1 is etched by the activated radicals F generated by the plasma. At this time, if the etching is made anisotropic, a U groove is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで素子間分離を完成させるためにはシリコン基板
lの表面が反転してリーク電流が発生しないように、U
溝の表面全域に不純物領域を形成する必要がある。従来
、一般に不純物領域の形成はイオン打ち込み方によって
行われている。しかしイオン打ち込み法ではU溝の基部
に不純物を打ち込むことができても側壁に打ち込むこと
は難しい、従ってこのため側壁に不純物領域が形成でき
ないので、リーク電流の発生を防止することができない
という問題点がある。
By the way, in order to complete the isolation between the elements, it is necessary to
It is necessary to form an impurity region over the entire surface of the trench. Conventionally, impurity regions have generally been formed by ion implantation. However, with the ion implantation method, even if it is possible to implant impurities into the base of the U-groove, it is difficult to implant them into the sidewalls.Therefore, since an impurity region cannot be formed on the sidewalls, it is not possible to prevent the generation of leakage current. There is.

未発IIはかかる従来例の問題点に鑑みて創作されたも
のであり、U溝を形成するとともに、側壁を含めたU溝
の全表面に不純物領域を形成することを可能とする半導
体装置の製造方法の提供を目的とする。
Unhappened II was created in view of the problems of the conventional example, and is a semiconductor device that makes it possible to form a U-groove and to form an impurity region on the entire surface of the U-groove including the sidewalls. The purpose is to provide a manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体基板を一定の高温状態に保持しながら不
純物拡散用のソースガスを含むエツチング用ガスを用い
て異方性エツチングを行なうことにより、U溝の形成と
同時に該U溝の全表面に不純物領域を形成することを特
徴とする。
The present invention performs anisotropic etching using an etching gas containing a source gas for impurity diffusion while holding a semiconductor substrate at a constant high temperature, thereby simultaneously forming a U-groove and etching the entire surface of the U-groove. It is characterized by forming an impurity region.

〔作用〕[Effect]

エツチング用ガスによりエツチングされて基板にはU溝
が形成される。同時に不純物拡散用のガスがU溝表面に
付着して基板内に拡散することにより、U溝表面全体に
不純物領域の形成が可能となる。
A U-groove is formed in the substrate by etching with an etching gas. At the same time, the impurity diffusion gas adheres to the surface of the U-groove and diffuses into the substrate, making it possible to form an impurity region over the entire surface of the U-groove.

〔実施例〕〔Example〕

次に図を参照しながら木9.川の実施例について説明す
る。第1図は本発明の実施例に係る半導体装置の製造方
法を説明する図であり、3はチャンバー、4は電極、5
はU溝を形成する対象となるウェハー、6は高周波電源
である。また7はエツチング用のCFs+02 ガス、
8は不純物拡散用のBF3ガスであり、9はウェハー5
を1000℃前後に加熱するヒーターである。
Next, refer to the diagram and select tree 9. An example of a river will be explained. FIG. 1 is a diagram illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention, in which 3 is a chamber, 4 is an electrode, and 5
6 is a wafer on which a U-groove is to be formed, and 6 is a high frequency power source. 7 is CFs+02 gas for etching,
8 is BF3 gas for impurity diffusion, 9 is wafer 5
This is a heater that heats the water to around 1000°C.

また第2図(L)、(b)はこの製造方法によってウェ
ハー5の半導体基板lにU溝が形成される様子を示す断
面図である。
Further, FIGS. 2(L) and 2(b) are cross-sectional views showing how a U-groove is formed in the semiconductor substrate l of the wafer 5 by this manufacturing method.

これら第1図、第2図を参照しながら実施例の作用につ
いて説明する。チャンへ−内に導入されたCF4 +0
7ガス7とBF3 ガス8は高1.1波’r(f。
The operation of the embodiment will be explained with reference to FIGS. 1 and 2. CF4 introduced into Changhe- +0
7 Gas 7 and BF3 Gas 8 has a high 1.1 wave 'r(f.

源6によってプラズマ状態となり、さらに電極4の間の
印加電圧によってウェハー5に照射される。
The plasma is brought into a plasma state by the source 6, and the wafer 5 is further irradiated by the voltage applied between the electrodes 4.

これにより解離したポロンイオンはまずシリコン」、(
板lの表面に付着する0次にシリコン基板lがヒーター
9によって加熱されて高温状態にあるから、付着したポ
ロンイオンは基板内部に拡散してP層領域を形成する(
第2図(a))。
As a result, the dissociated poron ions are first released as "silicon", (
Since the zero-order silicon substrate l attached to the surface of the plate l is heated by the heater 9 and is in a high temperature state, the attached poron ions diffuse into the substrate and form a P layer region (
Figure 2(a)).

一方CFへガスの解離によって生成した活性化ラジカル
Fはシリコン基板1を異方性エツチングしてU溝を形成
する。
On the other hand, activated radicals F generated by gas dissociation into CF anisotropically etch the silicon substrate 1 to form a U-groove.

このポロン、イオンの付着・拡散と活性化ラジカルFに
よるシリコン基板lのエツチングは同時的に行われる。
The adhesion and diffusion of the poron and ions and the etching of the silicon substrate 1 by the activated radicals F are performed simultaneously.

(第2図(b))、すなわちU溝の底部にはポロンイオ
ンが付着・拡散してP層領域を形成し、同時にエツチン
グされる。このときシリコン基板lの表面の不純物濃度
はポロンイオンの供給により常に高濃度に保たれるから
、エツチング速度の増大を図ることができる。一方、U
溝の側壁部は活性化ラジカルFによってほとんどエツチ
ングされないから(異方性エッチソング)、その部分に
付着したポロンイオンは基板lの内部に拡散してP型拡
散領域を形成する。このようにしてU溝の側壁にP層領
域を形成することができる。
(FIG. 2(b)), that is, poron ions adhere and diffuse at the bottom of the U groove to form a P layer region, and are etched at the same time. At this time, since the impurity concentration on the surface of the silicon substrate 1 is always maintained at a high concentration by the supply of poron ions, it is possible to increase the etching rate. On the other hand, U
Since the side wall portion of the groove is hardly etched by the activated radicals F (anisotropic etch song), the poron ions adhering to that portion diffuse into the interior of the substrate 1 to form a P-type diffusion region. In this way, a P layer region can be formed on the sidewall of the U groove.

以上説明したように、実施例によればU溝の底部のみな
らず側壁にもP層領域を形成することができるので、木
実施例を素子間分離用のU溝形成に用いればリーク電流
の発生しない高性土の、に子間分離が可能となる。また
本発明をメモリ等に使用される8隘の形成に適用するこ
とにより、小面積で所定の容μ値を有する8雀の形成が
f’f imとなる。
As explained above, according to the embodiment, the P layer region can be formed not only at the bottom of the U-groove but also on the sidewalls. Therefore, if the wooden embodiment is used to form a U-groove for isolation between elements, leakage current can be reduced. It is possible to separate the particles of high-grade soil that does not occur. Furthermore, by applying the present invention to the formation of 8-pieces used for memories, etc., the formation of 8-pieces having a predetermined volume μ value in a small area becomes f'fim.

また実施例によればU溝形成と不純物領域の形成は同時
的になされるので、平導体装置の製造効率の向上を図る
ことがM flとなる。
Further, according to the embodiment, since the U-groove formation and the impurity region formation are performed simultaneously, M fl is aimed at improving the manufacturing efficiency of the flat conductor device.

なお実施例ではP層領域の形成について説明したが、不
純物拡散用のソースガスの種類を変えることにより、N
型領域の形成もl’T 71となる。また実施例ではシ
リコン基板lを高温に保つことによってU溝の側壁に不
純物領域を形成したが、屯にエツチングの高速化を図る
目的に限る場合には、不純物が拡散しない温度にシリコ
ン基板1の温度を下げればよい。
Although the embodiment described the formation of the P layer region, by changing the type of source gas for impurity diffusion, N
Formation of the mold region also results in l'T 71. Further, in the embodiment, the impurity region was formed on the side wall of the U-groove by keeping the silicon substrate 1 at a high temperature, but if the purpose is to speed up etching, the silicon substrate 1 may be kept at a temperature at which impurities do not diffuse. Just lower the temperature.

〔発明の効果〕〔Effect of the invention〕

以北説明したように、本発明によれば半導体基板を一定
の高温に保持し、かつ不純物拡散用のソースガスを含む
エツチングガスを用いて異方性エツチングするので、U
溝を形成しながら同時にgs壁を含めてU溝の表面全域
に不純物領域の形成が可使となる。従って半導体装置の
製造効率大幅な向上を図ることができる。
As explained above, according to the present invention, the semiconductor substrate is held at a constant high temperature and anisotropic etching is performed using an etching gas containing a source gas for impurity diffusion.
While forming the groove, it is possible to simultaneously form an impurity region over the entire surface of the U-groove, including the gs wall. Therefore, the manufacturing efficiency of semiconductor devices can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例に係る半導体装この製
造方法を説明する図であり、第3図は従来例の半導体装
置の製造方法を説明する図である。 ■・・・シリコン基板(半導体基板) 2・・・絶縁1す 3・・・チャンバー 4・・・電極 5・・・ウェハー 6・・・高周波電源 7・・・CFa +02 ガス(エツチング用のガス)
8・・・BF3ガス(不純物拡散ソース用のガス)9・
・・ヒーター ′1− 代理人 弁理士 井桁 貞ム ′ CF4−102qス (α) 本3色胡の亥垢缶110 第2図
1 and 2 are diagrams illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 3 is a diagram illustrating a method of manufacturing a conventional semiconductor device. ■...Silicon substrate (semiconductor substrate) 2...Insulation 13...Chamber 4...Electrode 5...Wafer 6...High frequency power supply 7...CFa +02 Gas (etching gas )
8... BF3 gas (gas for impurity diffusion source) 9.
・・Heater '1- Agent Patent attorney Sadamu Igeta ' CF4-102qs (α) Hon 3-colored black can 110 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を一定の高温状態に保持しながら不純物拡散
用のソースガスを含むエッチング用ガスを用いて異方性
エッチングを行なうことにより、U溝の形成と同時に該
U溝の全表面に不純物領域を形成することを特徴とする
半導体装置の製造方法。
By performing anisotropic etching using an etching gas containing a source gas for impurity diffusion while holding the semiconductor substrate at a constant high temperature, an impurity region is formed on the entire surface of the U-groove at the same time as the U-groove is formed. 1. A method of manufacturing a semiconductor device, characterized by forming a semiconductor device.
JP26025885A 1985-11-20 1985-11-20 Manufacture of semiconductor device Pending JPS62120041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26025885A JPS62120041A (en) 1985-11-20 1985-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26025885A JPS62120041A (en) 1985-11-20 1985-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62120041A true JPS62120041A (en) 1987-06-01

Family

ID=17345547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26025885A Pending JPS62120041A (en) 1985-11-20 1985-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62120041A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937205A (en) * 1987-08-05 1990-06-26 Matsushita Electric Industrial Co., Ltd. Plasma doping process and apparatus therefor
US5338697A (en) * 1989-12-01 1994-08-16 Seiko Instruments Inc. Doping method of barrier region in semiconductor device
US6893907B2 (en) 2002-06-05 2005-05-17 Applied Materials, Inc. Fabrication of silicon-on-insulator structure using plasma immersion ion implantation
US6939434B2 (en) 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7037813B2 (en) 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US7094316B1 (en) 2000-08-11 2006-08-22 Applied Materials, Inc. Externally excited torroidal plasma source
US7094670B2 (en) 2000-08-11 2006-08-22 Applied Materials, Inc. Plasma immersion ion implantation process
US7109098B1 (en) 2005-05-17 2006-09-19 Applied Materials, Inc. Semiconductor junction formation process including low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7166524B2 (en) 2000-08-11 2007-01-23 Applied Materials, Inc. Method for ion implanting insulator material to reduce dielectric constant
US7183177B2 (en) 2000-08-11 2007-02-27 Applied Materials, Inc. Silicon-on-insulator wafer transfer method using surface activation plasma immersion ion implantation for wafer-to-wafer adhesion enhancement
US7223676B2 (en) 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US7288491B2 (en) 2000-08-11 2007-10-30 Applied Materials, Inc. Plasma immersion ion implantation process
US7303982B2 (en) 2000-08-11 2007-12-04 Applied Materials, Inc. Plasma immersion ion implantation process using an inductively coupled plasma source having low dissociation and low minimum plasma voltage
US7312148B2 (en) 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7312162B2 (en) 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7335611B2 (en) 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7422775B2 (en) 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7429532B2 (en) 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
US7428915B2 (en) 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US7430984B2 (en) 2000-08-11 2008-10-07 Applied Materials, Inc. Method to drive spatially separate resonant structure with spatially distinct plasma secondaries using a single generator and switching elements
US7465478B2 (en) 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
US7479456B2 (en) 2004-08-26 2009-01-20 Applied Materials, Inc. Gasless high voltage high contact force wafer contact-cooling electrostatic chuck

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937205A (en) * 1987-08-05 1990-06-26 Matsushita Electric Industrial Co., Ltd. Plasma doping process and apparatus therefor
US5338697A (en) * 1989-12-01 1994-08-16 Seiko Instruments Inc. Doping method of barrier region in semiconductor device
US7303982B2 (en) 2000-08-11 2007-12-04 Applied Materials, Inc. Plasma immersion ion implantation process using an inductively coupled plasma source having low dissociation and low minimum plasma voltage
US7465478B2 (en) 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
US6939434B2 (en) 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7037813B2 (en) 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US7094316B1 (en) 2000-08-11 2006-08-22 Applied Materials, Inc. Externally excited torroidal plasma source
US7094670B2 (en) 2000-08-11 2006-08-22 Applied Materials, Inc. Plasma immersion ion implantation process
US7430984B2 (en) 2000-08-11 2008-10-07 Applied Materials, Inc. Method to drive spatially separate resonant structure with spatially distinct plasma secondaries using a single generator and switching elements
US7166524B2 (en) 2000-08-11 2007-01-23 Applied Materials, Inc. Method for ion implanting insulator material to reduce dielectric constant
US7183177B2 (en) 2000-08-11 2007-02-27 Applied Materials, Inc. Silicon-on-insulator wafer transfer method using surface activation plasma immersion ion implantation for wafer-to-wafer adhesion enhancement
US7288491B2 (en) 2000-08-11 2007-10-30 Applied Materials, Inc. Plasma immersion ion implantation process
US7223676B2 (en) 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US6893907B2 (en) 2002-06-05 2005-05-17 Applied Materials, Inc. Fabrication of silicon-on-insulator structure using plasma immersion ion implantation
US7479456B2 (en) 2004-08-26 2009-01-20 Applied Materials, Inc. Gasless high voltage high contact force wafer contact-cooling electrostatic chuck
US7428915B2 (en) 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US7312162B2 (en) 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7422775B2 (en) 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7109098B1 (en) 2005-05-17 2006-09-19 Applied Materials, Inc. Semiconductor junction formation process including low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7312148B2 (en) 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7335611B2 (en) 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7429532B2 (en) 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask

Similar Documents

Publication Publication Date Title
JPS62120041A (en) Manufacture of semiconductor device
US5015331A (en) Method of plasma etching with parallel plate reactor having a grid
US4148705A (en) Gas plasma reactor and process
US4380488A (en) Process and gas mixture for etching aluminum
JP3493951B2 (en) Silicon substrate anisotropic etching method and solar cell manufacturing method
JPS61107730A (en) Compound excitation plasma etching system
JPS63147368A (en) Double side gate electrostatic induction thyristor and manufacture thereof
JPH05102058A (en) Method and apparatus for manufacturing semiconductor substrate
JPS6337193B2 (en)
JPH0224016B2 (en)
JP2002083799A (en) Semiconductor etching device, and etching method for semiconductor device utilizing the same
CA2015891C (en) Method for forming variable width isolation structures
JPS5758356A (en) Manufacture of semiconductor device
US5209803A (en) Parallel plate reactor and method of use
JPS56122129A (en) Manufacture of semiconductor device
US4662059A (en) Method of making stabilized silicon-on-insulator field-effect transistors having 100 oriented side and top surfaces
GB2087315A (en) Plasma etching of aluminium
JP2783410B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JPS62232142A (en) Manufacture of semi-oxide isolation device
JPH04208528A (en) Manufacture of semiconductor device
JPS5745947A (en) Mos type semiconductor integrated circuit
JP3272442B2 (en) Method for manufacturing semiconductor device
KR20020049718A (en) Formation method of junction for solar cell
JP3830560B2 (en) Dry etching method
JP3348556B2 (en) Diamond etching method